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Abstract: Based on the nonlinear disturbance observer (NDO), the inversion time-constraint stability
strategy (ITCS) is designed to make the deep-sea self-holding intelligent buoy (DSIB) system hovered
at an appointed depth within a specified time limit. However, it is very challenging to determine
the optimal parameters of an ITCS depth controller. Firstly, a genetic algorithm based on quantum
theory (QGA) is proposed to obtain the optimal parameter combination by using the individual
expression form of quantum bit and the adjustment strategy of quantum rotary gate. To improve
the speed and accuracy of global search in the QGA optimization process, taking the number of
odd and even evolutions as the best combination point of the genetic and chaos particle swarm
algorithm (GACPSO), an ITCS depth controller based on GACPSO strategy is proposed. Besides, the
simulations and hardware-in-the-loop system experiments are conducted to examine the effectiveness
and feasibility of the proposed QGA–ITCS and GACPSO–ITCS depth controller. The results show
that the proposed GACPSO–ITCS depth controller provides higher stability with smaller steady-state
error and less settling time in the depth-control process. The research of the proposed method can
provide a stable operation condition for the marine sensors carried by the DSIB.

Keywords: deep-sea self-holding intelligent buoy (DSIB); inversion time-constraint stability (ITCS);
quantum genetic algorithm (QGA); chaotic particle swarm optimization (CPSO); depth control

1. Introduction

With the intensification of global warming and the greenhouse effect, as well as the
deterioration of the marine climate and environment, extreme weather events have been
occurring with startling frequency. There are many uncertainties and challenges for the
development and utilization of the ocean resources. Thus, marine environment monitoring
can be employed not only for marine-climate models, marine disaster prediction, and
weather forecasting, but also for fishery production, which provides help for analyzing
and forecasting the formation, migration, and movement of marine fisheries, so as to guide
people in their fishery production activities [1,2]. As a kind of ocean observation platform,
a deep-sea self-holding intelligent buoy (DSIB) has been applied for ocean observation.
The observation scheme of DSIB is shown in Figure 1 [3,4]. It enjoys the advantages of
small size, convenient deployment, independent observation, and low price. The depth
positioning of the DSIB is accomplished by volumetric change instead of weight change.
The floating process is achieved by injecting hydraulic oil which is filled in an internal
reservoir inside the spherical hull to the external bladder connected to the hydraulic pump
and latching value. The exterior of the spherical hull is provided with an external bladder.
The submerging process is realized by transporting hydraulic oil from the external oil
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bladder to the internal reservoir. The DSIB can dive or ascend to the target depth by
changing the volume of external bladder. A schematic of the depth positioning buoyancy
adjustment system and the appearance of the DSIB are shown in Figure 2. The depth
positioning research of the DSIB can help us to construct ocean-related statistical models
more accurately and effectively, and to better understand the ocean circulation and seawater
energy exchange, and to know the laws deeper, contributing good service to human
society. Thus, the depth-keeping control strategy at a specified depth is essential. Many
researchers have extensively investigated the control methods for depth tracking and
hovering of an underwater vehicle, and their achievements have been acknowledged in
the current literature.
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Figure 2. (a) The appearance drawing of a DSIB system prototype (The blue box represents the depth-
positioning buoyancy adjustment system position of the DSIB); the (b) basic schematic diagram of
a depth-positioning buoyancy adjustment system of the DSIB system; and (c) the actual internal
structure photo of the depth-positioning buoyancy adjustment system.

In terms of the principle of traditional PD method, an improved double PD depth-
control strategy of the DSIB was proposed [5]. The DSIB suspended at a depth of 1000 m
with a mean depth-tracking error within 6 m. Because the DSIB system model is established
by means of the speed and flow expectation functions of the arctangent model, it was
difficult to optimize the depth-control method. A state feedback depth controller coupled
with an Extended Kalman Filter (EKF) was applied to the depth-positioning process of a
profiling float [6]. However, the established dynamic model was only based on a more
realistic compressibility law. There was no sufficiently detailed data in the literature to
make an accurate comparison. The inversion controller and time-constraint stability con-
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troller have distinctive advantages of simple structure, easily-realized high precision, and
strong robustness, which already presented some successful practical realizations [7–10].
To achieve time-constraint convergence of the tracking errors of Unmanned Underwater
Vehicles (UUV), Josué et al. proposed a model-free high order sliding mode controller
with a time-base generator. Simulation results showed that the designed controller can
achieve the desired trajectory at the finite time. As the less accurate control design model is
obtained whose shortcomings are compensated for using a suitable robust control method,
the comprehensive system model was used to design a finite-time robust tracking con-
trol (FTRTC) of the autonomous underwater vehicle (AUV) model dynamically [8]. The
overall system stability was demonstrated via Lyapunov theory through simulations. Cho
et al. estimated the water flow and the external interference of AUV through time-delay
estimation (TDE), and proposed to adopt the inversion method to design a controller to
realize the depth-trajectory control process of the AUV [9]. By adopting the inversion-
control strategy, the control input of the AUV can change smoothly and the peak value
is small, which can avoid the overshoot, or “bottom touch”, problem when the AUV is
diving. However, due to the high derivative of the virtual control quantity in the inversion
method design, the calculation of the controller is more complex. In order to improve
the noise attenuation performance, Huy et al. proposed an inversion controller based
on the nonlinear disturbance observer (NDO) of the AUV [10]. The compensation input
provided by NDO in the case of external disturbance was efficient. A depth error of 1 m
was produced within 20 s in the depth-tracking process. However, the whole performance
of the aforementioned inversion controller and time-constraint stability controller were not
put into practice [7–10]. The settling time and depth error need to be improved by tuning
the aforementioned controller parameters.

In the previous methods, the control effect of the depth controller mainly depends on
the depth controller parameters setting, while the depth controller parameters setting is
ultimately based on error feedback to eliminate, or minimize, system error. Depth controller
parameters optimization is important and of great significance for stability, reliability, and
fast response characteristics of the system. To meet the need of the increasingly complex
depth-control process, a series of controller parameter setting strategies had become the
key to improve and optimize the control performance. The optimization algorithm for
controller parameters was viewed as a search of search population in the search space, the
integration for absolute error, and the squared control input were used as optimization
goals, and the optimal control quantity was calculated through iterative optimization. The
controller parameters were taken as a search team. The optimization goals of parameter
settings were realized by the particle swarm optimization (PSO) or genetic algorithm (GA).
Tumari et al. proposed the PSO approach in optimizing the performance of the model-free
PID depth controller with derivative filter applying in stabilizing a Hovering Autonomous
Underwater Vehicle (HAUV) [11]. The simulation results showed that when the HAUV
hovers at 3 m, the convergence time of the optimized depth controller is reduced by 66.7%
compared with the pre-optimized depth controller. But the performance PSO tuning can
be further improved by increasing the number of particles and iterations. To solve the
premature convergence and getting stuck in the local minima of the PSO approach, a
novel hybrid PSO algorithm, combining Sine Cosine Algorithm (SCA) and Levy Flight
(LF) distribution, was used to optimize the gains of the PID depth controller [12]. The
obtained simulation results demonstrate that the proposed PSOSCALF-tuned PID has
higher accuracy and a faster convergence rate as compared to the PSO-based PID. In
addition, the cloud-model-based quantum genetic algorithm (CQGA) was employed to
tune coefficients of the fractional-order PID controller to improve performance of the AUV
motion [13]. Through simulation analysis, it can be seen that when hovering control at a
depth of 2.5 m, the depth error of the optimized fractional-order PID controller based on
CQGA is reduced by 51.2% and the settling time is shortened by 25% compared with the
fractional-order PID depth controller before optimization. However, the CQGA algorithm
needs to complete complex coding and decoding in the operation process, which requires
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high operation speed of the system. This method should be tested on various depth-control
scenarios of an actual system in future works.

Comparing the advantages and disadvantages of various depth-control strategies [5–10],
it can be seen that the inversion method has been widely used in underwater vehicles
motion control technology and achieved good results. At the same time, the time-constraint
stability strategy has strong robustness and better anti-disturbance performance, and the
state of the system can converge to the equilibrium state in a finite time. Motivated by the
aforementioned analysis, the present study focuses on designing the depth-keeping con-
troller for the vertical motion of a DSIB. The control strategies are produced by combining
the inversion technique and the time-constraint stability law with the NDO to compensate
for the errors caused by system interference. The anti-disturbance performance of the
DSIB dynamical system can be made better. The inversion time-constraint stability strategy
(ITCS) is suitable for solving depth-control problems. As the parameters of the ITCS need
to be obtained based on experience data, some unexpected depth-keeping errors occur in
different depth positioning conditions. The required depth positioning accuracy cannot be
fulfilled considering the adaptability of the ITCS. ITCS depth controller parameter tuning is
essential for the complex problems of strong coupling, multivariables, and multi-constraints.
In practical application, too many parameters, unknown tuning range, and direction make
it difficult to set parameters and limit the usage of ITCS. However, the tuning methodology
of the aforementioned depth controllers highly depends on the operation iteration ability of
the system, resulting in long implementation time [11–13]. In order to solve the problem of
repeated adjustments in the parameter setting process of the ITCS depth controller and the
possibility of non-optimal parameters, the new tuning technique is employed for the adjust-
ment of key control parameters of the ITCS strategy for DSIB depth-control system. Firstly,
the QGA (quantum genetic algorithm) is applied to the ITCS depth-controller parameters
optimization in a systematic way. As an optimization algorithm, the quantum crossover,
quantum mutation, and population catastrophe are introduced to the QGA–ITCS, carrying
out the evolution computation to transform parameter tuning into parameter optimization.
In order to solve the problems of high space consumption and low speed and accuracy of
global optimization in the parameter optimization process of the QGA algorithm, a novel
GACPSO–ITCS hybrid algorithm is proposed, combining the strengths of chaotic particle
swarm optimization (CPSO) with genetic algorithm (GA) in this paper. GACPSO–ITCS
combines the updated rules of velocity and situation of CPSOs with the ideas of selection,
crossover, and mutation from GA. The organization of the rest of this paper is as follows: In
Section 2, the drag coefficients of the DSIB model are estimated by the CFD simulations. In
Section 3, based on the obtained drag coefficients, the dynamic model of DSIB is established.
In Section 4, combining with the NDO, the ITCS depth controller is designed to observe
and compensate for the disturbance. The search process of the proposed QGA–ITCS and
GACAPSO–ITCS algorithms are designed to obtain the optimal parameter combination
of the ITCS depth controller. In Section 5, relevant simulations and hardware-in-the-loop
system experimental results demonstrate the applicability of the proposed QGA–ITCS and
GACPSO–ITCS optimization method in various scenarios. Finally, some conclusions are
drawn in Section 6.

2. Estimation and Analysis of the DSIB’s Hydrodynamics

The hydrodynamic analysis of the DSIB, namely the estimation of the drag coefficients,
is required for accurate motion modeling, which, in turn, can provide necessary conditions
for the depth-control simulation.
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2.1. Determination of Flow Regime

Before the analysis of the drag force is carried out on the DSIB, the flow regime of the
seawater needs be determined by Reynolds number value Re when the DSIB is ascending
or diving. Reynolds number is expressed as follows [14]:

Re = Dvρ/µ (1)

where D is the diameter of the spherical pressure hull, D = 0.432 m. µ is the dynamic
coefficient of viscosity, µ = 1.792× 10−3 Pa·s. ρ is the density of seawater. Because the
density of seawater increases with the diving depth, the range of the seawater density
changes is about 2%. The average seawater density ρ is chosen to calculate the Reynolds
number in this paper. ρ = ρ = 1.034× 103 kg/m3. v is the motion velocity of the DSIB.
The mean motion velocity of the DSIB is selected as 0.145 m/s when the DSIB ascending
or diving. Through calculation, Re = 36, 143.86 > 13, 800. Because the obtained Reynolds
number is above the critical Reynolds number the turbulence model is adopted when the
DSIB is ascending or diving.

2.2. Flow Field Analysis

To save time and cost, in this study, the hydrodynamic analysis is performed for
the DSIB by using the CFD solver, FLUENT® 6.3, instead of conducting hydrodynamic
experiments. The Reynolds mean Navier–Stokes equations based on the SIMPLEC algo-
rithm [15], along with the SST k-omega turbulence model [16], are adopted to study the
hydrodynamic conditions of the DSIB body. The unstructured tetrahedral mesh for the
geometry of the DSIB is also taken into consideration in this study. Gambit™ is used to
discretize the flow domain into a finite set of control volumes [17,18]. As shown in Figure 3,
the unstructured tetrahedron cells as the meshing grid are adopted to keep the meshes
distributing reasonably and to make the meshes generate expediently.
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Before the analysis of the drag force conducting on DSIB, the flow field is ana-
lyzed. Figures 4 and 5 show the simulation results of the diving and ascending motions;
Figure 4a–c displays the pressure contours of the DSIB at diving velocities of 0.1, 0.3, and
0.5 m/s, respectively. The pressure on the DSIB increases with the diving velocity. The
maximum pressure occurs at the base of the DSIB. The DSIB has a certain “vacuum region”,
where the pressure is negative. As shown in Figure 4d–f, the water flows through the largest
diameter of the protective shell and falls off. Hence, a distinct negative velocity region is
created above the DSIB owing to the formation of large-scale vortices. The pressure con-
tours of the DSIB in Figure 5a–c show that the maximum pressure is at the upper protective
shell during the ascending motion. As the ascending velocity increases, the pressure on
the DSIB also gradually increases. As the case of diving motion, and the ascending motion
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as well, it is noted in Figure 5d–f that the water flows through the largest diameter of the
protective shell and falls off. However, a distinct negative velocity region is formed below
the DSIB. The analysis results is given in Table 1.
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Table 1. CFD analysis results of DSIB in the diving process and the ascending process.

Velocity (m/s) 0.1 0.3 0.5

Maximum
Pressure (Pa)

Positive
Pressure

Negative
Pressure

Positive
Pressure

Negative
Pressure

Positive
Pressure

Negative
Pressure

Ascending
motion 5.16 4.23 45.85 37.97 127.11 105.58

Diving motion 5.24 3.86 46.14 33.7 128.44 93.33

2.3. Flow Field Analysis

Giving different flow velocities from 0.1 m/s to 0.5 m/s at the entrance of the CFD
calculation domain, is used to simulate the floating or diving processes of the DSIB. The
overall drag forces on the DSIB are obtained by CFD at these velocities in Tables 2 and 3.
The mean drag coefficients of the DSIB in ascending and diving processes are calculated to
be Cd-up = 0.74 and Cd-down = 0.68.

Table 2. Drag force acts on the DSIB in ascending process.

Motion Velocity of DSIB (m/s) 0.1 0.2 0.3 0.4 0.5

Drag Force (N) 1.16 4.63 10.37 18.51 28.83

Table 3. Drag force acts on the DSIB in diving process.

Motion Velocity of DSIB (m/s) 0.1 0.2 0.3 0.4 0.5

Drag Force (N) 1.01 3.96 8.83 15.62 24.34

3. DSIB Kinematics and Dynamics

The dynamic model of DSIB on the vertical plane is nonlinear and coupled, however,
the linearization idea is used to linearize the DSIB dynamic model in this paper. Therefore,
it is necessary to linearize the operating point of the model based on the following special
assumptions:

(1) The total mass of the DSIB remains unchanged, and the center of mass and the center
of buoyancy remain collinear in the axial direction—in the vertical plane, the DSIB
system is regarded as a solid sphere, and only the movement in the vertical direction
is considered; and

(2) Because the current below 200 m is very small under deep-sea environmental con-
ditions, the current in the vertical plane can be ignored—the water resistance is
linearized in this paper.

According to the aforementioned special assumptions, the dynamic model of DSIB
in the vertical plane is established. The DSIB floats or dives from the initial depth to the
appointed depth at a speed of v. During the above operation process, the relevant force
vector and velocity vector acting on the DSIB mainly include the buoyancy F, gravity G,
resistance R and the motion speed of DSIB v, as shown in Figure 6. The ascent process is
represented by the region marked by solid line, and the descent process is represented by
the region of dotted line.

Assuming that the DSIB reaches an appointed depth of h, where h is a fixed value, the
corresponding depth error can be calculated as ẑ = z− h, where z is the displacement of
the DSIB in the ascent and descent processes. Different displacements of the DSIB in the
vertical plane are produced by the hydraulic oil volume of the external bladder. When the
DSIB hovers at an appointed depth, ẑ = 0. According to the dynamic analysis of DSIB, the
ascent and descent processes of the DSIB are expressed by the following force equilibrium
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equation for static condition in the vertical plane. Table 4 shows the description of the
parameters in the DSIB kinetic equation.

(M + Ma)v′ = sign(v)[ρ(ẑ+h)g(Vf − ∆V + Q)−Mg]− 1
2 Cd Aρ(ẑ+h)v|v|.

ẑ = v
Ma =

2
3 πρ(ẑ+h)r3

(2)

where ∆V is the DSIB hull deformation. Due to the DSIB hull deformation caused by
seawater pressure is much larger than that caused by seawater temperature, the DSIB
hull deformation caused by seawater pressure is only considered in this paper [19]. By
calculation, ∆V = (1.844 × 10−11)Pz, Pz is the pressure at the target depth z [19]. In terms
of water-resistance calculation, the velocity component of the drag term is expressed as
v|v| instead of v2 [20]. The sign (v) is symbolic function. The downward motion of the
DSIB is defined as a positive direction and the speed of the DSIB is positive. The sign (v) is
expressed as follows:

sign(v) =
{
−1, v > 0
1, v ≤ 0

(3)
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Table 4. Description of the parameters in the DSIB kinetic equation.

Parameter Units Description Parameter Value Units Description

ρẑ+h kg/m3 Seawater density at a
set depth scope M 52.39 kg Total mass of

the DSIB

ẑ m Depth error g 9.8 m/s2 Acceleration due to
gravity

h m Appointed depth Vf 0.0504 m3 Volume of the DSIB

v m/s Motion velocity
of the DSIB Cd-up 0.73 Drag coefficient as the

DSIB floating

Ma kg Added mass of the DSIB at a set
depth scope Cd-down 0.66

Drag coefficient
as the DSIB
submerging

∆V m3 DSIB hull
deformation A 0.301 m2 Projected area

of DSIB hull

Q m3 Hydraulic oil volume of external bladder r 0.216 m
Radius of

the spherical
pressure hull

In terms of Equation (2), the state–space representation of the DSIB system is expressed
as follows: [ .

v
.
ẑ

]
=

[
R1 R2
1 0

][
v
ẑ

]
+

[
R3
0

]
Q +

[
R2
0

]
h +

[
R4
0

]
(4)
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where R1 = −Cd Aρ(ẑ+h) |v|
2M , R2 = −sign(v)

ρ2
(ẑ+h)gq

M , R3 = sign(v)
ρ(ẑ+h)g

M , and R4 = sign(v)

(
ρ(ẑ+h)gVf

M − g).
In the light of the state–space representation of the DSIB Equation (4), the movement

state vector of the DSIB system is x(t) =
[

v ẑ
]T, where v and ẑ are state variables. The

appointed h is considered as a constant value. Therefore, the state–space representation of
the DSIB Equation (4) can be changed into the following formula:{ .

ẑ = v
.
v = R1v + R2ẑ + R3Q + R2h + R4

(5)

In the given DSIB system model state parameter variables, the oil volume and depth of
the outer oil capsule can be obtained by pull wire displacement sensor and pressure sensor,
respectively. The submergence depth z and hydraulic oil volume of the external bladder Q
can be obtained by pull wire displacement sensor and depth sensor, respectively [21].

Let x1 = ẑ, x2 = v, y = x1, and u = Q, where x1 and x2 are depth error and
motion velocity of the DISB, while u denotes control input. Thus, Equation (5) is expressed
as follows: { .

x1 = x2.
x2 = f (x1, x2) + bu + ∆1

(6)

where b is control gains, b = R3; f (x1,x2) is the unknown nonlinear dynamics of the
DISB, f (x1, x2) = R1x2 + R2x1; ∆1 is unknown nonlinear disturbance of DISB, ∆1 = R4.

4. ITCS Depth-Controller Optimization Method Design

The inversion method is a recursive process. In this method, the high-order nonlin-
ear system is divided into several low-order subsystems, and the appropriate Lyapunov
function is selected to design and construct the appropriate virtual control law step by
step. Finally, the real control law of the system is obtained to achieve the control pur-
pose [22,23]. In the actual system control process, the system is often required to achieve
the control requirements in a short time. In this regard, scholars have proposed the concept
of time-constraint stability. The response speed and anti-interference ability of the system
are improved by using the time-constraint stability strategy. Especially in recent years,
with the development of time-constraint Lyapunov stability analysis and other theories,
the application scope of time-constraint control method is broadened [24,25], and the con-
trol effect is further improved by combining with other algorithms, such as the inversion
method and disturbance observer. In this paper, based on the inversion method, the inver-
sion time-constraint stability (ITCS) controller is constructed by combining the inversion
time-constraint control method with the technology of the nonlinear disturbance observer
(NDO). The design process of the ITCS controller is given below.

Lemma 1 [26]. Consider the following system:

.
x = f (x), f (0) = 0 (7)

where, x ∈ Rn, f (·) : U → Rn is a continuous function from the domain U to the n-
dimensional space Rn. If there exist a continuous differentiable function V(x) : U → R ,
V (x) is a positive definite function and c > 0 and λ ∈ (0, 1), such that the following
inequalities hold:

.
V(x) + c(V(x))λ ≤ 0, x ∈ U\{0} (8)

Then, the Equation (8) is time-constraint stable.

(a) Design of nonlinear disturbance observer
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According to the design theory of nonlinear disturbance observer, î is defined as the
estimation of interference i, the estimation error is s0 = i− î, the state equation of the DSIB
system can be obtained as follows:

.
x(t) = f (x1, x2) + P1(x)u + P2(x)∆1 (9)

where P1(x) =
[

0 b
]T, P2(x) =

[
0 1

]T.
The nonlinear disturbance observer is designed as follows:{

î = n + c(x)
.
n = J[− f (x 1, x2)− P1(x)u− P2(x)(n + k(x))]

(10)

where w(x) = w1ẑ + w2v, w1 and w2 are constants, which are greater than 0.
Let J = ∂c(x)

∂x = [ w1 w2] is the observation gain. If the dynamic performance of
the disturbance term changes slowly relative to the system, the dynamic equation of the
disturbance observer satisfies

.
s0(t) +

∂c(x)
∂x s0(t) = 0. It can be obtained from Equation (10)

.
î = JP2(x)s0,

.
e0 = −w2s0.

The Lyapunov positive definite function of the disturbance observer is defined as
V = 1

2 s0
2. The derivative is obtained as:

.
V = s0

.
s0 = −w2s2

0 ≤ 0. It can be seen that the
designed disturbance observer is stable. The controlled variable of the disturbance observer
is: Wi =

1
b î.

(b) Design of inversion time-constraint stability controller

According to the state equation expression of the DSIB, based on the assumption that
the DSIB reaches the predefined target depth h, where h is a fixed value, the associated
depth error is set as s1 = ẑ = z− h, then

.
s1 =

.
ẑ =

.
z−

.
h = v−

.
h (11)

The first virtual control quantity is defined as: β1 = −k1s1 +
.
h, k1 is a constant, which

is greater than 0. Let s2 = v− β1:
Step 1: The Lyapunov function V1 is defined as V1 = 1

2 s1
2, the derivative is obtained as:

.
V1 = s1

.
s1 = s1(v−

.
h) = s1(s2 + β1 −

.
h) = −k1s2

1 + s1s2 (12)

It can be seen from formula (12), when s2 = 0,
.

V1 is negative definite. The subsystem
satisfies the stability in the sense of Lyapunov, usually, s2 6= 0 in an actual situation.
Therefore, the next step of design is required.

Step 2: The Lyapunov function V2 is defined as follows: V2 = V1 +
1
2 s2

2.The derivative

of S2 is obtained as:
.
s2 =

.
v−

.
β1 = f (x1, x2) + bu + ∆1 −

.
β1.

The finite time-control method is used to design the state variable s2, and the expres-
sion of fuel controller u is obtained as follows:

u =
1
b
(− f (x1, x2)− ∆1 +

.
β1 − s1 − k2sign(s2)|s2|a) (13)

where k2 is the normal number, the derivative is as follows:

.
V2 = −k1s2

1 + s1s2 + s2[ f (x1, x2) + bu + ∆1 −
.
β1] (14)

Substituting Equation (11) into Equation (14), we get:

.
V2 = −k1s2

1 + s1s2 + s2[−s1 − k2sign(s2)|s2|a] = −k1s2
1 − k2sign(s2)|s2|a+1 (15)
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The error derivative of the state quantity v can be calculated as:

.
s2 =

.
v−

.
β1 = s0(t)− k2sign(s2)|s2|a − s1 = −k2sign(s2)|s2|a + i1(t) (16)

If the balance point of the DSIB depth-control system is the origin, then the state of the
DSIB system converges to the region ε1 within a finite time, where the bounded extremum

of total interference i1(t) is δ, and δ ≥ 0, ε1 =

{
s2 : |s2| ≤ ( k3+δ

C )
1/a
}

, C > 0, 0 < a < 1.

Proof of Lemma 1. Choose Lyapunov function V(s2) =
1
2 s2

2. �

.
V(s2) = s2

.
s2 = −k2sign(s2)|s2|a+1 + s2i1(t)

≤ −C|s2|a+1 + δ|s2| ≤ −k3|s2| ≤ −k3(
k3+δ

C )
1/a
≤ 0

(17)

The initial state of the DSIB depth-control system is divided into the following
two situations:

(1) The initial state of the system is outside ε1, namely s2 ∈ R− ε1, since
.

V(s2) < 0. Then
there exists t1 > 0, such that s2(t1) ∈ εb

1, where εb
1 represents the boundary of ε1;

(2) The initial state of the system is within ε1, namely s2 ∈ ε1, when t ≥ t1, satisfy-
ing s2(t) ∈ ε1. Let θ = inf

s2∈εb
1

|s2| and σ(s2) = C|s2|a+1 + δ|s2|. Then the following

relationship can be obtained as:{
θ = ( k3+δ

C )
1/a

σ(θ) = k3(
k3+δ

C )
1/a (18)

For ∀s2 ∈ εb
1, there exists

.
V(s2) ≤ −σ(θ) < 0, given that V(s2) and σ(s2) are continuous

functions, it can be seen from the properties of the continuous function, there exists η >
0 such that when t ∈ [t1, t1 + η], there exists s2(t) ∈ ε1. The initial state of the DSIB
depth-control system has been proved.

Substituting Equations (16)–(18) into Equation (18), we get:

.
V2 = −k1s2

1 + s1s2 + s2
.
s2

≤ −k1s2
1 − s2

2 − k2sign(s2)|s2|a+1 + i1s2 < 0
(19)

The boundary-layer method is used to suppress the chattering caused by the depth
controller. The function sign(·) in Equation (10) is replaced by the saturation function sat (·).
The saturation function is expressed as follows:

sat(ϕ/λ) =

{
ϕ/λ, |ϕ| ≤ λ
sign(ϕ), |ϕ| > λ

(20)

where λ > 0 is the thickness of the boundary layer.
According to the time-constraint stability controller design lemma and the proof of

Lemma 1, the designed depth controller (12) is time-constraint stable.
The control effect of the ITCS depth controller mainly depends on the ITCS parameter

setting. The ITCS parameter tuning is the core of the ITCS controller. But as the sub-
mergence depth increases, the complicated control processes caused by the pressure hull
deformation and the change of seawater density appear. However, ITCS parameters are
numerous and hard to adjust. The ITCS parameter tuning method fails to fully meet the
requirements. An efficient ITCS parameter tuning method exerts a direct impact on the
control effect and reliability of the depth positioning. In this paper, the parameter tuning
method based on QGA and GACPSO algorithm are introduced to optimize the three key
parameters (k1, k2, and k3) of the ITCS depth controller. When the deviation e(t) is produced
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by both the system input r(t) and system output y(t), the QGA or GACPSO algorithm is
carried out, and the parameters of ITCS are regenerated. The DSIB system is controlled by
the ITCS controller until e(t) makes the objective function of the control system producing a
minimum value. The QGA or GACPSO algorithm stops running and the system achieves
good controllability.

The task of parameter tuning is to find the optimal parameter combination of ITCS to
minimize the fitness function. Considering the control error, dynamic characteristics and
rapidity and stability of the system response, the objective function of the optimization is
established by the Integral of Time-weighted Absolute value of the Error (ITAE) [27], which
is expressed as follows:

J =
∫ ∞

0
(w1|e(t)|t + w2|u(t)|)dt + w3|σ|+ w4tr (21)

where e(t) is system error, t is simulation time, u(t) is nonlinear state error feedback controller
output, σ is overshoot of the depth-control system, and tr is rise time. w1, w2, w3, and w4
are weighting coefficients.

4.1. QGA–ITCS Depth Controller

Quantum genetic algorithm (QGA) is a combination of quantum computation theory
and genetic algorithm principle. The concept of quantum computing was proposed by
Beninff and Feynman [28]. In the late 1990s, Narayanan and Kuk-Hyun Han began to com-
bine quantum theory with genetic algorithms, and successfully used them for multimodal
function optimization and a class of combinatorial optimization problems and solution of
the knapsack problem [29,30]. Thus, QGA not only improves the capability of global search,
but also avoids the problem of premature convergence. The QGA can also effectively
solve the problems of the Hamming cliff, calculate accuracy, and tackle other issues which
appeared in the traditional genetic algorithm. In this paper, a fitness function of the DSIB
system is defined, and the terms are weighted properly according to the demand of the
actual DSIB system. Then a QGA algorithm, which represents chromosomes with quantum
bits and realizes population evolution with the quantum rotation gate, is employed for
multi-objective optimization of the ITCS depth controller. So, the parameter self-tuning
of the ITCS depth controller can be achieved. The flow chart of ITCS control parameter
optimization based on QGA algorithm is shown in Figure 7a.

The implementation steps of the ITCS parameter tuning method based on QGA are as
follows:

Step 1: The population Q(t) and parameters are initialized. Q(t) =
{

qt
1 , qt

2, · · · , qt
n
}

,
where, qt

j is the jth Quantum Chromosome in the T generation population. The quantum
bit of qt

j is expressed as follows:

qt
j =

[
αt

j1
βt

j1

∣∣∣∣∣ αt
j2

βt
j2

∣∣∣∣∣ · · ·
∣∣∣∣∣ αt

jm
βt

jm

]
, j = 1, 2, · · · , n (22)

where, n is the number of quantum chromosomes in the population, and m is the number
of quantum bits that make up quantum chromosomes, which is the length of quantum
chromosomes. In the optimization process of the ITCS controller, the three key parameters
(k1, k2, and k3) need to be optimized. If each parameter is represented by 16-bit quantum
bits, the length of the quantum bits chromosome is m = 80.

Step 2: The corresponding binary solution is obtained by observing the individual
state in the population Q(t). P(t) =

{
xt

1 , xt
2, · · · , xt

n
}

, where xt
j =

{
xt

j1 , xt
j2, · · · , xt

jm

}
, it

is a binary string of length m. Each value of xt
j is 0 or 1, which is generated by a random

number between 0 and 1 represented as r. If
∣∣∣αt

jk

∣∣∣ > r, then xt
jk = 1, otherwise xt

jk = 0. The
initialized key parameters (k1, k2, k3) are tested to obtain specific solutions.
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Step 3: Each value of xt
j is converted to a real value within the range of the corre-

sponding variable. According to the individual fitness evaluation function defined in
Equation (21), the fitness of each chromosome is calculated.

Step 4: According to Equation (21), the adaptive value of each chromosome in the cur-
rent population is calculated. The current optimal individual is found after comparison, and
the binary corresponding to the optimal individual is stored in B(t). B(t) =

{
bt

1 , bt
2, · · · , bt

n
}

.
The optimal individual and corresponding fitness are recorded. (The optimal individual is
taken as the evolutionary target of the next generation).

Step 5: Whether the parameters of (k1, k2, and k3) are the optimal solution is determined.
If the optimal solution is satisfied, the calculation exits; otherwise, the calculation continues.
According to the value that does not satisfy the optimal solution, the (k1, k2, and k3)
generated by the population are continuously acquired in real time, and the determined
solutions are obtained.

Step 6: According to the Equation (23) and Table 5, the quantum rotation gate is used
to update the population Q(t) of (k1, k2, and k3) chromosomes.[

αi
′

βi
′

]
= U(∆θi)

[
αi
βi

]
(23)

where ∆θi (i = 1,2,...,m) is the rotation angle of each quantum bit toward |0〉 state or
|1〉 state.

[
αi βi

]T is the ith quantum bit of the quantum chromosome. Table 5 is the
adjustment strategy of the quantum rotary gate. In Table 5, the xt

jk and bt
jk are the kth bit

of the solution xt
j and current optimal solution bt

j . f (xt
j) and f (bt

j) are fitness functions,
respectively. ∆θk is the rotation angle, that is the convergence speed of the control algorithm.
s(αt

jkβt
jk) is the direction function of the rotation angle.

Step 7: The number of iterations t is added to 1 and the algorithm is returned to step 2.
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Table 5. Non-dynamic constants of the DSIB.

xt
jk bt

jk f(xt
j) ≥ f(bt

j) ∆θk
s(αt

jkβ
t
jk)

αt
jkβ

t
jk > 0 αt

jkβ
t
jk < 0 αt

jk = 0 βt
jk = 0

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True 0.01π −1 +1 ±1 0
1 0 False 0.01π −1 +1 ±1 0
1 0 True 0.01π +1 −1 0 ±1
1 1 False 0.01π +1 −1 0 ±1
1 1 True 0.01π +1 −1 0 ±1

4.2. GACPSO–ITCS Depth Controller

Although the QGA algorithm avoids the defect shown in the traditional genetic
algorithm of easily falling into the local optimum value, it often needs large-scale population
to realize parameter tuning through many generations of cyclic computation, which spends
more time and space on the optimization process. In this paper, the hybrid algorithm of
complementary algorithm is created because of the disadvantages in QGA algorithm.

Particle swarm optimization (PSO) relates to swarm intelligence evolutionary compu-
tation methods with the global strategy and inspired nature. The basic idea derived from
biological simulation on the foraging activities on bird populations, proposed jointly by
the American psychologist Kennedy and electrical engineer Ebethart in 1995 [31], emerges
according to swarm intelligence theory of computing technology. The algorithm mainly
adopts the competition and cooperation mechanisms optimization guidance in the particles
population searching process, and has good versatility and full retrieval ability. Particle
swarm optimization (PSO) is simple a theory, quick in convergence, but likely to be “pre-
mature” at the initial stage. To locally improve the optimal solution of PSO, CPSO (chaotic
particle swarm optimization) algorithm is introduced to enhance convergence accuracy
and speed. The chaotic sequences of CPSO are generated by iteration, and the range of
chaotic variables is corresponded to the value space of optimization variables by carrier
mode [32]. Applicable to a variety of complex optimization problems and combinatorial
optimization problems, the chaotic series are used to initialize the position and velocity
of the particles. The diversity of the population and the ergodicity of the particle search
are improved.

In addition, genetic algorithm (GA) has strong full retrieval ability but the convergence
accuracy is low. Considering both the advantages and disadvantages, genetic operators
and the crossing-search methods are applied to PSO algorithm to avoid falling into locally
optimal solutions. In this process, inertial weight and mutation methods are improved to
balance the global and local search ability. At the same time, some swarms are mutated if
the swarm population has evolved to a small enough space.

In this paper, the critical parameters of ITCS are operated by CPSO or GA of different
parameters. Then, the optimal number is, respectively, selected by the genetic operators
and chaotic series as a global optimum at every circulation, which improves the overall
performance of the PSO algorithm. The flow chart of ITCS control parameter optimization
based on GACPSO algorithm is shown in Figure 7b. The implementation steps of ITCS
parameter tuning method based on GACPSO are as follows:

Step 1: The three key parameters (k1, k2, and k3) of the ITCS depth controller are
encoded as five genes of an individual.

Step 2: The three key parameters (k1, k2, and k3) of population need to be initialized.
Initiating a population is a random generation of a group of individuals. In order to increase
the diversity of the population, N uniformly distributed random numbers r between [0, 1],



Sensors 2022, 22, 1096 15 of 24

and is the size of the population. The method for producing a single particle in any
individual is expressed as follows:

εi = εi_min + (εi_max − εi_min)× r i = 1, 2, 3 (24)

The final initial population is [ε1, ε2, and ε3], that is, the three key parameters (k1, k2,
and k3). The scale is N × 3.

Step 3: The particle position and velocity are randomly initialized according to the
initial search interval. A three-dimensional vector corresponding to the three key parame-
ters (k1, k2, and k3) is generated randomly. After mapping, a group of initial particles with
random positions and velocities is obtained. The five parameters of each particle’s position
variable are the three key parameters (k1, k2, and k3) of ITCS. According to Equation (21),
the fitness value of the chaotic particle (the objective function value) is calculated.

Step 4: The number of particle iterations is increased and whether the number of
evolutions is even or odd is determined.

(1) When the number of iterations is odd, the GA is introduced to select, cross and mutate
the particles to update the velocity and position of the particles.

(a) After selecting the appropriate initial population, it is necessary to select the
optimal individual among these values. The individual fitness value of the
parameter is calculated. Based on the fitness value, the good individual is
selected to inherit the next generation according to certain rules;

(b) The crossover probability Pc and the mutation probability Pm of the genetic
algorithm can be automatically changed with individual fitness value. The
selected cross mutation probability is adaptively adjusted as follows:

Pc =

{
pc1 −

( f− favg)(pc1−pc2)
fmax− favg

, f ≥ favg

pc1, f < favg
(25)

Pm =

{
pm1 −

( f ∗− favg)(pm1−pm2)
fmax− favg

, f ∗ ≥ favg

pm1, f ∗ < favg
(26)

where fmax is the maximum fitness value in the population. favg is the mean
fitness value; f and f* are the fitness value of the larger individual and the
fitness value of the mutant individual in the selected two crossover individuals,
respectively. pc1 and pc2 were the maximum and minimum values of cross
probability cues, and pm1 and pm2 were the maximum and minimum values of
mutation probability cues.

(2) When the number of iterations is even, the CPSO is introduced to update the velocity
and position of the particles.

(a) Let zi = (zi1, zi2, · · · , zid)
T is the d-dimensional vector of the ith particle. vi =

(vi1, vi2, · · · , vid)
T is the flight speed of the ith particle. pio = (pio1, pio2, · · · , piod)

T

is the optimal position of the ith particle. pgo = (pgo1, pgo2, · · · , pgod)
T is the

optimal location for the entire particle swarm search. Particle optimal position
pio and particle global optimal position pgo are updated: If the particle fitness
is better than the individual extreme value pio, the new position is set to the
particle optimal position pio; if the particle fitness is better than the global
extremum pgo, then the new position is set to the particle global optimal
position pgo. According to Equations (27) and (28), the velocity and position of
particles are updated, respectively.

vk+1
id = wvk

id + c1r(pik
o − zk

id) + c2r(pgk
o − zk

id) (27)

zk+1
id = zk

id + zk+1
id (28)
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where c1 and c2 are acceleration factor; r1 and r2 are random numbers between
[0, 1]; w is the inertia factor.

(b) Chaos optimization is carried out for the optimal position. The optimal
position is mapped to the domain of the Logistic equation [0, 1] by using
the equation yi = (pgoi − ai)/(bi − ai)(i = 1,2,...,d). The chaotic variable
sequences y(n)i (n = 1, 2, · · · ) are iteratively generated by using the Logis-
tic equation, and is returned to the original solution space by inverse map-
ping pgoi

(n) = ai + (bi − ai)y
(n)
i . The following formula can be obtained

pgo
(n) = (pgo1

(n), pgo2
(n), · · · , pgod

(n)), (n = 1, 2, · · · ), where [ai, bi] is the feasi-
ble domain of the i-dimensional independent variable. In the original solution
space, the fitness of each feasible solution pgoi

(n)(n = 1, 2, · · · ) experienced
by the chaotic variable is calculated, and the best feasible solution is obtained,
thus the position of any particle in the current particle swarm is replaced.

Step 5: According to the swarm assemble of particles in the process of searching the
optimal solution, if the aggregation degree of particles exceeds a certain threshold, a certain
number of particles is mutated according to equation zi = pio × (1 + 0.5µ),in which µ is a
random vector obeying (0, 1) normal distribution.

Step 6: The fitness value is determined again. Particle optimal position pio and particle
global optimal position pgo are determined again.

Step 7: Identifying whether the number of iterations meets the requirements is deter-
mined; if so, turn to Step 7; otherwise, turn to Step 4.

Step 8: The optimal value of the three key parameters (k1, k2, and k3) is obtained,
respectively.

5. Results and Analysis

Due to the high cost and the long experiment period of sea trials, a hardware-in-loop
experimental system is used for experiments in this study. The system can simulate the
change of seawater pressure with depth in real time when the DSIB is in operation and
verify the effectiveness and stability of the depth-keeping control method. Thus, it provides
a reliable reference for sea trials. Because the DSIB was deployed in two positions of the
South China Sea (18.35◦ N, 114.35◦ E) in July 2018 (Figure 8). During the hardware-in-
the-loop system experiments, the deployed sea area values of the depth, conductivity
and temperature were further used to calculate the seawater density. The depth rate is
used to evaluate the operating speed of the DSIB at the initial moment. In this paper, the
average operating speed of DSIB system at the initial moment is about 0.5 m/s during the
floating and submerging processes. In order to fully evaluate the control performance of
the proposed QGA–ITCS and GACPSO–ITCS depth controller for the DSIB in the South
China Sea, the simulation analysis and hardware-in-the-loop system experimental platform
test are divided into shallow water area and deep water area with the depth of 2000 m as
the demarcation point.
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The non-dynamic parameters of the DSIB for simulation were shown in Table 6.
In order to compare the performance of QGA and GACPSO in searching the optimal
parameters of ITCS depth controller, the same initial parameters were set as follows:
Population size = 40; Generation times = 100.

Table 6. Comparison of main simulation results in the ascent and descent processes.

Direction
of

Motion

Depth-
Control
Strategy

Controller
Parameters

Setup

Mean Depth
Steady-State Error

(m)

Settling
Time

(s)

Ascent
process

PID kp = 260, ki = 80, kd = 50 3.5 243
ITCS k1 = 200, k2 = 6, k3 = 10 2.7 225

QGA–ITCS k1 = 183.212, k2 = 12.079, k3 = 25.167 2.4 214

GACPSO–ITCS k1 = 156.856, k2 = 5.397,
k3 = 16.351 1.9 206

Descent
process

PID kp = 8, ki = 1.5, kd = 30 3.3 262
ITCS k1 = 180, k2 = 8, k3 = 20 2.5 236

QGA–ITCS k1 = 156.856, k2 = 5.397,
k3 = 16.351 2.1 227

GACPSO–ITCS k1 = 118.037, k2 = 7.247,
k3 = 18.521 1.8 218

The same initial observation gain parameters of ITCS were set as follows: g1 = 2, and
g2 = 18.

For the QGA–ITCS depth controller, the convergent effect of the ITCS parameters were
optimized by the QGA method in Figure 9. The desirable parameters were set as follows:

(1) QGA parameters: The binary length of each variable = 20;
(2) Optimized ITCS parameters:
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In ascent process: k1 = 183.212, k2 = 12.079, and k3 = 25.167.
In descent process: k1 = 156.856, k2 = 5.397, and k3 = 16.351.
For the GACPSO–ITCS depth controller, the convergent effect of the optimized ITCS

parameters by the GACPSO method was shown in Figure 10. The desirable parameters
were set as follows:

(1) GACPSO parameters: Acceleration factor c1 = 2, c2 = 2; Inertia factor w = 0.6.
(2) Optimized ITCS parameters:

In ascent process: k1 = 157.322, k2 = 18.765, and k3 = 35.252.
In descent process: k1 = 118.037, k2 = 7.247, and k3 = 18.521.
Relevant simulations have been conducted to validate the proposed depth-control

method compared to that of a standard ITCS controller. For the ITCS depth controller, the
desirable parameters were as follows:
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In ascent process: k1 = 200, k2 = 6, and k3 = 10.
In descent process: k1 = 180, k2 = 8, and k3 = 20.
As can been seen from Figure 11, simulations are performed using the QGA and

GACPSO to compare the convergence characteristics. With the same environment and
conditions, it can be easily found that the convergence tendency of GACPSO is faster
than the QGA. Meanwhile, GACPSO can also obtain more accuracy or better fitness value
than QGA in searching the optimal parameters of ITCS depth controller. In other words,
GAGAC–PSO has better convergence characteristic in searching the optimal parameters of
the ITCS depth controller.
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5.1. Simulation Results and Analysis

In order to further verify the control effect of the designed depth controller, the control
result is compared with that of the traditional PID depth controller by the simulation.
The mean depth steady-state error and settling time are used as the control performance
evaluation index of depth controller to evaluate the depth-control accuracy of DSIB system
in this paper. The main simulation results of the ascent and descent processes are shown
in Table 6. In the ascent process, the optimized ITCS depth controller enables the DSIB to
reach an appointed depth of 500 m within 230 s, and the mean depth steady-state error
is less than 2.7 m. In the diving process, the optimized ITCS depth controller takes about
240 s to reach an appointed depth of 3200 m, and the mean depth steady-state error is less
than 2.5 m.

Scenario 1: Restriction to above 2000 m.
The simulation scenario of the shallow water area is as follows: assumed that the DSIB

floats at an initial velocity of 0.5 m/s from an underwater depth of 550 m, and hovers at
an appointed depth of 500 m. The simulation results of the depth and the depth error for
the controllers, including PID depth controller, ITCS depth controller, QGA–ITCS, and
GACPSO–ITCS depth controller, are illustrated in Figure 12.
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Figure 12. (a) Depth simulation response curve comparison chart of the ITCS controller after pa-
rameter optimization tuning by QGA and GACPSO method in ascent process; and (b) depth error
simulation response curve comparison chart of the ITCS controller after parameter optimization
tuning by QGA and GACPSO method in ascent process.

As shown in Figure 12, the DSIB is affected by the joint interference of the water resis-
tance and the net buoyancy change during the floating process. Under such circumstances,
the depth-keeping control process of the DSIB at an appointed depth of 550 m is achieved
by the PID depth controller, the ITCS depth controller, QGA–ITCS and GAC–PSO–ITCS
depth controller. The settling time and mean depth steady-state error are used to describe
the control performance index of the depth-keeping control process in this paper. However,
the aforementioned depth-keeping controllers are different in terms of the settling time
and depth steady-state error. In the ascending process, the settling time and mean depth
steady-state error with ITCS controller are 225 s and 2.7 m, respectively, which are less than
those with PID controller. Under the action of ITCS depth controller based on QGA and
GACPSO strategy, the settling time of the aforementioned two depth-keeping controllers is
shortened by 11 s and 19 s compared with that of ITCS depth controller. When the DSIB
system reaches the target depth, the mean depth steady-state error of ITCS depth controller
based on QGA and GACPSO strategy is reduced by 11% and 30%, compared with that of
ITCS depth controller.

Scenario 2: Restriction to depth between 2000 m and 4000 m.
The simulation scenario of the deep water area is as follows: assumed that the DSIB

descends at an initial velocity of 0.5 m/s from an underwater depth of 3150 m, and hovers
at an appointed depth of 3200 m. Figure 13 shows the simulation results of the depth and
the depth error for the PID depth controller, ITCS depth controller, QGA–ITCS and GAC–
CPSO–ITCS depth controller. The results are similar to the diving process. In Figure 13,
we can see that, under the same influence of external interference in the diving process, by
employing the ITCS depth controller compared to the PID depth controller, the settling time
is reduced from 262 s to 236 s and the mean depth steady-state error is reduced from 3.3 m
to 2.5 m. The mean depth steady-state error of the ITCS depth controller based on QGA and
GACPSO strategy is 16% and 28% less than that of the ITCS depth controller, respectively.
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In summary, compared with PID depth controller, the ITCS depth controller and
optimized ITCS depth controller have higher control accuracy and robustness under the
same external disturbance of the ascending and diving process. Besides, the GACPSO–
ITCS depth controller takes about less time to reach the desired depth, which is faster than
the ITCS depth controller and QGA–ITCS depth controller in the ascending and diving
process. The depth steady-state errors are less for the GACPSO–ITCS depth controller than
that for the ITCS depth controller and QGA–ITCS depth controller, which means that the
GACPSO–ITCS depth controller is significantly better than the other two depth controllers.

5.2. Results of the Hardware-in-the-Loop System Experiments

In order to verify the effectiveness and reliability of the designed hover control strategy,
this paper uses the established 0–60 MPa high-pressure environment hardware-in-the-loop
system experimental platform to complete the experimental verification process of the he
proposed depth-keeping optimization controller, as shown in Figure 14. The hardware-
based experiment platform mainly includes hydraulic device, simulation control software,
digital multimeter, and DSIB system.
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The schematic diagram of the structure of the hardware-in-the-loop system experiment
platform is shown in Figure 15. The action of the buoyancy-driven system is controlled
by the main controller of the DSIB system, and the oil volume parameters of the external
bladder is sent to the control software of the computer. The acceleration, velocity and depth
of DSIB system at the next time are calculated by the control software according to the
current depth, seawater temperature, and density data. Then the calculated motion state
of the DSIB system is used as the operation reference. At the same time, the hydraulic
device is controlled by the computer to generate the pressure value required by the current
depth of DSIB system, so that the working process of buoyancy-driven system is consistent
with the real seawater pressure. Relevant information such as specified target depth and
depth-control algorithm and control parameters are input in the computer. According to
the aforementioned input information, the hydraulic device can simulate the current depth
pressure and track the specified target depth pressure. Finally, the specified target depth
pressure tracking curve is processed to obtain the depth-control process curve, and the
digital multimeter is used to measure the voltage and current of the DSIB system power
supply in the aforementioned control process in real time, thereby the energy consumption
of the DSIB system is obtained.

The experimental results of the ascent and descent processes from the hardware-in-
the-loop system are shown in Figures 16 and 17. The same depth error change trend
is illustrated in the experimental and simulation results. The comparison of the main
experimental results in the ascent and descent processes are shown in Table 7. Compared
with the simulation results, the DSIB took more settling time to reach the appointed
depth, and had more mean depth steady-state error in the hardware-in-the-loop system
experiment. In the ascent process or descent process, the mean depth steady-state error
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tended to a small neighborhood near 0 within 450 s, and the mean depth steady-state error
was less than 6 m.
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Table 7. Comparison of main hardware-in-the-loop system experiment results in ascent and descent
process.

Direction
of

Motion

Depth-
Control
Strategy

Controller
Parameters

Setup

Mean Depth
Steady-State Error

(m)

Settling
Time

(s)

Ascent
process

PID kp = 260, ki = 80, kd = 50 5.3 419
ITCS k1 = 200, k2 = 6, k3 = 10 3.8 347

QGA–ITCS k1 = 183.212, k2 = 12.079,
k3 = 25.167 3.1 313

GACPSO–ITCS k1 = 156.856, k2 = 5.397,
k3 = 16.351 2.2 292

Descent
process

PID kp = 8, ki = 1.5, kd = 30 5.8 434
ITCS k1 = 180, k2 = 8, k3 = 20 4.2 356

QGA–ITCS k1 = 156.856, k2 = 5.397,
k3 = 16.351 3.5 331

GACPSO–ITCS k1 = 118.037, k2 = 7.247,
k3 = 18.521 2.5 315

In Table 7, during the ascent process, the PID depth controller makes the DSIB system
reach the appointed depth of 500 m after adjusting 413 s. The mean depth steady-state error
is 5.3 m, and there is still a small oscillation after reaching the appointed depth. Whereas the
ITCS depth controller takes about 347 s to reach an appointed depth of 500 m, and the mean
depth steady-state error is 3.8 m. Furthermore, the ITCS depth controller based on QGA
and GACPSO method reaches the appointed depth of 500 m after adjusting 313 s and 292 s.
Compared with the ITCS depth controller, the mean depth steady-state error is reduced by
18.4% and 42.1%. The control effect of designed depth controller during the descent process
of the DSIB system is similar to that of the ascent process. Compared with the control
results of ITCS depth controller, the depth steady-state error of the ITCS depth controller
based on QGA and GACPSO method is reduced by 16.7% and 40.5%. In summary, under
the same external interference conditions in the ascent and descent processes, the control
effect of the designed QGA–ITCS and GACPSO–ITCS depth controller are obviously better
than that of PID depth controller in terms of settling time and mean depth steady-state
error. The feasibility and effectiveness of the designed ITCS depth controller based on QGA
and GACPSO method are verified. The parameters obtained by using GACPSO method to
optimize the ITCS depth controller have the smallest mean depth steady-state error during
the ascending and diving process, and its control accuracy is higher.

6. Conclusions

In this paper, in order to establish a more accurate dynamic model for DSIB, the
hydrodynamic properties of the DSIB were estimated by using the turbulence models of
SST k-omega. Thus, the analysis of the DSIB’s drag coefficients, pressure contours, and
velocity vectors were obtained. Based on the analyzed hydrodynamic coefficients of the
CFD simulation, the dynamic model of the DSIB was established. To reduce effects of the
aforementioned external disturbance factors on hovering motion behaviors of the DSIB, the
NDO was used to suppress and compensate the error caused by the external disturbance.
The ITCS was used to drive the state of the depth-keeping control system to force the depth
error to an arbitrarily small neighborhood of zero within a specified time limit. In order to
obtain the optimal ITCS depth-controller parameters combination and improve the quality
of dynamic adjustment, the ITCS parameters were optimized by using QGA strategy. To
solve the problems of high space consumption and further improve the low speed and
accuracy of global search in the parameter optimization process of the single QGA algo-
rithm, an effective optimization hybrid strategy based on CPSO and GA was proposed to
optimize ITCS depth-control parameters by the global optimums only. The simulations
and hardware-in-the-loop system experimental results indicated that the GACPSO–ITCS
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has better depth positioning precision, depth-control system response speed and con-
vergence stability compared with ITCS and QGA–ITCS depth controller. The designed
depth-keeping control strategy provides some reference for ITCS parameters optimization
of depth-control process. The proposed depth controller can ensure a high-precision data
acquisition on the ocean environment observation of a target depth. Due to the limitation
of time and test conditions, the hydrodynamic coefficients of the DSIB system are mainly
obtained by CFD simulation. In order to further verify the feasibility of the hydrodynamic
coefficients calculated from CFD, future research work can compare the obtained hydrody-
namic coefficients through the analytical relations and tank drag experiments, respectively.
Although the hardware-in-the-loop system experiments analysis shows that the depth
positioning can be achieved by the designed depth controller with high accuracy and fast
response, further work is necessary to test the full applicability of the designed depth
controller and conduct the at-sea experiments in realistic engineering conditions.
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