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Abstract: Long-term monitoring of real-life physical activity (PA) using wearable devices is increas-
ingly used in clinical and epidemiological studies. The quality of the recorded data is an important
issue, as unreliable data may negatively affect the outcome measures. A potential source of bias
in PA assessment is the non-wearing of a device during the expected monitoring period. Identifi-
cation of non-wear time is usually performed as a pre-processing step using data recorded by the
accelerometer, which is the most common sensor used for PA analysis algorithms. The main issue is
the correct differentiation between non-wear time, sleep time, and sedentary wake time, especially
in frail older adults or patient groups. Based on the current state of the art, the objectives of this
study were to (1) develop robust non-wearing detection algorithms based on data recorded with a
wearable device that integrates acceleration and temperature sensors; (2) validate the algorithms
using real-world data recorded according to an appropriate measurement protocol. A comparative
evaluation of the implemented algorithms indicated better performances (99%, 97%, 99%, and 98%
for sensitivity, specificity, accuracy, and negative predictive value, respectively) for an event-based
detection algorithm, where the temperature sensor signal was appropriately processed to identify the
timing of device removal/non-wear.

Keywords: activity monitoring; wearable devices; non-wearing time; accelerometer; temperature

sensor; event-based detection algorithms

1. Introduction

Wearable devices, including accelerometers, are the most commonly used tools to
objectively evaluate physical activity and mobility in large-scale studies [1]. They measure
body acceleration in all three axes, and the gathered data can be used to classify different
movement behaviors and body postures [1-4]. One of the first steps when carrying out
such analyses is the detection of non-wear periods, i.e., the time during which the device is
not worn for various reasons, e.g., during showering or other aquatic activities, forgetting
to reattach the device afterwards, or removal of the sensor due to the fact of discomfort [2,5].
The identification of non-wear periods is crucial in clinical and epidemiological studies
where accelerometer-derived movements and physical activity parameters are used as
health outcomes. First, detection of wear/non-wear allows for measurement of the patients’
compliance along with validation of monitoring days for further analysis [2,4]. Secondly,
it reduces the risk of potential bias of derived physical activity parameters and outcome
evaluation, as weak acceleration signals during non-wearing are often misclassified as
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sedentary behaviors or sleep by physical activity analysis algorithms. This can be particu-
larly problematic for older adults or groups of patients that spend a significant amount of
time being inactive.

The accurate detection of non-wear time is still an ongoing issue, since this problem has
received little attention and studies have failed to address it adequately. Current algorithms
are often based exclusively on data collected by accelerometer sensors incorporated into
monitoring devices [2,4,6]. Typical methods used to detect periods of zero-activity counts,
thus indicating low levels of activity, with an appropriate threshold on the activity counts
signal (time series) over epochs of 30 s or 1 min. Once the entire signal is scanned, the epochs
are grouped into windows of 30, 60, or 90 min in order to ignore motion artifacts [4,7].
However, such a metric presents several limitations. A “count” is an arbitrary value that
is specific to the device manufacturer and, thus, difficult to generalize across different
accelerometers [3,5,7]. Moreover, these algorithms are typically validated in a laboratory
with devices being worn during waking hours only, meaning they cannot be applied to
protocols monitoring patients in a free-living setting over a period of multiple days [5].
Finally, they are problematic in two situations in particular: when motion artifacts are
present during non-wearing periods and when inactivity extends for long periods. In
the first case, non-wear may be misclassified as low activity, whereas in the second case,
sedentary behaviors could be misclassified as non-wear [3,7].

Few studies have focused on analyzing raw accelerometer data. Raw data are more
meaningful and interpretable than activity counts, as it is the wearer of the device that
directly causes the signal [3]. Ahmadi et al. [5] evaluated the performances of four algo-
rithms based on raw data, where the standard deviation of the acceleration in three axes
and the standard deviation of the vector magnitude were two of the metrics used. The
algorithm using the norm of the acceleration was the most promising and was shown to be
the most sensitive to movement and the most robust to noise. However, the accelerometer
is sensitive to movement artifacts, independent of the used metrics, and the choice of
the window that regroups shorter non-wear epochs is the determining factor. Moreover,
differentiating between sleep and non-wear periods remains difficult, and misclassification
is therefore unavoidable [3].

To improve the performance of non-wear algorithms, more recent studies have started
to use temperature sensors. When worn in contact with the body, the device is influenced
by body temperature, and once removed, the temperature signal normally decreases to
reach an equilibrium with the surroundings. Two previous studies [3,8] used a temperature
threshold and the average value of the temperature over a certain window to estimate non-
wear periods with some differences. Zhou et al. [3] used the GENEActiv watch worn at the
wrist and combined acceleration and temperature signals to identify non-wear periods, and
the temperature threshold was fixed at 26 °C. Duncan et al. [8] used a dual-accelerometer
system with Axivity devices worn at the thigh and lower back, and used the temperature
signal alone with a dynamic threshold (computed from 18 °C) to characterize non-wear
periods. The common issue with both methods is that the threshold is defined in terms of
absolute temperature, which reduces generalizability of the results, as this value depends
on the outdoor temperature, which varies among regions and on the device used. It is
therefore necessary to adapt it to different situations [3,8].

Despite rapid developments in sensor technology and related software, the accurate
distinction between non-wearing, daily inactivity, and sleep remains unsolved, which
is particularly problematic for the long-term monitoring of frail older adults or patients
with severe conditions. Therefore, the objective of the current study was to (1) develop
robust non-wearing detection algorithms based on acceleration and/or temperature that
reduce misclassification errors; (2) validate the algorithms using real-world data recorded
according to an appropriate measurement protocol.
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2. Materials and Methods
2.1. Data Collection

The study included 21 healthy volunteers (13 females, 8 males, aged 24-60 years)
enrolled at the Norwegian University of Science and Technology (NTNU), Trondheim,
between September-November 2020. The participants were students, employees, and
acquaintances, who all signed a consent form before participating. The study was assessed
by the Norwegian Centre for Research Data (NSD) and conducted in accordance with the
Declaration of Helsinki. Participants were monitored continuously for three consecutive
days, 24 h per day, using the Axivity device AX3 (https://axivity.com/, accessed on 7 Jan-
uary 2021) which contains a 3-axis accelerometer and a temperature sensor. According
to Axivity specifications, the temperature sensor gives a rough sense of the device’s en-
vironmental temperature. When worn, the device was fixed onto the skin at the lower
back (L5) with a hypoallergenic adhesive film. Sensor data were recorded continuously
during the monitoring period at a 100 Hz sampling rate. The participants were given a
set of instructions for the wear and non-wear periods and were asked to complete a diary
keeping detailed track of the removal periods. The protocol included two tasks per day and
four different tasks in total that were intended to test the non-wear detection algorithms in
different conditions as illustrated in Figure 1.

Day 3
Day 1 Y

Task 1: remove and reattach
Task 1: remove and reattach within one hour

within one hour

Task 2: remove for more than

Task 2: remove for more than one hour and reattach in
one hour wrong orientation
T T
> |l
Day 2

Task 1: remove and reattach
within one hour

Task 2: remove and place in the
pocket for more than one hour

Figure 1. Summary of the tasks included in the data acquisition protocol.

The participants were instructed to remove the device twice a day. Task 1 was per-
formed each day and consisted of removing the device for less than an hour to test the
ability of the algorithms to detect short non-wear periods, which are usually ignored by
many state-of-the-art methods. The second task was different each day and consisted of
removing the device for more than one hour (day 1), removing and placing the device
in a pocket (day 2), and removing and reattaching the device in the wrong orientation
(day 3) as indicated in Figure 1. The participants were asked to perform three claps with the
sensor upon removal of the device as well as prior to reattachment to allow for comparison
between diary entry times and device times.

In the diary, the participants entered the exact times of removal and reattachment for
the different tasks. These times were essential to generate a reference (ground truth) for val-
idation of the classification algorithms. Information regarding the place where the devices
were stored, room and external temperatures, and bedtime (sleep) was also provided in
the diary. Across participants, the diary entries showed that the inside temperature varied
between 18 and 23 °C, and the outside temperature between —3 and 17 °C.
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2.2. Developed Algorithms

Different algorithms were developed to assess the efficiency of our methodology. To
test the performances of the newly developed algorithms, alternative approaches derived
from the literature and based on temperature or accelerometer signals were implemented
and compared.

2.2.1. Accelerometer Based

The accelerometer-based algorithm, derived from Ahmadi et al., is based on the
standard deviation of the vector magnitude (VM), which was preferred over the standard
deviation of the acceleration signal on individual axes due to the lower sensitivity to
noise and to the orientation of the device [5]. The dynamic component of VM (i.e., gravity
removed) was filtered using a bandpass 4th order Butterworth filter (lower cut-off frequency
fcl = 0.5 Hz, upper cut-off frequency fc2 = 20 Hz). The standard deviation was computed
at a 1 min window length and compared to an appropriate threshold, thr = 13 mg, selected
according to recommendations in the literature to take into account the noise associated
with the electrical components [2,7]. In accordance with the literature, non-wear periods
of less than 30 min were ignored and classified as wear to avoid errors due to the motion
artifacts [5]. At the end of this procedure, a binary vector was generated, labeling wear
periods with 0 and non-wear periods with 1.

2.2.2. Temperature Based

Depending on the methodological approach, the algorithms using the temperature
sensor data were categorized as window-based or event-based. The first category includes
state-of-the-art algorithms implemented in order to compare the performances of the newly
developed event-based algorithms. For both approaches, the recorded temperature data
are first downsampled by a factor of 6 (i.e., keeping only every 6th sample). This choice of
the sampling frequency was based on the thermal response of the 20001942G temperature
sensor (Microchip Technology, Linear Active Thermistor Integrated Circuit) included in
the Axivity device. The steady state of the air-to-fluid bath experiment is nearly reached
after ~6 s (Low-Power Linear Active Thermistor ICs MCP97009700A and MCP97019701A
Datasheet. https:/ /www.rfglobalnet.com/doc/low-power-linear-active-thermistor-ics-
mcp-a-and-mcp-a-datasheet-0001, (accessed on 7 January 2021)). The signal was therefore
downsampled in order to eliminate noisy fluctuations. The sampled signal was further
smoothed by applying a Savitzky—Golay filter, chosen on the basis that this smoothing filter
is better suited to preserve sudden changes in the signal.

Window-Based Approach

Two window-based approaches derived from Duncan et al. [8] were implemented
and compared. In the first method, a dynamic threshold set around 18 °C was used to
characterize wear and non-wear periods, as proposed in [8]. In the second method, we
developed a dynamic/adaptive threshold approach, derived as follows. The mean of the
temperature above and below 18 °C was computed and the threshold was adjusted to be in
the middle of these average values as depicted in the histogram in Figure 2. The signal was
then scanned with a 1 min window length, the mean of the temperature was computed,
compared to the threshold and—if lower—the window was classified as non-wear (see
pseudocode in Figure 2).
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Figure 2. Illustrative example of the temperature (T) distribution of data recorded from one partici-
pant and pseudocode for dynamic threshold (thr) computation.

Event-Based Approach

Event-based algorithms look for a particular episode in the signal that is characteristic
of the class one wants to identify. Currently, there is no evidence of the use of such an
approach in the context of non-wear detection. In the case of the temperature signal, an
appropriate event for classification would be the temperature difference between consecu-
tive datapoints. Larger changes in the temperature occur when the sensor is removed (the
temperature decreases) or reattached (the temperature increases). The derivative of the
temperature signal highlights those changes by prominent peaks, compared to smaller vari-
ations due to, for example, the fact of environmental temperature fluctuations. However,
due to the slower response time, the derivative signal had a relatively small amplitude, on
the order of 0.01-0.02 °C (see Figure 3a). Consequently, it was difficult to apply a meaning-
ful threshold to identify peaks directly from the derivative signal. Therefore, we adopted a
detection-classification procedure [9], where, first, all candidate peaks potentially related to
wear /non-wear transitions were detected using an arbitrary low threshold set at 0.02 °C.
Once all the candidates were detected (Figure 3a), the classification was performed based
on the changes in temperature levels around the timing of each candidate peak (Figure 3b).
If the temperature difference was large enough (>3 °C), the respective peak was retained
for the classification stage.

a
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Figure 3. Illustrative example of the processing of the temperature signal using the event-based
approach derivative (a) of the filtered and downsampled temperature signal (b) recorded during the
monitoring period. The red, dashed vertical lines indicate potential non-wear events, corresponding
to the timing of the red dots (detected peaks) on the signal derivative. The red, dashed horizontal
lines in the upper panel (a) represent the 4:0.02 °C thresholds used for peak detection.

To analyze the surrounding of each candidate peak and classify/retain it as an “event”
related to sensor removal/re-attachment, four options were tested. All options were based
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on a range centered on the evaluated candidate peak (c) that spanned from the previous
(c — 1) to the following one (c + 1). The mean values of the signal over the window before
(from c—1 to c) and after (from c to ¢ + 1) were compared. Three of the options, illustrated
in Figure 4a—c, were similar but varied in the length of the window used to compute the
average temperature values as follows: (a) the entire signal segment between the evaluated,
previous, and next candidate peak (Figure 4a); (b) the middle of the signal segment before
and after the evaluated candidate peak (Figure 4b); (c) 60 min before and after the candidate
peak, allowing 10 min to reach a steady state, according to the response time reported in
the sensor datasheet (Figure 4c).

(a) 22 | ! / ! i ¢ : candidate
a2 A "\ v Toctore  =Temp(c-1->c)
+ AVAYS \/ Tatear =Temp (¢ > c+1)
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2 if Ty > 3°C then
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< 19 end
2 | 1
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@ 18| 1
17F SRR
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16' 1 | 1 | i
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—. 21
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g— if Ty >3°C then
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= end
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Figure 4. Analysis of the temperature signal around a candidate peak using four different approaches
(a—d) for the selection of the signal segment to average the temperature level, estimate the level change,
and skip or retain the candidate peak as an “event” associated with sensor removal/re-attachment.
The dashed, red lines represent the candidates, and the horizontal lines and dots (black and green)
represent the mean of the temperature over the windows adjacent to the candidate peak. The figure
includes examples of the processed signal and the pseudocode corresponding to each method.
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The fourth option (Figure 4d) was based on a different approach and used two bi-
directional moving average windows (bi-moving windows) for estimating the trend of the
temperature signal, similar to the approach proposed by Zhou et al. [3]. The average of the
temperature signal was computed on the two windows simultaneously and then compared.
The observed range was updated until a local maximum or a local minimum was reached.
The procedure is exemplified in Figure 4d (see also pseudocode) by considering the timing
of a negative candidate peak, potentially related to a sensor removal event. In the time
interval before the peak timing, the bi-moving window was applied going back in time.
As long as the mean value of temperature over window W1 was smaller than the mean
over window W2 (i.e., the signal was decreasing towards the candidate), the windows
were updated, meaning that W1 became W2 and W2 shifted backwards, then the averages
were re-computed. Once the condition was no longer satisfied, a local maximum was
reached, and it was taken as reference for the average temperature (mean(Ty pef)). In the
time interval after the peak timing, the same steps were applied but moving forward in
time. Since the signal was decreasing away from the candidate, the mean over W2 was
smaller than the mean over W1 until a local minimum was reached, and it was taken also
as a reference for the average temperature (mean(Ty of)). For a positive candidate peak
(potentially related to a reattachment event), the procedure was similar. If the difference,
Tais = | mean(Ty per) — mean(Twy o) |, was larger than 3 °C, the candidate was retained.
The 3 °C threshold was chosen as optimal based on empirical observations of the data and
a sensitivity analysis. Finally, the sign of the peak in the derivative signal was taken to
classify the retained events as the start or the end of a non-wear period. The length of the
window (W1, W2) was fixed at 5 min, which was considered an appropriate time interval
to analyze the temperature without being influenced by small fluctuations. Note that the
signal was further smoothed between candidates to remove small spurious fluctuation.

Note that after these steps, it was possible that a candidate was retained even though it
was not related to an actual non-wear event. A subsequent “pruning process” was therefore
applied in order to discard false positive detections. This procedure checked that every
positive peak was followed by a negative one, and that the temperature remained low
during non-wear. If this was not the case, the event was ignored.

2.2.3. Combined Accelerometer and Temperature Based

Another possibility is to combine the output of the acceleration-based and temperature-
based algorithms, as this approach can reduce the number of false negatives (i.e., periods
that should be classified as wear are classified as non-wear). This was achieved by checking
that both the acceleration and temperature conditions were satisfied at the same time, that
is, the standard deviation of the acceleration vector magnitude (VM) and the temperature
difference around the event were below their respective thresholds simultaneously.

All algorithms were implemented using MATLAB software (MATLAB2018b, Math-
Works, Natick, MA, USA).

2.2.4. Algorithm Validation Procedure

Data from five randomly selected participants were used to develop and optimize
algorithm parameters, and data from the remaining 16 participants were used to estimate
the algorithms’ performance. The ground truth was generated from the participant diaries
where the times of sensor removal/re-attachment were carefully reported and used to create
a MATLAB vector comparable to the output of algorithms. The ground truth contained
labels for sensor “wear”, “non-wear”, and “worn in the pocket”.

The performances of the classifier were estimated in terms of sensitivity (SEN), specificity
(SPE), negative predictive value (NPV), and accuracy (ACC). “Positive” events were related to
wear detection and “negative” to non-wear, following the convention used by Zhou et al. [3].
Sensitivity and specificity indicated the proportion of actual wear and non-wear events (respec-
tively) that were correctly identified by the algorithms. Negative predictive values expressed
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(a)

counts

{c)

counts

the proportion of non-wear data that the algorithm correctly identified as relevant [3]. Finally,
accuracy evaluated the overall performance in classification.

These metrics were estimated for the data analysis results of each participant and
reported as the mean (SD) for the group of 16 participants.

3. Results
3.1. Optimal Algorithm Parameters

Across the different algorithms, there were different hyperparameters to be estimated.
For those inspired by state-of-the-art methods, the values were taken as proposed in current
literature. For the new event- and temperature-based algorithms, the threshold used to
discriminate true non-wear events was the most critical parameter to estimate. The value
of 3 °C was chosen upon visual inspection after candidates were divided into true and false
non-wear events. Indeed, this value was the most appropriate to discriminate candidates
for all four approaches (see Figure 5).

{b) 8 — ‘ T

alse candidates f
| True candidates
wu w3°C threshold

counts

Figure 5. Distribution of the differences in temperature around the potential non-wear candidates
for the four options of the event- and temperature-based algorithm. The red histograms are related
to false and the green to true non-wear events. The dashed, vertical black line indicates 3 °C. The
distributions were computed using the training data (five participants). In option 1 (a), option 2
(b), and option 3 (c), the candidates were discriminated based on the averages over the window
spanning either the entire period between candidates, the period in the middle, or a 60 min interval,
respectively, whereas in option 4 (d), averages were computed on a 5 min window around a local
minimum/maximum.

3.2. Classification Performance

Figure 6 shows an illustrative example of the acceleration vector magnitude, VM,
(Figure 6a), the smoothed temperature signal (Figure 6b), and the output of classification
algorithms shown comparatively with the ground truth (Figure 6¢). Periods of time where
the sensor was carried near the body (i.e., in the pocket) are also highlighted. In this
particular case, the event- and temperature-based algorithm with option 4 (Figure 4d) was
used. Note that in this example, the second and last events were detected correctly by the
temperature-based algorithm only.
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Figure 6. Illustrative example of processed sensor signals and the output of sensor non-wear detection
algorithms: the filtered acceleration vector magnitude (a), the filtered and downsampled temperature
signal (b), and the output of four different algorithms (based on accelerometer only, temperature
only, or a combination of the two sensors) along with the ground truth extracted from participants

’

diaries (c).

Figure 7 shows comparatively the performances of all classification algorithms. As
can be observed in Figure 7a, for the event- and temperature-based algorithms, option
4 resulted in slightly better performances, with 99%, 97%, 99%, and 98% for sensitivity,
specificity, accuracy, and NPV, respectively. This algorithm also showed better perfor-
mances when compared to state-of-the-art window- and temperature-based algorithms,
both when using a fixed [3] and a dynamic [8] threshold as shown in Figure 7b. Similarly, it
outperformed the algorithms using acceleration alone and the combination of acceleration
and temperature (Figure 7c). The algorithm using the acceleration signal only showed the
lowest performances (64%, 90%, 68%, and 30% for sensitivity, specificity, accuracy, and
NPV, respectively), whereas the combination of the accelerometer and temperature signals
showed a lower specificity (99%, 90%, 98%, and 98% for sensitivity, specificity, accuracy,
and NPV, respectively) compared to temperature only. Furthermore, the proposed event-
and temperature-based algorithm showed a lower standard deviation, suggesting good
and consistent performances for all data sets (the 16 participants used for testing).

I Acceleration alone
T I Temperature alone
Combination

NPV

Sen Spe Acc

Figure 7. The mean and standard deviation of the sensitivity, specificity, accuracy, and NPV for
the different algorithms. Panel (a) compares the performance of the four options of the event- and
temperature-based algorithms; panel (b) compares the performance of window-based fixed and
dynamic thresholds and event-based temperature algorithms; panel (c) compares the performance of
algorithms based uniquely on the accelerometer, the temperature (event-based), or a combination of
the two sensors.
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4. Discussion

The goal of the current study was to develop a robust algorithm that is able to dis-
tinguish between non-wearing and daily inactivity or (nighttime) sleep, as this is still an
ongoing issue and can be problematic, especially when monitoring frail older adults or
patients with severe conditions. The algorithm used a new approach based on specific
events derived from the temperature signal, and a relative temperature threshold of 3 °C to
discriminate true and false non-wear events. It was validated using real-world data and
the performance was compared with state-of-the-art algorithms, showing high sensitivity
and specificity.

Filtering and pre-processing: The performance of the event- and temperature-based
algorithms depends on the peaks in the derivative of the temperature signal, with their
amplitude being expected to increase with fast and important temperature changes, as, for
example, when the device is removed and reattached. Due to the low signal-to-noise ratio
and the slow response time of the temperature sensor, the amplitude of such peaks appeared
very weak. Therefore, in order to enhance the relevant peaks, appropriate smoothing
using the Savitzky-Golay filter and downsampling was necessary before applying the
derivative operator.

Optimal parameter settings: The most critical parameters were those associated with
the event- and temperature-based algorithms, especially the consideration of a minimum
3 °C difference in the temperature levels, which was necessary to classify the “event” as
wear /non-wear (i.e., sensor attached /removed). The distribution of temperature differ-
ences before and after a peak in the derivative of the temperature signal indicated which
value was more appropriate. In particular, the method using two bi-directional moving
average windows (Figure 4d, option 4) showed a clearer distinction between false and
actual non-wear (sensor removal) events (see Figure 5d). This suggests that this method is
more suitable for estimating and discriminating between relevant temperature jumps in
noisy fluctuations. Finally, the scanning windows estimated from the thermal response of
the temperature sensor performed adequately. In particular, the 5 min window was able
to accurately estimate the mean on a short window without being affected by noise (i.e.,
small variations).

Acceleration- vs. temperature-based methods: The common acceleration-based method
appeared more prone to false positive errors compared to temperature-based algorithms.
As can be observed in Figure 6, the acceleration-based algorithm frequently detected non-
wear periods outside of the ranges covered by the ground truth vector. Moreover, those
misclassified events often occurred during nighttime. The difficulty of finding an appro-
priate algorithm that can discriminate between sleep, sedentary behaviors, and non-wear
periods has been highlighted in several studies [1-8,10]. The event- and temperature-based
algorithms overcome this issue, as the classification depends on the proximity of the sensor
to the body only. The temperature signal recorded during sleep and sedentary behaviors is
characterized by higher values compared to non-wear, making the distinction easier and,
thus, more reliable.

Regarding the temperature-based algorithms, the critical aspect affecting the per-
formances was the exact detection of timing of the non-wear/wear onset and the delay
associated with sensor response time. Due to the slow response time of the temperature
sensor, the temperature derivative peaks appeared in the middle of a slope and not at
the beginning nor end of the temperature decrease or increase. However, this accounts
for small errors when classification is applied to long-term recorded sensor data. An ad-
ditional critical aspect was the appropriate downsampling of the recorded temperature
signal necessary to enhance the peaks in the derivative signal. For the Axivity device, the
optimal downsampling (1/6) was selected based on the temperature sensor specifications
(datasheet). Therefore, this might not be the optimal ratio for wearable devices including
other types of temperature sensors. However, the algorithm could be easily adapted if
sensor specifications are available.
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When the output of acceleration-based and temperature-based algorithms were com-
bined (“AND” operator), the performances were influenced by the inaccuracies of the
acceleration-based algorithm. For an epoch to be classified as non-wear, it needed to be
present in both cases. The useful aspect is that false positives that occur in one method or
the other are ignored. The event-based temperature algorithm demonstrated encountering
very few false positives and, in most of the cases, they were not corrected by the combi-
nation method. It would be interesting to investigate other aggregation (sensor fusion)
methods in future studies.

As expected, the periods during which the sensor was worn in a different body location
(e.g., in the pocket) were identified as “worn”, even by temperature-based algorithms due
to the close vicinity to the body. As a general comment, most PA analysis algorithms
consider that data are recorded at a specified body location; therefore, in such situations
the pre-processing stage should include, in addition to non-wear, the detection of device
location. Although interesting, the identification of how/where the device is worn during
the monitoring period is a topic beyond the scope of the current study.

Progress beyond the state of the art: In Duncan et al.’s study [8], non-wearing detection
was based on a dynamic threshold around 18 °C (absolute temperature threshold). As expected,
when applied to the data set recorded in our study in a different geographic area (Norway
in our study, New Zealand in [8]), the algorithm performance decreased considerably,
especially in terms of specificity. The dynamic adjustment helped to shift the threshold
to the middle of the temperature distribution (see Figure 2) and to distinguish better
between low and high values. However, as the 18 °C starting point was not adapted to the
current data, the new threshold was sometimes less optimal and captured some undesired
fluctuations.

In more general terms, the use of a relative temperature threshold brings several potential
advantages. The most important is that the algorithm may be more robust and more
generalizable. An absolute threshold is specific to a particular region and the particular type
of temperature sensor integrated into the monitoring device. For example, Zhou et al. [3]
set a threshold at 26 °C using data recorded with a GENEActiv device, but this threshold
was not appropriate for the Axivity device, as the absolute temperature range was lower.
Both studies also pointed out that modifications were needed in order for the algorithms
to work in different countries [3,8]. In contrast, the new method developed in the current
study offers more flexibility and robustness, as it only depends on the relative temperature
change. However, more extensive validation studies and data are necessary to confirm
the generalizability of the results obtained in our study. Another interesting aspect is
the increased specificity of our algorithm compared to the one used by Zhou et al. [3].
Indeed, the method described in [3] did not exceed ~65% specificity when the temperature
algorithm was tested alone, compared to the 97% reached in the current study. This
indicates that the event- and temperature-based algorithm with a relative threshold is more
suited to identify non-wear transitions.

Future research perspectives: To ensure the quality of the validation data, the partici-
pants were healthy volunteers, having various daily activity patterns (active, sedentary),
and were able to strictly follow the monitoring protocol (tasks execution, detailed diary).
An extended validation of the algorithm(s) in other populations (e.g., frail older adults,
chronic diseases/pain) might be interesting, provided that reliable ground truth data could
be collected.

Clinical/epidemiological studies use various monitoring settings, for example, data
recorded with various devices, on different body segments (lower back, chest, wrist, thigh,
and ankle) and fixation modalities (e.g., on skin, belt, watch). Therefore, an important
perspective of the current study is to evaluate the performances of temperature-based
non-wear detection algorithms on data recorded in such alternative settings.

Finally, the algorithms described use an approach based on signal processing and
data-driven decision rules. Alternative methods, using features extracted from the tempera-
ture/acceleration signals and machine learning-based classifiers [10] could be investigated
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as well in future studies, if larger amounts of data (with the ground truth) are available for
development of the classification models.

5. Conclusions

Several new and state-of-the-art algorithms for detection of non-wearing of wearable
devices were implemented and evaluated. Data recorded with the temperature sensor inte-
grated into the monitoring device (Axivity), combined with appropriate signal processing
methods, allowed for the most accurate identification of the periods where the device was
removed. The classical approach based on the acceleration signal showed very low perfor-
mances for data collected in our study, especially in terms of sensitivity, accuracy, and NPV
(64%, 68%, and 30%, respectively), whereas the event- and temperature-based algorithm
showed a significant improvement (99%, 99%, and 98%, respectively). These results open
up new perspectives for accurate/unbiased assessment of long-term PA, given that the
trend of wearable technologies is to integrate additional sensor modalities in addition to
the inertial sensors (accelerometers, gyroscopes).
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