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Abstract: Spirometers are important devices for following up patients with respiratory diseases.
These are mainly located only at hospitals, with all the disadvantages that this can entail. This limits
their use and consequently, the supervision of patients. Research efforts focus on providing digital
alternatives to spirometers. Although less accurate, the authors claim they are cheaper and usable by
many more people worldwide at any given time and place. In order to further popularize the use
of spirometers even more, we are interested in also providing user-friendly lung-capacity metrics
instead of the traditional-spirometry ones. The main objective, which is also the main contribution of
this research, is to obtain a person’s lung age by analyzing the properties of their exhalation by means
of a machine-learning method. To perform this study, 188 samples of blowing sounds were used.
These were taken from 91 males (48.4%) and 97 females (51.6%) aged between 17 and 67. A total of
42 spirometer and frequency-like features, including gender, were used. Traditional machine-learning
algorithms used in voice recognition applied to the most significant features were used. We found
that the best classification algorithm was the Quadratic Linear Discriminant algorithm when no
distinction was made between gender. By splitting the corpus into age groups of 5 consecutive years,
accuracy, sensitivity and specificity of, respectively, 94.69%, 94.45% and 99.45% were found. Features
in the audio of users’ expiration that allowed them to be classified by their corresponding lung age
group of 5 years were successfully detected. Our methodology can become a reliable tool for use
with mobile devices to detect lung abnormalities or diseases.

Keywords: exhalation; lung capacity forecasting; machine learning

1. Introduction

Respiratory diseases cause immense health, economic and social costs and are the
third cause of death worldwide [1] and a significant burden for public health systems [2].
Significant research efforts have been dedicated to improving early diagnosis and monitor-
ing of patients with respiratory diseases to allow for timely interventions [3]. Respiratory
sounds are important indicators of respiratory health and disorders [4]. Distinction between
normal respiratory sounds and adventitious ones (such as crackles, wheezes or squawks)
is important for an accurate medical diagnosis [5,6].

Spirometry is generally performed in care centres using conventional spirometers, but
home spirometry with portable devices is slowly gaining acceptance [7]. Home spirometry
has the potential to result for earlier treatment of exacerbations, more rapid recovery,
reduced health care costs, and improved outcomes [8]. Challenges currently faced by
home spirometry are cost, patient compliance and usability, and an integrated method
for uploading results to physicians [9]. Digital techniques applied to home spirometry
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using personal computers or mobile devices (i.e. smartphones), often increase overall
performance.

Spirometry is the most widely employed objective measure of lung function [10].
A standard spirometer measures flow the rate of air as it passes through a mouthpiece. The
four most common clinically-reported measures are FVC (Forced Vital Capacity), FEV1
(Forced Expiratory Volume in one second), FEV1/FVC, and PEF (Peak Expiratory Flow), as
they are used to quantify the degree of airflow limitation in chronic lung diseases such as
asthma, COPD, and cystic fibrosis. A healthy individual’s lung function measurements,
taken with spirometry, are generally at least 80% of the values predicted based on age,
height and gender [11]. In addition, the frequency pattern of the spectrogram can be
obtained. A speech signal contains periodic components with fundamental frequencies
ranging between 85 and 255 Hz [12].

Many hardware devices, coupled to smartphones have been designed [13]. However,
we are interested on designing a spirometer app for a smartphone, without additional
hardware, gadgets or whistles. Larson et al. [14] first showed that it is possible to perform
a spirometry test using a smartphone. Jointly with Spirocall [15], they extracted separate
feature sets for FEV1, FVC, and PEF from these time-domain flow-rate estimations. For
example, for a given flow-rate estimate, they obtained the maximum value and used it as a
feature for PEF regression. Integrating the flow-rate estimate with respect to time, a feature
for FVC regression was obtained. Using this approach, 3 sets of 38 features for FEV1, FVC,
and PEF, each, were generated. The mean error for these three metrics when both used
specific whistles was 5.1% on average in Spirosmart and 8.3% in Spirocall for these three
metrics. The sounds of the spirometry-efforts were delivered across Internet in Spirosmart.
In Spirocall instead, a standard telephony voice channel (GSM) was used to transmit the
efforts. It was argued that individuals in low- or middle-income countries do not typically
have access to the latest smartphones. The authors in [16], found that the relation between
the mean of frequency responses was in the range of 100 HZ to 1200 HZ and the flow rate
had the highest correlation factor of 0.8913 among other possible relations. Regression
analysis was performed on the collected data and the quadratic regression technique gave
the lowest Root Mean Square (RMSE) among other possible regressions.

However, smartphone spirometry is particularly susceptible to poorly performed
efforts because any environmental noise (e.g., a person’s voice) or mistakes in the effort
(e.g., coughs or short breaths) can invalidate the results. The authors in [17] used two
Neural Network models fed by Mel-spectrogram features to analyze and estimate the
quality of smartphone spirometry efforts. A gradient boosting model achieved 98.2%
accuracy at identifying invalid efforts when given expert tuned audio features, while a
Gated-Convolutional Recurrent Neural Network reached an accuracy of 98.3%.

When performing a spirometry, the lung age value was introduced in 1985 and Kristen
Deane in [18] stated that, the lung age is the average age of a non-smoker with an FEV1
equal to theirs, concluding that quit rates are higher when patients know their lung age.
For instance, at 1 year, verified quit rates were 13.6% in the intervention group and 6.4%
in the control group (a difference of 7.2%, 95% CI; p = 0.005). This means that for every
14 smokers who are told their lung age and shown it on a graphic display, almost one
additional smoker will quit after 1 year.

We present an environment for diagnosing lung malfunction by obtaining lung-age,
instead of the FEV1, FVC, and PEF measures, as in [14,15]. The main reason for this is the
need to avoid noise. Users should be careful to take samples in completely noise-free places
or to apply mechanisms to know the goodness (freedom from noise) of the spirometry
sample. In addition, lung age is easier to understand and more convincing than traditional
metrics to set off an individual’s alarm when suffering from a lung problem. This would be
reflected in the fact that lung and real age are quite far apart.

Our main objective is to find time-frequency features and preprocess a data corpus
to feed a machine-learning model to predict the lung age. Our main contribution is the
group of features found with which the maximum performance was obtained. Apart from
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age, two groups of features are studied. One is the called spirometer-like features, trying to
emulate the FVC, FEV1 and PEF metrics used in spirometry. We inspired on the studies
performed in [14,15] to estimate the lung age. The other group, called time-frequency
features, try to capture frequency patterns by taking into account the spectrogram of a cold
blowing signal [19], the kind of blowing made in an exhalation. This set of features also
take into account different frequency bands, and thus, the range of frequencies where the
cold blow is located, could increase even more its significance.

Main expectation is to obtain the lung age of a user through the extraction of the
features from an exhalation record. We propose a collection of features from lightweight
extraction of an exhalation for determining lung age. High social and clinical benefits
in obtaining an approximation to lung age with a simple, easy and cheap process by
implementing it in current and widely spread smartphones, would give the opportunity
for the method to be used worldwide by people of any income level.

2. Methods
2.1. Corpus

One of the most important phases of the methodology is the corpus sampling. The
accuracy of the modelled classifiers depends enormously on the length and annotation of
the corpus.

A mobile app and an analogous website for registering exhalations was implemented.
Sampling records (Figure 1) consists of maintaining a distance of approximately 20 cm
between the mouth and the phone. Then, the user takes a deep breath and exhales with as
much force as possible for as long as possible. In addition, a support video sample was
provided. This is in line with traditional spirometry.

Figure 1. Data collection process. The participant opens the app, moves the phone to the indicated
distance (20 cm), takes a deep breath and exhales.

There were a total of 188 user samples. For each sample, 42 features were obtained,
classified into three different types. The first type includes a basic demographic feature,
gender. The samples were almost evenly split by gender. There were 91 men (48.4%) and
97 women (51.6%). The age range of the participants was between 17 and 67 years old,
with an average age of 40.8 years for men and 44.9 for women. The remaining feature types
were the so-called spirometer-like and time-frequency features.

2.2. Features

Gender was considered as an important feature to be taken into account. In addition,
two more groups of features were used. One group consists of spirometer-like features
related to the measures taken in a traditional spirometry by analyzing volume-flow repre-
sentation. The second group contains additional time-frequency features, to find possible
patterns or specific marks of the time-frequency representation of the exhalations.



Sensors 2022, 22, 1106 4 of 13

2.2.1. Spimoreter-Like Features

During a spirometry test, the patient takes the deepest breath possible and then exhales
with as much force as possible for as long as possible. The spirometer calculates various
lung function measures based on the test [15]. Three of the most important ones are
(see Figure 2):

1. Forced Vital Capacity (FVC): the total volume of air expelled during the expiration.
2. Forced Expiratory Volume in one second (FEV1): the volume of air expelled in the

first second of expiration.
3. Peak Expiratory Flow (PEF): the maximum expiratory flow rate reached during

the exhalation.

Figure 2. Example of different flows rates in a spirometry test.

Figure 2 shows an example of flow vs. volume plot, generated by a spirometer [11,20].
FVC plot is similar to an exponential density function (blue line in Figure 2) in healthy peo-
ple. As obstruction the airflow increases, the flow rate decreases faster than exponentially
after reaching its maximum value (PEF). Therefore, the distribution becomes as the orange
line in Figure 2. When suffering from a restrictive lung disease, the respiratory muscles
weaken and the lung capacity (FVC) decreases (green line in Figure 2). The shape is very
similar to a Weibull distribution.

In order to approximate FEV1, FVC and PEF, three easily measurable features in
mobile devices were used instead. These features were obtained using a python library
named Librosa [21], used to process audio. Using this library, the Short-time Fourier
transform (STFT) was applied to each audio to decompose the audio wave into a time-
frequency spectrogram. Then, a transformation to convert the wave amplitude values of
the spectrogram into decibels was used to obtaining the following features:

• Total_dec: The summation of all the decibels of the audio over all frequencies as an
absolute value. This is an approximation to FVC.

• Total_dec_1st_sec. The sum of all the decibels during the first second of the audio
over all frequencies as an absolute value. This is an approximation to FEV1.

• Max_peak. The maximum peak of decibels from all the audio and frequencies. This is
an approximation to PEF.

2.2.2. Time-Frequency Features

When a person blows, the vocal cords are inactive. Only the position of the mouth
affects the nature of the emitted sound [19]. The emission of a blowing sound can thus be
approximated by a white noise source passing through a band-pass filter. Two different
blowing sound types are considered, labeled as hot and cold blowing sounds. A hot
blowing sound is the type made by someone trying to mist up a window. A cold blowing
sound is, for example, the sound of someone cooling off a bowl of soup. The hot blowing
exhalation sounds are comprehended in frequency bands between 450 Hz and 1300 Hz and
the cold blowing between 1500 Hz and 4000 Hz [19].
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The energy for both blowing sound types is clearly located in different parts of the
spectrum. Normal spirometries are expected to have a cold-frequency pattern [12]. Thus,
we focused on defining time-frequencies able to distinguish this particularity of such
cold sounds.

Due to the good results obtained in [22], the same features were used to find patterns
and related marks to identity hot sounds from cold ones. Furthermore, it was shown that
they captured the pattern of ALS patients with bulbar involvement very well. Thus, it seems
reasonable that this set of features also captures frequency aspects of diseases affecting
exhalation power. Furthermore, the frequencies in a cold blow are mainly concentrated in
the 1500–4000 Hz range. This tells us that splitting features into different bands, as was
proposed in [22], could be a good decision.

Firstly, the Wigner distribution (WD) of the real signal x(t) of each voice segment
was obtained and convoluted with the Choi–Williams exponential function. The resulting
Choi–Williams distribution was normalized (CWDN( f , t)). For more details see [22].

Then, the joint probability density distribution pD( f , t) (Equation (1)) was obtained.

pD( f , t) = mt(t) ·m f ( f ), (1)

where mt(t) and m f ( f ) are the marginal density functions of CWDN( f , t).
A total of 38 time-frequency features were used. 28 were obtained over a wide

range of 7 frequency bands (0–80 Hz, 80–250 Hz, 250–550 Hz, 550–900 Hz, 900–1500 Hz,
1500–3000 Hz and 3000–44,100 Hz). This separation was based on the range of frequencies
of the cold blow. These are:

• E_Bn1. . . E_Bn7: average of the instantaneous spectral energy E(t) (Equation (2)) of
each sample, for each 7-bands.

E(t) =
∫ f2

f1

pD( f , t)d f , (2)

where f1 and f2 are the lower and upper frequencies of each band.
• f_Cres1. . . f_Cres7: average of the Instantaneous Frequency Peak, f _Cres(t) (Equation (3)),

for each 7-bands.

f _Cres(t) =
1

E(t)
argmax f

[
f2

∏
f1

f · pD( f , t)

]
(3)

• f_Med1. . . f_Med7: average of the instantaneous frequency fmi(t) (Equation (4)), for
each 7-bands.

fmi(t) =
∫ f2

f1

1
E(t)

f pD( f , t)d f (4)

• IE_Bn1. . . IE_Bn7: average of the spectral information, IE( f ) (Equation (5)), for each
7-bands.

IE( f ) = −log2(m f N( f )) (5)

The remaining features were obtained using the entire frequency range of the audios
(0–44,100 Hz):

• H_t: instantaneous entropy (Equation (6)).

H_t = −
∫

log2(mtN(t)) ·mtN(t)dt (6)

• H_f : spectral entropy (Equation (7)).

H_ f = −
∫

log2(m f N( f )) ·m f N( f )d f (7)
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• H_tf : joint Shannon entropy in a range of 0 to 20 bits (Equation (8)).

H_t f = H_t + H_ f (8)

• K: Kurtosis (Equation (9)).

K =
〈

mt(t)4m f ( f )0
〉

(9)

• The joint time-frequency moments 〈tn f m〉 for n = 1 and m = 1 (momC11), n = 7 and
m = 7 (momC77) and n = 15 and m = 15 (momC15).

• The same joint moments of the marginal signals of instantaneous power and spectral

density
〈

mt(t)nm f ( f )m
〉

(momM11, momM77 and momM15) were also considered.

2.3. Prediction Models

Several machine-learning algorithms can be used to obtain good predictions. The most
common algorithms in sound recognition were used. These were K-Nearest Neighbors
(K-NN), C-Support Vector Classification (C-SVC), Random Forest (RF), Decision Tree (DT),
Naïve Bayes (NB), Logistic Regression (LR), Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA). In order to figure out which of these algorithms
predicts better over our set of features, the scikit-learn machine-learning library [23] was
used to implement and analyze these algorithms.

K-NN is a non-parametric classification method [24]. The output is classified by
the most common one among its K nearest neighbors. While there are a number of
different types of the popular Support Vector Machine (SVM) algorithms, for the purpose
of this research, we used C-SVC, because it can incorporate different basic kernels [25].
C-SVC is thought to solve biomedical problems in a variety of clinical domains. RF
consists of many decision trees that it use ensemble learning [26]. It was implemented
with a forest of 300 decision tree predictors. DT is very similar to RF. It consists of a tree
structure, where each internal node denotes a test on an attribute. Each leaf represents
an outcome of the test [27]. NB is a probabilistic classifier based on applying Bayes’
theorem with strong (naïve) independence assumptions between the features [28]. LR is
one of the algorithms most widely used for regression but it is also used for classification
or predicting problems. It is based on a sigmoid function and works best on binary
classification problems [29]. Despite its simplicity, LDA often produces robust, decent, and
interpretable classification results. When addressing real-world classification problems,
LDA is often the benchmarking method used before other more complicated and flexible
ones [30]. QDA [31] is a variant of LDA in which an individual covariance matrix is
estimated for every class of observation. QDA is particularly useful if there is prior
knowledge that individual classes exhibit distinct covariances.

2.4. Performance Metrics

There are several metrics for evaluating classification algorithms [32]. The analysis of
these metrics and their significance must be interpreted correctly to evaluate these algo-
rithms.

There are four possible results in the classification task. If the sample is positive and is
classified as such, it is counted as a true positive (TP) and when classified as negative, it is
considered a false negative (FN). If the sample is negative and it is classified as negative or
positive, it is considered a true negative (TN) or false positive (FP), respectively. Based on that,
the three performance metrics presented below were used to evaluate the performance of
the classification models.

• Accuracy (Equation (10)). The ratio between the correctly classified samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)
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• Sensitivity (Equation (11)). The proportion of correctly classified positive samples
compared to the total number of positive samples.

Sensitivity =
TP

TP + FN
(11)

• Specificity (Equation (12)). The proportion of correctly classified negative samples
compared to the total number of negative samples.

Specificity =
TN

TN + FP
(12)

Finally, paired Bonferroni-corrected Student t-tests [33] were implemented to evaluate
the statistical significance of the metrics results. The null hypothesis consists of considering
that there is no difference in the performance of the classifiers. The tests with p-values
below 0.05 rejected the null hypothesis.

3. Results
3.1. Prescreening

The data corpus was previously curated in order to obtain performance outcomes that
were as high as possible.

3.1.1. Correlation Analysis

First of all, the correlation between all the features was found. This was implemented
by using the Pandas library [34]. Next, the correlation matrix with the overall dataset
among all the features was computed. The features that exceeded a correlation of 90% were
discarded. In this case, only the H_f feature was discarded.

3.1.2. Principal Component Analysis

The PCA (Principal Component Analysis) was applied next in order to reduce the
number of features. The objective was to have the best Accuracy by using only the most
significant features. This not only tended to raise performance results but in addition,
to speed up the classification algorithm. Speeding up the classification process may be
a mandatory requirement if, for practical reasons, the method must be implemented on
a mobile device, with reduced computing power. To perform this PCA analysis, the
scikit-learn [23] library for python was also used.

After applying PCA, the features that explained 99.9% of the corpus were chosen. The
number of features was reduced from 41 to 29. These were gender, Total_dec, Max_peak,
E_Bn (bands 2, 3, 5 and 6), IE_Bn (bands 2, 3, 5 and 7), f_Cres (bands 2, 3, 4, 5 and 6), f_Med
(bands 1, 2, 4, 5, 6 and 7), H_t, H_tf, K, momC11, momC77, momM11 and momM77. The
remaining features, which explained the other 0.1%, were discarded.

3.1.3. Oversampling

Figure 3 shows the corpus used. As can be appreciated, it is clearly small and unbal-
anced. An oversampling algorithm was used. This was SMOTE [35] (Synthetic Minority
Oversampling Technique), which consists of duplicating samples without adding new
information, so that these new synthetic registers can be added to the corpus data. This
algorithm is very efficient for adding as much synthetic data as required to balance the
data corpus.

Figure 4 shows the effects of applying the SMOTE algorithm to the original data
corpus split in groups of 5 years. As can be appreciated, the data are evenly distributed
between the age groups. Basically, SMOTE introduced additional synthetic data to the
corpus. For each age group, the synthetic data added is the difference between the number
of registers in Figure 4 minus the number of registers in the same column of Figure 3.
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Figure 3. Original data corpus distribution among range-ages without using SMOTE.

Figure 4. Original data corpus distribution among range-ages using SMOTE.

3.2. Group Classification

Experiments were performed varying the number of age ranges from the youngest
user, 17 years old, to the oldest, aged 67. The ranges chosen were 1, 2, 3, 4, 5 and 10 years.
For the different classification algorithms and these groups of age from the corpus, the
Accuracy, Sensitivity and Specificity performance metrics were obtained independently of
gender. As can be seen in Figure 5, the age range grouped into sets of 5 years obtained the
best results.
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Figure 5. Comparison of the metrics of the best algorithm separated by age ranges using the Quadratic
Discriminant Analysis algorithm.

3.3. Classification Accuracy

After preparing the definitive corpus, a set of machine-learning algorithms were
tested. The group range with the best metrics (5 years) was used with and without
applying oversampling (i.e., the SMOTE algorithm). The outcomes shown in Table 1 were
obtained. In general, the use of SMOTE significantly improved the Accuracy, Sensitivity
and Specificity of the classification algorithms. The Quadratic Discrimination Analysis
(QDA) was the machine-learning algorithm that performed best when SMOTE was applied.
Note that the outcomes when SMOTE was not applied are very incoherent, irregular, with
no sense. This shows that oversampling also improves the coherence of the result from
the algorithms.

Table 1. Machine-learning Accuracy (Acc.). Sensitivity (Sen.) and Specificity (Spe.) with and
without SMOTE.

Classifiers
No SMOTE SMOTE

Acc. Sen. Spe. Acc. Sen. Spe.

K-NN 4.26% 10.91% 90.07% 50.44% 56.26% 95.50%

C-SVC 25.53% 9.09% 90.91% 4.43% 9.09% 90.91%

DT 17.02% 19.78% 91.36% 60.18% 64.75% 95.99%

RF 12.77% 6.15% 90.57% 74.34% 77.89% 97.45%

NB 10.64% 16.00% 91.07% 42.48% 47.11% 94.24%

LR 14.89% 6.91% 90.64% 38.05% 43.87% 93.91%

LDA 6.38% 3.90% 90.33% 50.44% 53.86% 95.05%

QDA 12.77% 8.20% 90.97% 94.69% 94.45% 99.45%

The results were also obtained for men and women separately by applying SMOTE
(Table 2). In the men and women cases, it can be observed that QDA also obtained the best
outcomes. With an Accuracy of 94.69%, Sensitivity of 94.45% and Specificity of 99.45%,
we can see that it is better to treat the audios together rather than separately by gender.
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For example, when treating only men (Accuracy = 74.29%, Sensitivity = 74.67%, Speci-
ficity = 97.16%) or women (Accuracy = 91.67%, Sensitivity = 92.73%, Specificity = 99.16%)),
the metrics dropped below the ones obtained jointly.

Table 2. Machine-learning Accuracy (Acc.), Sensitivity (Sen.) and Specificity (Spe.) with SMOTE
by gender.

Classifiers
Men Women

Acc. Sen. Spe. Acc. Sen. Spe.

K-NN 60.00% 59.00% 95.48% 66.67% 67.05% 96.63%

C-SVC 20.00% 35.00% 91.52% 4.17% 9.09% 90.91%

DT 45.71% 48.00% 93.85% 65.28% 64.77% 96.57%

RF 62.86% 63.50% 95.84% 77.78% 79.48% 97.80%

NB 57.14% 59.00% 95.21% 54.17% 57.88% 95.37%

LR 48.57% 49.50% 94.24% 47.22% 53.33% 94.77%

LDA 57.14% 57.00% 95.22% 66.67% 68.34% 96.67%

QDA 74.29% 74.67% 97.16% 91.67% 92.73% 99.16%

4. Discussion

The good results obtained demonstrate that it is possible to obtain the lung age of a
user by extracting the features from an exhalation. The collection of lightweight features
proposed were enough to supply particularities and patterns of exhalations. Most of them
turned out to be very significant. Applying features successfully for the detection of bulbar
ALS has also proven to be efficient in classifying lung age ranges according to exhalations.

The cold properties of exhalations were successfully captured by dividing them be-
tween different frequency bands. Balancing age groups with additional synthetic data
increased overall performance notably. In general, the outcomes correlated with the size
and improvement of the data corpus. No gains were observed when the model was applied
separately to males or females.

The Accuracy, Sensitivity and Specificity we obtained in measuring lung age were
94.69%, 94.45% and 99.45%, respectively. With an error of 5.31% (Accuracy), the outcomes
show that the method is suitable for implementation and deployment in websites or mobile
devices. The latter option could require some additional computing support.

4.1. Comparison with Previous Work

The utility of treating patients by obtaining and subsequently displaying lung age has
been demonstrated to be effective [18]. In addition, its use has also been validated [36].

Due to the non-existence of similar studies predicting lung age using a smartphone, we
had to compare accuracy and other metrics with other studies that obtain the main features
used in a spirometry (FEV1, FVC and PEF). As reflected in section 2.2.1, we attempted to
emulate these features. Thus, we consider it relevant to compare our results with similar
research that used these features. The results obtained are similar to those reached in [14,15],
where the average mean error, when specific whistles were used, was 5.1% in Spirosmart
and 8.3% in Spirocall, for the three common spirometer-measures (FEV1, FVC and PEF).

Our target is to inform the user lung age, instead of the measures FEV1, FVC and PEF.
This makes it easier for people who are not clinical experts to interpret the results. A low
average error of 5.31% was obtained when using 5-year groups. An Accuracy of 94.69% and
Sensitivity of 94.45% means that almost all correctly classified patients correspond to the
correct group and the Specificity of 99.45% means that almost all decisions not to classify a
patient at the wrong lung age are correct. As can be seen in Table 3, the results are very
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similar to those from the other applications mentioned above, with a notable difference in
the number of samples. Thus, we can conclude that our study is reliable enough to be used.

Table 3. Comparison with other applications in the literature [14,15].

Error Rate Accuracy Samples

SpiroSmart 5.10% 94.90% 50

SpiroCall 8.30% 91.70% 53

Spirometer (lung-age) 5.31% 94.69% 188

4.2. Limitations

It was not possible to have a fully balanced dataset, thus oversampling techniques
had to be used to improve the results. This means that with a larger and more balanced
dataset, the results could have been improved and a more accurate lung age would have
been predicted. A small corpus could also be the cause of the poor results obtained when
dealing with men and women separately. More research with a more curated and enlarged
dataset should be done to tackle this issue.

5. Conclusions

This article presents a methodology for determining the lung age of a person blowing
on the microphone of any kind of recording device (i.e., smartphone). It is designed to allow
self-lung controls or help clinicians to follow-up patients in order to avoid unnecessary
hospital visits as well as health resources.

The results are better than expected as we have been able to emulate the behavior of a
spirometer with results in line with the literature, which always shows an accuracy of over
90% and an error rate between 5% and 8%. Although much work has been done to emulate
a spirometry, we can say that we have made a first satisfactory approximation to predicting
lung age. This will increase self-control of the lung function because the results provided
are more popular than traditional spirometry metrics. This, jointly with the widespread use
of smartphones worldwide, can increase the early detection and treatment of lung diseases.

As a future trend, the aim is to improve our current dataset of audio samples to
improve the results and reliability and further narrow the age range.
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