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Abstract: Deep learning based medical image registration remains very difficult and often fails
to improve over its classical counterparts where comprehensive supervision is not available, in
particular for large transformations—including rigid alignment. The use of unsupervised, metric-
based registration networks has become popular, but so far no universally applicable similarity
metric is available for multimodal medical registration, requiring a trade-off between local contrast-
invariant edge features or more global statistical metrics. In this work, we aim to improve over the
use of handcrafted metric-based losses. We propose to use synthetic three-way (triangular) cycles
that for each pair of images comprise two multimodal transformations to be estimated and one
known synthetic monomodal transform. Additionally, we present a robust method for estimating
large rigid transformations that is differentiable in end-to-end learning. By minimising the cycle
discrepancy and adapting the synthetic transformation to be close to the real geometric difference of
the image pairs during training, we successfully tackle intra-patient abdominal CT-MRI registration
and reach performance on par with state-of-the-art metric-supervision and classic methods. Cyclic
constraints enable the learning of cross-modality features that excel at accurate anatomical alignment
of abdominal CT and MRI scans.

Keywords: image registration; cycle constraint; multimodal features; self-supervision; rigid alignment

1. Introduction

Medical image registration based on deep learning methods has gathered great interest
over the last few years. Yet, certain challenges, especially in multimodal registration, need to
be addressed for learning based approaches, as evident from the recent MICCAI challenge
Learn2Reg [1]. In order to avoid an elaborate comprehensive annotation of all relevant
anatomies and to avoid label bias, unsupervised, metric-based registration networks are
widely used for intramodal deep learning based registration [2,3].

However, this poses an additional challenge for multimodal registration problems, as
currently no universal metric has been developed and a trade-off has to be made between
using local contrast-invariant edge features such as NGF, LCC, and MIND or more global
statistical metrics like mutual information. Metric-based methods also entail the difficulty
of tuning hyperparameters that balance similarity weights (ensuring similarity between
fixed image and warped moving image) and regularisation weights (ensuring plausible
deformations).

Ground truth deformations for direct supervision are only available when using syn-
thetic deformation fields. The now very popular FlowNet [4] estimates deformation fields
between pairs of input images from a synthetically generated dataset that has been obtained
by applying affine transformations to images. However, for medical applications, synthetic
deformations have been deployed for monomodal image registration [5–7]. Alternatively,
label supervision that primarily maximises the alignment of known structures with expert
annotations could be employed [2,8,9]. This leads to improved registration of anatomies
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that are well represented, but can introduce a bias and deteriorating performance for
unseen labels.

On the one hand, the focus of supervised approaches on a limited set of labelled
structures may be particularly inadequate for diagnosis of a pathology that cannot be
represented sufficiently in the training data. Using metric supervision, on the other hand,
has little potential to improve upon classical algorithms that employ the same metric as sim-
ilarity terms during optimisation. With efficient (parallelised) implementations, adequate
runtimes of less than a minute have recently been achieved for classical algorithms.

Learning completely without metric or label supervision, self-supervision, would
remedy the aforementioned problems and enable the development of completely new
registration methods and multimodal feature descriptors without introducing annotation
or engineering biases.

Self-supervision approaches have been used in medical and non-medical learning
based image processing tasks. Recently, a self-supervised approach for learning pretext-
invariant representations for object detection has outperformed supervised pre-training
in [10]. By minimising a contrastive loss function, the authors construct image repre-
sentations that are invariant to image patch pertubation, similar to the representation of
transformed versions of the same image and differ from representations of other images.
In [11], semantic features have been learned with self-supervision in order to recognise
the rotation that has been applied to an image given four possible transformations as
multiples of 90 degrees. The learned features have been useful for various visual perception
tasks. For rigid registration between point clouds, an iterative self-supervised method
has been proposed in [12]. Here, partial-to-partial registration problems have been ad-
dressed by learning geometric priors directly from data. The method comprises a keypoint
detection module which identifies points that match in the input point clouds based on
co-contextual information and aligns common keypoints. For monomodal medical image
registration, in [13] spatial transformations between image pairs have been estimated in a
self-supervised learning procedure. Therefore, an image-wise similarity metric between
fixed and warped moving images is maximised in a multi-resolution framework while the
deformation fields are regularised for smoothness.

In [14], cycle-consistency in time is used for learning visual correspondence from
unlabelled video data for self-supervision. Their idea is to obtain supervision for corre-
spondence by tracking backward and then forward, i.e., along a cycle in time, and use the
inconsistency between the start and end points as the loss function. For image-to-image
translation, a cycle-consistent adversarial network approach is introduced in [15]. The au-
thors use a cycle consistency loss that induces the assumption that forward and backward
translation should be bijective and inverse of each other. Another approach that addresses
inconsistency is introduced in [16] for medical image registration. It uses information
from a complete set of pairwise registrations, aggregates inconsistency, and minimizes the
group-wise inconsistency of all pairwise image registrations by using a regularized least-
squares algorithm. The idea to measure consistency via registration cycles for monomodal
medical image data has been used in [17] that estimates forward and reverse transforma-
tion jointly in a non-deep-learning approach and [18] using registration circuits to correct
registration errors. In [19], a monomodal unsupervised medical image registration method
that trains deep neural network for deformable registration is presented using CNNs with
cycle-consistency. This approach uses two registration networks that process the two in-
put images as fixed and moving images inversely to each other and gives the deformed
volumes to the networks again to re-deform the images to impose cycle-consistency.

Previous deep learning based registration work has often omitted the step of rigid or
affine registration, despite its immense challenges due to often large initial misalignments.
Image registration challenges such as [1] provide data that has been pre-aligned with
help of non-deep-learning-based methods, whereas the challenge’s image registration
tasks are then often addressed with deep learning based methods. Rigid transformation
is often the inital step before performing deformable image registration, and only few
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works [20] investigate deep learning techniques for this step. As evident from the CuRIOUS
challenge [21], so far no CNN approach was able to learn a rigid or affine mapping between
multimodal scan pairs (MRI and ultrasound of neurosurgery) with an adequate robustness.
Besides that, no label bias can occur with rigid alignment. Hence, a learning model for
large linear transformations is of great importance.

Contributions

In order to avoid the difficulty of choosing a metric for multimodal image registration,
we propose a completely new concept. For learning multimodal features for image registra-
tion, our learning method requires neither label supervision nor handcrafted metrics. It
extends upon research that successfully learned monomodal alignment through synthetic
deformations, but transforms this concept to multimodal tasks without resorting to complex
modality synthesis.

The basic idea of our novel learning based approach is illustrated in Figure 1. It relies
on geometric instead of metric supervision. In this work

• We introduce a cycle based approach including cycles that for each pair of CT and
MRI scans comprise two multimodal transformations to be estimated and one known
synthetic monomodal transformation.

• We restrict ourselves to rigid registration and aim to learn multimodal registration
between CT and MRI without metric supervision by minimising the cycle discrepancy.

• We use a CNN for feature extraction with initially separate encoder blocks for each
modality followed by shared weights within the last layers.

• We use a correlation layer without trainable weights and a differentiable least squares
fitting procedure to find an optimal 3D rigid transformation.

• We created to the best of our knowledge the first annotated MRI/CT dataset with
paired patient data that are made publicly available with manual segmentations for
liver, spleen, left and right kidney.

Our extensive experimental validation on 3D rigid registration demonstrates the high
accuracy that can be achieved and the simplicity of training such networks.

Figure 1. Our proposed self-supervised learning concept for multimodal image registration aiming
to minimise a cycle discrepancy. In every training iteration, another (known) random transformation
matrix R23 is used to generate a synthetic image. Like this, a cycle consisting of two unknown
multimodal transformations (with the transformation matrices R21 and R31) and a known monomodal
transformation (with the transformation matrix R31) is obtained, leading to the minimisation problem
of |R23 · R31 − R21| → min that is used for learning.
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2. Materials and Methods

We introduce a learning concept for multimodal image registration that learns with-
out metric supervision. Therefore, we propose a method to learn with the help of a
self-supervised learning procedure using three-way cycles. For our registration models,
the architectural design consists of modules for feature extraction, correlation, and reg-
istration. Implementation details, open source code and trained models can be found at
github.com/multimodallearning/learning_without_metric (accessed on 8 March 2021).

2.1. Self-Supervised Learning Strategy

Our deep learning based method learns multimodal registration without using metric
supervision. Instead, it is based on geometric self-supervision by minimising the cycle
discrepancy created through a cycle consisting of two multimodal transformation and one
monomodal transformation. The basic cycle idea is illustrated in Figure 1: Initially, a fixed
image ( Image 1) and a moving image ( Image 2) exist. The transformation R21 is unknown
and is to be learned by our method. In each training iteration, we randomly deform the
moving image ( Image 2) by applying a known random transformation R23 and hereby
obtain a synthetic image ( Image 3). By bringing the individual transformations into a cycle,
the minimisation problem of

|R23 · R31 − R21| → min (1)

can be derived. We chose to minimise the discrepancy as given in Equation (1) instead
of minimising the difference between the transformation combination R23 · R31 · R12 and
the identity transformation Id with |R23 · R31 · R12 − Id| → min in order to avoid that our
method only learns identity warping. For optimisation, we use the mean squared error loss
function to minimise the cycle discrepancy between the two flow fields generated by the
transformation matrices R21 and R23,31 = R23 · R31.

As we restrict our model to rigid registration, we create the synthetic transformations
R23 by randomly initialising rigid transformation matrices with values that are assumed to
be realistic from an anatomical point of view.

The advantages of our learning concept are manifold. First, in comparison to super-
vising the learning with a known similarity metric and regularisation term, the need for
balancing a weighting term is removed and the method is applicable to new datasets with-
out domain knowledge. Second, it enables multimodal learning, which is not feasible using
synthetic deformations in conjunction with image-based loss terms (cf. [6]). Third, it avoids
the use of domain discriminators as used, e.g., in the CycleGAN approach [15,22], which
usually requires a large set of training scans with comparable contrast in each modality
and may be sensitive to hyper-parameter choices.

On first sight, it might seem daring to use such a weak guidance. While it is clear
that once suitable features are learned the loss term enables convergence, since the cycle
constraint is fulfilled. Yet to initiate training towards improved features, we primarily
rely on the power of randomness (by drawing multiple large synthetic deformations) and
explorative learning. In addition, the architecture contains a number of stabilising elements:
a patch-based correlation layer computation, outlier rejection and least squares fitting, that
are described in detail below in Sections 2.3 and 2.4.

2.2. Training Pipeline

We apply our self-supervised learning strategy in the training procedure by going
through the same steps in each training iteration as visualised in Figure 2: First, a random
transformation matrix R23 is generated and applied on the moving image in order to obtain
the synthetic image. Then, moving and fixed image are passed through feature extraction,
correlation layer and transformation computation module to obtain the transformation
matrix R21. The same step is also performed for fixed and synthetic image to obtain R31.
After this, R23 and R31 are combined to obtain R23,31. Finally, the mean squared error of the

github.com/multimodallearning/learning_without_metric
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deformations calculated with help of R21 and R23,31 is determined. The individual modules
for this training pipeline are described in more detail in the following Sections 2.3 and 2.4.

Figure 2. Pipeline to train our registration model: A random transformation matrix R23 is generated
and used to obtain the synthetic image. The pair of moving and fixed image as well as the pair of
synthetic and fixed image are passed through feature extraction, correlation layer and transformation
computation module (see following Sections 2.3 and 2.4) to obtain the transformation matrices R21

and R31. Then, R23 and R31 are combined to obtain R23,31. As a final step, the mean squared error
(MSE) of the deformations calculated with help of R21 and R23,31 is determined.

2.3. Architecture

The architecture used for our registration method comprises three main components
for feature extraction, correlation, and transformation computation.

We chose to use a CNN for feature extraction with initially separate encoder blocks
for each modality and shared weights within the last few layers. These features are subse-
quently fed into the correlation layer, which has no trainable weights and whose output
could be directly converted into displacement probabilities. Our method employs a robust
and differentiable least squares fitting to find an optimal 3D rigid transformation subject
to outlier rejection. Figure 3 visualises the procedure for feature extraction, correlation,
and computation of the rigid transformation matrix that is used for registration.

For our feature extraction CNN, we use a Y-shaped architecture (cf. Figure 3) [9]
starting with a separate network part for each of the two modalities (ModalityNet), which
takes the respective input and passes it through two sequences with a structure of 2×.

• (Strided) 3D convolution with a kernel size of three and padding of one;
• 3D instance normalisation;
• leaky ReLU.

The two convolutions of the first sequence are non-strided and output eight feature
channels. The first convolution of the second sequence has a stride of two and doubles the
number of feature channels to 16, whereas the second convolution of the second sequence
is non-strided and keeps the number of 16 feature channels. Whereas the size of the input
dimensions are preserved within the first convolution sequence, the strided convolution
within the second sequence leads to a halving of each feature map dimension. The output
of the ModalityNets are passed into a final module with shared weights (SharedNet), which
finalises the feature extraction by applying two sequences of the same structure as used for
the separate ModalityNets. Here, the first sequence comprises non-strided convolutions
that output 16 feature channels while keeping the spatial dimensions as output by the
ModalityNets. The first convolution of the second sequence has a stride of two leading to
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another halving of the spatial dimension’s sizes and doubles the number of feature channels
to 32. The second convolution of the second sequence is non-strided and keeps the number
of 32 feature channels. The output of the SharedNet is given to a 1× 1× 1-convolution
providing the final number of 16 feature channels followed by a Sigmoid activation function.
As we use correlation and transformation estimation techniques without trainable weights,
our model only comprises 80k trainable parameters within the feature extraction part.

Figure 3. The process of feature extraction, correlation, and computation of the rigid transforma-
tion matrix: A CNN is used for feature extraction starting with a separate network part for each
modality (ModalitiyNetMR and ModalityNetCT) followed by a module with shared weights (Shared-
Net). The obtained features are correlated by calculating patch-wise the sum of squared differences
(SSD). Subsequently, grid points with high similarity are extracted and used to define point-wise
correspondences to calculate the rigid transformation matrix with a least squares fitting.

2.4. Correlation and Transformation Computation

As suggested in previous research [3,4], the use of a dense correlation layer that
explores a large number of discretised displacements at once is employed to capture larger
deformations robustly. This way the learned features are used to define a sum of squared
differences cost function akin to metric learning [23].

Similar to [24], which operates directly on input image pairs and uses normalised cross
correlations (NCC), we use a block-matching technique to find correspondences between
the fixed features and a set of transformed moving features. We correlate the obtained
features by calculating patch-wise the sum of squared differences (SSD) and extract points
with high similarity of a coarse grid with a spacing of 12 voxel. The extracted grid points
are used to define point-wise correspondences to calculate the rigid transformation matrix
with a robust (trimmed) least squares fitting procedure.

For the correlation layer, we choose a set of 11× 11× 11 discrete displacements
with a capture range of approx. 40 voxel in the original volumes. After calculating the
sum-of-squared-differences cost volume, we sort the obtained SSD costs and reject the 50%
of the displacement choices that entail the highest similarity costs. We apply the Softmax
function on the remaining displacement choices to obtain differentiable soft correspon-
dences. While we use this differentiable approach to estimate regularised transformations
within a framework that comprises trainable CNN parameters, the learned features could
also be used for other optimisation frameworks [9].

The displacement candidates output by the Softmax function are added to the coarse
moving grid points. In a least squares fitting procedurce comprising five iterations, the final
rigid transformation matrix that serves for transformation of the moving image is deter-
mined. The best-fitting rigid transformation can be found by computing the singular value
decomposition S = UΣVT with the matrix S = XTYT (X: centered fixed grid points xi, Y:
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centered moving grid points with added displacement candidates yi) and the orthogonal
matrices U and V obtained by the singular value decomposition. This leads to the rotation

Q = V


1

1
...

1
det(VUT)

UT (2)

and the translation
t = ȳ−Qx̄ (3)

with x̄ being the mean values for fixed grid points and ȳ the mean moving grid points with
added displacement candidates.

This way, the rigid transformation matrices R21 and R31 are determined. To combine
the synthetic transformation R23 and the predicted transformation R31 matrix multiplication
is used yielding R23,31. The transformation matrices R21 and R23,31 are used to compute the
affine grids that are then given to the MSE loss function during training and the affine grid
computed by R21 is used for warping during inference to align the moving image to the
fixed image.

This approach has the advantage of being very compact with only 80k parameters
ensuring memory efficiency and fast convergence of training. The multimodal features
learned by our model are generally usable for image alignment and can be given to various
optimisation methods for image registration once trained with our method.

3. Experiments and Results

Our experiments are performed on 16 paired abdominal CT and MR scans from
collections of The Cancer Imaging Archive (TCIA) project [25–28]. We have manually
created labels for four abdominal organs (liver, spleen, left kidney, right kidney), which we
use for the evaluation of our methods. Apart from a withheld test set, they are publicly
released for other researchers to train and compare their multimodal registration models.
The pre-processing comprises reorientation, resampling to an isotropic resolution of 2 mm
and cropping/padding to volume dimensions of 192× 160× 192.

To increase the number of training and testing pairs and model realistic variations in
initial misalignment we augment the scans with 8 random rigid transformations each that
on average reflect the same Dice overlap (of approx. 43%) as the raw data. All models are
trained for 100 epochs with a mini-batch size of 4 in less than 45 min each using ≈8 GByte
GPU memory.

The weights of the CNN used for feature extraction (FeatCNN) are trained for 100 epochs
using the Adam optimiser with an initial learning rate of 0.001 and an cosine anneal-
ing scheduling.

3.1. Comparison of Training Strategies

We compare three different strategies to train our FeatCNN in a two-fold cross-validation:

1. FeatCNN + Cycle Discrepancy (ours): Our proposed self-supervised cycle learning
strategy;

2. FeatCNN + MI Loss: Learning with metric-supervision using Mutual Information
(MI) as implemented by [29];

3. FeatCNN + NCC2 Loss: Learning with metric-supervision using squared local nor-
malised cross correlations (NCC2) [24,30];

4. FeatCNN + Label Loss: Supervised learning with label supervision.

All methods share the same settings for the correlation layer and a trimmed least square
transform fitting (with five iterations and 50% outlier rejection). Hyperparameters were
determined on a single validation scan (#15) for cyclic training and left unaltered for all other
experiments. The same trainable FeatCNN comprising the layers as described in Section 2.3
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is used to train with our Cycle Discrepancy Loss, MI, NCC2, and Label Loss. For correlation,
we chose to extract corresponding grid points within a grid with a spacing of 12 voxels
and use patches with a radius of 2 to patch-wise calculate the SSD. We use a displacement
radius of 4 and discretise the set of displacements possibilities for the correlation layer
with a displacement step (resp. voxel spacing) of 5. To adjust the smoothness of the
soft correspondences, the costs obtained by SSD computation are multiplied by a factor
of 150 when given to the Softmax function. As the soft-correspondences are needed for
differentiability only during training, we increase this factor to 750 for inference.

For our cycle discrepancy method, we create the synthetic transformation matrices
R23 by randomly initialising them with values that are assumed to be realistic from an
anatomical point of view. Therefore, the maximum rotation is ±23◦ and the maximum
translation ±42 voxel (which equals 84 mm for our experiments) in every image dimension.

The results demonstrate a clear advantage of our proposed self-supervised learning
procedure with an average Dice of 72.3% compared to the state-of-the-art MI metric loss
with 68.14% and NCC2 Loss with 68.1%, which is suitable for multimodal registration due
to its computation involving small local neighbourhoods [24] (see Table 1 for qualitative
and Figure 4 for quantitative results). This result comes close to the theoretical upper bound
of our model trained with full label supervision with 79.55%.

(a) (b) (c) (d)

Figure 4. Qualitative results of our proposed cycle discrepancy approach FeatCNN + Cycle Dis-
crepancy (c). We visualise the comparison to initial (a) before warping as well as to the methods
FeatCNN + MI Loss (b) and FeatCNN + Label Loss (d) (coronal slices). The top row shows the fixed
MRI and (warped) moving labels. The bottom row visualizes the (warped) moving CT and a jet
colourmap overlay of the fixed MRI scan.
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Table 1. Results for our cross-validation experiments: Dice scores listed by anatomical structures of
our 3D experiments using FeatCNN for feature extraction and MI Loss, NCC2 Loss, Label Loss or
our Cycle Discrepancy for training.

Liver Spleen Lkidney Rkidney Mean

initial 59.32 36.90 36.59 37.02 42.46
± 14.03 ± 19.49 ± 19.53 ± 22.08 ± 18.78

FeatCNN + MI Loss 75.07 63.17 69.86 64.46 68.14
± 9.38 ± 22.13 ± 26.34 ± 29.45 ± 21.92

FeatCNN + NCC2 Loss 75.08 61.09 72.19 64.04 68.10
± 12.22 ± 23.69 ± 27.51 ± 31.76 ± 23.80

FeatCNN + Cycle Discrepancy 77.95 69.89 70.18 71.85 72.30
± 8.16 ± 16.00 ± 24.34 ± 34.40 ± 20.75

FeatCNN + Label Loss 81.24 73.84 83.15 79.97 79.55
± 8.75 ± 18.32 ± 26.62 ± 33.59 ± 21.82

3.2. Comparison of Inference Strategies and Increased Trainset

To further enhance our method, we extend it by a two-level warping approach during
inference. Therefore, we present our model the input moving and fixed image to warp the
moving image and then apply our model to the resulting warped moving image and the
fixed image again. For both warping steps, we set a displacement radius of 7 voxel and a
grid spacing of 8 voxel. For the first warping step, we use a displacement discretisation of
4 voxel and refine this hyperparameter to 2 voxel for the second warping step.

Moreover, as our dataset is quite small and our method does not require labels, when
considering an application scenario where a number of MR/CT scan pairs have to be
aligned offline, a fine-tuning of the networks on this test data would be feasible. Therefore,
we aim to further increase the performance of our method with training on all available
paired CT and MR scans without splitting the dataset.

In Table 2 we compare the results of single-level and two-level warping as well as the
cross-validation results and the results when training on the whole available image data.
We compare the results achieved by our method with the results achieved using the rigid
image registration tool reg_aladin of NiftyReg [24] applied to the image pairs used without
the symmetric version and one registration level.

Table 2. Results for our experiments comparing single-level and two-level warping approach as well
as cross-validation and training without withheld data: Dice scores listed by anatomical structures of
our experiments using Cycle Discrepancy for training.

Liver Spleen Lkidney Rkidney Mean

initial 59.32 36.90 36.59 37.02 42.46
± 14.03 ± 19.49 ± 19.53 ± 22.08 ± 18.78

cross-validation 77.95 69.89 70.18 71.85 72.30
1 warp ± 8.16 ± 16.00 ± 24.34 ± 34.40 ± 20.75

cross-validation 80.71 72.12 79.33 74.65 76.68
2 warps ± 9.33 ± 17.08 ± 26.06 ± 36.91 ± 22.34

trained without withheld data 81.04 71.11 76.27 76.49 76.23
1 warp ± 8.22 ± 18.03 ± 24.25 ± 32.64 ±20.88

trained without withheld data 81.85 76.77 79.81 80.17 79.65
2 warps ± 0.58 ± 13.64 ± 24.52 ± 34.65 ± 20.25

NiftyReg 83.97 76.55 79.83 79.26 79.90
reg_aladin ± 6.19 ± 12.00 ± 7.12 ± 37.55 ± 15.15
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Introducing a second warping step increased our cross-validation results by more than
4% points. When training without a withheld testset, we achieved further improvements
by another 3% points. These results are on a par with the results of state-of-the-art classic
method NiftyReg- reg_aladin.

4. Discussion

In this work, we presented a completely new concept for multimodal feature learning
with application to 3D image registration without supervision of labels or handcrafted
metrics. We introduced a new supervision strategy that is based on synthetic random
transformations (two across modality and one within) that form a triangular cycle. Min-
imising the two multimodal transformations in such a cycle constraint avoids singular
solutions (predicting identity transforms) and enables the learning of large rigid deforma-
tions. Through explorative learning, we are able to successfully train modality independent
feature extractors that enable highly accurate and fast multimodal medical image alignment
by minimising a cycle discrepancy in training. We also created the first public multimodal
3D MRI/CT abdominal dataset with manual segmentations for validation. To the best of
our knowledge our work is also the first deep learning model for robustly estimating large
misalignments of multimodal scans.

Despite the very promising results, there are a number of potential extensions that
could further improve our concepts. The idea of incremental learning and predicting more
useful synthetic transformations to improve detail alignment could be considered and has
already shown potential in preliminary 2D experiments.

While the gap between training and test accuracy is relatively small due to the ro-
bust architectural design, further fine-tuning would be applicable at test time (since no
supervision is required) with moderate computational effort. Combining hand-crafted
domain knowledge with self-supervised learning might further boost accuracy. Similarly,
domain adaptation through adversarial training could be incorporated to explicitly model
the differences of modalities. While the gap between training and test accuracy is relatively
small due to the robust architectural design, further fine-tuning would be applicable at test
time (since no supervision is required) with moderate computational effort.

5. Conclusions

With our method, we were able to improve over the use of handcrafted metric-based
losses by using synthetic three-way cycles. By minimising the cycle discrepancy, we are
able to learn multimodal registration between CT and MRI without metric supervision.
We created a robust method to estimate large rigid transformations that is differentiable in
end-to-end learning. Our method is able to successfully perform intra-patient abdominal
CT-MRI registration that outperforms state-of-the-art metric-supervision.
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