
����������
�������

Citation: Gao, H.; Lee, M.; Yu, G.;

Zhou, Z. A Graph Neural Network

Based Decentralized Learning

Scheme. Sensors 2022, 22, 1030.

https://doi.org/10.3390/s22031030

Academic Editor: Hsiao-Chun Wu

Received: 14 December 2021

Accepted: 26 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Graph Neural Network Based Decentralized
Learning Scheme
Huiguo Gao 1,2 , Mengyuan Lee 1,2 , Guanding Yu 1,2* and Zhaolin Zhou 3

1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
huiguogao@zju.edu.cn (H.G.); mengyuan_lee@zju.edu.cn (M.L.)

2 Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking (IPCAN),
Hangzhou 310027, China

3 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China;
3170103159@zju.edu.cn

* Correspondence: yuguanding@zju.edu.cn

Abstract: As an emerging paradigm considering data privacy and transmission efficiency, decen-
tralized learning aims to acquire a global model using the training data distributed over many user
devices. It is a challenging problem since link loss, partial device participation, and non-independent
and identically distributed (non-iid) data distribution would all deteriorate the performance of decen-
tralized learning algorithms. Existing work may restrict to linear models or show poor performance
over non-iid data. Therefore, in this paper, we propose a decentralized learning scheme based on
distributed parallel stochastic gradient descent (DPSGD) and graph neural network (GNN) to deal
with the above challenges. Specifically, each user device participating in the learning task utilizes
local training data to compute local stochastic gradients and updates its own local model. Then, each
device utilizes the GNN model and exchanges the model parameters with its neighbors to reach the
average of resultant global models. The iteration repeats until the algorithm converges. Extensive
simulation results over both iid and non-iid data validate the algorithm’s convergence to near optimal
results and robustness to both link loss and partial device participation.

Keywords: decentralized learning; graph neural network; average consensus

1. Introduction

With the immense growth of data and the exponential increase in computation power,
great attention has been given to the machine learning techniques, which has superior
performance for classification, regression, anomaly detection, denoising, and translation
tasks. However, the issue of long runtime for training the models on a single machine be-
comes the main bottleneck for large-scale applications. This motivates us to use distributed
systems because of their increasing parallel computation power.

1.1. Literature Review

There are two ways to realize the distributed machine learning, centralized and
decentralized. For the centralized way, there is always a central coordinator to help
distributed devices collaboratively train a machine learning model. For example, each
device with the local dataset holds the initial model and computes local gradients in
centralized parallel stochastic gradient descent (CPSGD) algorithms [1–3]. It then uploads
the gradient to the central server. The central server aggregates the gradients and sends the
average value to each device. Finally, each device performs updates based on the received
gradients. This method achieves the linear speedup compared to operating on a single
machine. Recently, some popular centralized learning frameworks [4,5] are proposed,
which further take the security into consideration.

However, the above scheme requires all devices in the network to communicate with
the central server concurrently, which would induce severe traffic jam. To overcome this

Sensors 2022, 22, 1030. https://doi.org/10.3390/s22031030 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2191-4912
https://orcid.org/0000-0001-7686-0507
https://orcid.org/0000-0001-7296-1490
https://doi.org/10.3390/s22031030
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031030?type=check_update&version=2

Sensors 2022, 22, 1030 2 of 18

defect, decentralized learning aims to obtain a global machine learning model by minimiz-
ing the summation of local loss functions without the central coordinator. In decentralized
learning, each device needs to exchange information with their neighbors, which avoids
possible traffic jam especially on networks with limited bandwidth. Recently, several
decentralized algorithms have been proposed in the literature, and we summarize them
in Table 1. Among them, distributed gradient descent (DGD) [6–8] is one of the most
efficient algorithms. When the loss function is strongly convex, the algorithm has the
sublinear convergence rate to the optimal results with diminishing step sizes. However,
if the algorithm adopts the constant step size, it cannot always converge to the optimal
results. To guarantee convergence to the optimum with constant step sizes, the authors
in [9] utilize the gradient tracking technique and propose a decentralized exact first-order
algorithm (EXTRA). The DIGing algorithm in [10] also utilizes the gradient tracking tech-
niques but considers more complex situations like the variant network scenario as well as
both directed and undirected graphs. When the graph is time-invariant and undirected,
the algorithm is equivalent to the EXTRA algorithm. For the decomposition techniques
like decentralized ADMM (DADMM), they decompose the initial problem into several
sub-problems and updates the optimization variables by solving the sub-problems step by
step. The DADMM algorithm establishes its linear convergence for strongly convex local
objectives [11]. However, due to the fixed update rule, DADMM cannot flexibly accommo-
date the communication-computation tradeoff and it requires additional hyperparameters
to tune. The authors in [12] propose COLA based on its centralized form, CoCoA, to over-
come these drawbacks but it can only be applied to linear models. Moreover, it guarantees
linear convergence rates for strongly convex loss functions and sublinear convergence rates
for convex loss functions.

Table 1. Comparisons Between Different Decentralized Learning Algorithms.

Reference Methods Description Advantages Disadvantages

[6–8] DGD Update the optimization variables
based on full gradients.

For strongly convex loss
function,

it converges to the optimum
with diminishing step sizes.

It cannot guarantee the
convergence to the optimum

with constant step size
and is time-consuming
based on full gradients.

[9] EXTRA
Use the gradient tracking

technique for invariant network
scenario and undirected graphs.

They guarantee the
convergence to

the optimum with
constant step size for

strongly convex loss function.

They consume a lot of
time based on full

gradients.
[10] DIGing

Use the gradient tracking
technique considering variant

network
scenario and directed graphs.

[11] DADMM Decompose the initial problem
into several sub-problems.

It establishes the linear
convergence for strongly
convex local objectives.

1. It cannot flexibly
accommodate the
communication-

computation tradeoff
2. It requires additional

hyperparameters to tune.

Sensors 2022, 22, 1030 3 of 18

Table 1. Cont.

Reference Methods Description Advantages Disadvantages

[12] COLA Use techniques from primal-dual
optimization based on CoCoA.

It achieves
communication efficiency

while maintaining resilient to
the changes in the data
and network topology.

It can only be
applied to linear models.

[13–17] DPSGD

Train the models based
on stochastic gradients and
then uses doubly stochastic

mixing matrix to reach
consensus.

It can efficiently train
most machine learning

models
based on stochastic gradients.

It only aggregates the
model in the neighborhood

instead of the global network.
It would cause poor model

performance under the
non-iid setting.

However, the above-mentioned algorithms based on full gradient descents such
as DGD, EXTRA, and DIGing generally consume unbearable time. In addition, some
algorithms like DADMM rely on the exact solution of subproblems or fine-tuning of
hyperparameters, and others like COLA have limits on the model type. To overcome the
above shortcomings, we focus on the parallel SGD scheme that can efficiently train most
machine learning models based on the stochastic gradient. There are many distributed
parallel SGD (DPSGD) algorithms in which each user device computes stochastic gradients
locally and averages model parameters with its neighbors. Some [13] assumed that user
devices in the network could perform computation and communication at the same time
but some assumed not [14–17]. If considering a device can compute and communicate
at the same time, one must take into account resource allocation for computation and
communication of the device. In this paper, for simplicity, we consider the algorithm in
which each device cannot perform computation and communication simultaneously.

1.2. Main Contribution

The main problem of DPSGD lies in that it can only aggregate the model information in
the neighborhood instead of the global network. Under the non-iid setting, it would suffer
from long iteration time when the training data features of neighborhood cannot reflect
the data features of global network. Thus, we should average all model parameters in the
global network, which is known as average consensus in literature [18]. Meanwhile, graph
neural networks (GNNs) have become the research hotspot recently and have been utilized
in the communication area to achieve better machine learning performance [19–21]. They
are novel neural networks for processing graph data over the non-Euclidean space. GNN
is motivated by convolutional neural network (CNN) and graph embedding. To extend
the generalization of CNNs to graphs, GNNs are proposed to aggregate information from
generalized graph structures and learn the embedding vector of each node as output by
exchanging information with neighbors in a decentralized manner. As for the considered
decentralized learning system, the network composed of user devices can be modeled as
a graph. Since GNNs have shown superior performance on graph data and they can be
implemented in a decentralized manner, it is natural to combine GNNs with decentral-
ized learning. Besides, GNNs are scalable to the graph size and topology, which show
great scalability to unseen graphs and are robust to the dynamic distributed environment.
Therefore, in this paper, we propose to use GNN to replace the original model aggregation
in DPSGD, which is the most intractable part in the DPSGD. In this way, we develop a
new decentralized learning scheme. Specifically, a GNN model is first trained for average
consensus and kept at each device. After that, each device updates local models based
on local datasets and exchanges information with each other. Then, each device uses the
trained GNN models and its neighbor’s model information to get the global average model.
It avoids the congestion to the central server since each device only communicates with
their neighbors. The process repeats until the algorithm converges. Our main contribution

Sensors 2022, 22, 1030 4 of 18

in this paper is to propose a new decentralized learning scheme. It uses GNN aggregation
for training generalized models in networks that can be modeled as undirected or balanced
directed graphs. The novelty of our algorithm lies in that we utilize the GNNs in decen-
tralized learning scheme and it achieves excellent performance compared against various
existing methods. Specifically, our algorithm offers:
• Convergence: The simulation results show that the proposed algorithm can converge

to near-optimum under both iid and non-iid setting. Particularly, our algorithm
outperforms DPSGD on the time-invariant topology under the non-iid setting.

• Computation Efficiency: By averaging its model within global connected network, each
user device reduces computational costs when achieving the same performance as
DPSGD under the non-iid setting. By exploiting decentralized learning using SGD,
the proposed algorithm ensures fast convergence compared with full gradient descent
based algorithms.

• Robustness: We experimentally validate that the proposed algorithm is resilient to link
loss and partial device participation.

1.3. Organization

We organize the rest of paper as follows. We introduce the system model and the
decentralized learning tasks in Section 2. Next, we present the details of GNN aggregation
based decentralized learning scheme in Section 3. Since GNN aggregation is used in our
decentralized learning scheme and would affect its performance, we verify the effectiveness
of GNN aggregation that aims to reach average consensus on random geometric graphs
(RGGs) [22] in Section 4. Then, we show the performance of the proposed algorithm where
GNN aggregation is embedded in Section 5. Finally, we conclude the whole paper in
Section 6. The abbreviations used in the article are listed in Table 2.

Table 2. Abbreviations.

Abbreviation Description

DPSGD Distributed parallel stochastic gradient descent

CPSGD Centralized parallel stochastic gradient descent

SGD Stochastic gradient descent

GNN Gragh neural network

RGGs Random geometric graphs

iid Independent and identically distributed

non-iid Non-independent and identically distributed

MSE Mean squared error

UAV Unmanned aerial vehicle

2. Decentralized Learning Tasks over Network
2.1. System Model

We consider a wireless system where K mobile devices collaboratively train a machine
learning model denoted as w to support a specific application, e.g., image classification
or natural language processing, as shown in Figure 1. We denote the mobile devices
as the set K = {1, 2, . . . , K} and each device k holds a set of training data denoted as
Dk = {(x1

k , y1
k), (x

2
k , y2

k), . . . , (xnk
k , ynk

k)}, where xi
k means the i-th training data sample, yi

k
represents the corresponding ground-truth label, and nk is the size of the training set Dk.
We let n = ∑K

k=1 nk denote the total number of training samples over all devices in the
network. The global machine learning model w ∈ RD is trained over all the distributed

Sensors 2022, 22, 1030 5 of 18

data and each device has its own current model. Then, the total model parameters in the
system can be formulated as

W , [w1, w2, . . . , wK]
> , [w1, w2, . . . , wD] ∈ RK×D, (1)

where wk ∈ RD, each row of W, represents the model parameters of device k and wd ∈ RK,
each column of W, corresponds to all devices’ model parameters at the dimension d.
To protect the data privacy, devices exchange their model information instead of original
training data over the wireless channel. We assume that each device can communicate
with others within certain distance and the transmission is perfect without any errors in
received signals. This can be guaranteed by robust channel coding techniques, which has
been assumed in many other literatures, such as [23,24]. All the devices in the network
proceed a synchronous update scheme. For machine learning operating on a single node,
model training is to minimize the loss function on all the local training data. Therefore,
the overall training objective for decentralized learning can be formulated as

min
w∈RD

f (w) =
1
n

K

∑
k=1

nkFk(w), (2)

where Fk(w) = 1
nk

∑nk
i=1 fi(w, xi

k, yi
k) denotes the local loss function of device k on its lo-

cal dataset Dk. Here, fi(w, xi
k, yi

k) is the sample-wise loss function on sample (xi
k, yi

k)
with model parameter w. If the training samples are distributed over the user devices
uniformly at random, the expectation over the set of examples is equal to f (w), i.e,
E(Fk(w)) = f (w),∀k and this is the independent and identically distributed (iid) as-
sumption. Then, Problem (2) can be formulated into

min
w∈RD

f (w) =
1
K

K

∑
k=1

Fk(w). (3)

If the equation does not hold, we refer to it as the non-iid setting.

Data

Model

Model

Data Model

Data

Model

Data

Model

Data

Figure 1. The system model.

2.2. Decentralized Learning Model

Problem (2) is a typical decentralized learning problem. There are many decentralized
learning algorithms that have been proposed as described in Section 1 to solve this problem.
Here, we focus on the parallel SGD scheme where devices perform SGD locally and then
aggregate the model parameters. It can efficiently handle most machine learning models
based on stochastic gradients. Due to the absence of central coordinator, DPSGD can only
aggregate the model information in the neighborhood instead of the global network. Thus,
we want to do average consensus across the network to help devices acquire the global

Sensors 2022, 22, 1030 6 of 18

information at the absence of central coordinator. In the network formed by the agents,
“consensus” means that all agents reach the same state. The “consensus algorithm” can
be correspondingly defined as the interaction rule of exchanging information between
nodes and their neighbors [18]. The consensus problem is very important in coordination
tasks of robots or unmanned aerial vehicle (UAV), information fusion in sensor networks,
and federated learning [25]. Among numerous linear or nonlinear consensus problems,
distributed averaging consensus may be the most common consensus problem over a
network. The goal of average consensus is to let each node reach the same average value of
all nodes. It can be done in many ways including flooding, distributed linear iterations [26],
deep neural networks [27], graph filters [28], and graph convolutional neural networks [29].
In this paper, we leverage the GNN [29] to reach average consensus on global model
parameters for the following reasons. First, as for the decentralized learning setting,
the network composed of devices can be modeled as a graph with the set of nodes and
each link between devices can be seen as an edge. As mentioned before, GNNs have great
potential for processing graph data and therefore is suitable to the system. Next, GNNs
can be implemented in a decentralized way, which fits the decentralized setting with no
central coordinator. Moreover, GNNs are scalable to the size of graph, that is, well-trained
GNNs can take the graph with any number of nodes as input which adapts the dynamic
distributed environment. Last but not least, GNNs do not need high-precision matrix
decomposition to get the parameters, as compared to the aforementioned graph filters [28].
They have shown great scalability to unseen graphs and are robust to the link loss [29].

Specifically, our proposed algorithm is summarized in Algorithm 1. At the beginning
of iteration k, each node i samples batches of data instances ξk,i from its local dataset ran-
domly. Then, node i computes the local stochastic gradient ∇Fi(xk,i; ξk,i) and updates local
models with the diminishing step size αk. The step size at the k-th iteration αk is obtained
based on the given step size α considering the mean and variance of the past gradients [30].
Finally, each node utilizes a well-trained GNN model and exchanges information with
their neighbors to reach the average of resultant global models. The iteration repeats until
the algorithm converges. In the following section, we will introduce how to train a GNN
model for the weight aggregation, i.e., Step 7 in Algorithm 1.

Algorithm 1 A GNN Based Decentralized Learning Scheme

1: Input: initial x0,i = x0, step size α, trained graph neural network, eigenvalue λ and the
number of iterations K.

2: for k = 0, 1, 2, . . . , K− 1 do
3: Sample ξk,i from the local dataset of the i-th node randomly.
4: Compute the local stochastic gradient ∇Fi(xk,i; ξk,i), ∀i for all nodes.
5: Compute αk based on α, the mean and variance of the past gradients.
6: Update the local optimization variable xk+ 1

2 ,i ← xk,i − αk∇Fi(xk,i; ξk,i).

7: Compute the average optimization variables xk+1,i =
1
N ∑N−1

i=0 xk+ 1
2 ,i using trained

GNN’s weights and λ (see Algorithm 2).
8: end for

3. Gnn Aggregation Based Average Consensus

As mentioned in Section 2, we want to embed GNN aggregation into the parallel SGD
scheme to develop a new decentralized learning scheme. In this section, we begin with the
introduction to the GNN structure. Then, we model the network to a graph and explain
the details of the GNN structure to reach average consensus. Moreover, we illustrate its
training process and finally illustrate the decentralized GNN aggregation.

3.1. Overview of GNN

We consider a graph G(V , E), where V is the set of N nodes, i.e., |V| = N and E
is the set of M edges, i.e., |E | = M. GNN aims to learn a state embedding hv ∈ Rs,

Sensors 2022, 22, 1030 7 of 18

an s-dimension vector, for each node v. Then hv ∈ Rs is utilized to produce an output ov
for each node. To achieve the above goals, GNNs take node features, edge information,
and matrix representations of the graph as input. GNNs are often hierarchical models with
multiple layers. In each layer, each node shares the same transition function f and the same
output function g. Given f and g, hv ∈ Rs and ov at the l-th layer can be defined as

hl
v = f l

(
xv, xco[v], hl−1

ne[v], xne[v]

)
, (4)

ol
v = gl

(
hl

v, xv

)
, (5)

where xv, xco[v], xne[v] are the features of node v, edges connected to node v, and node
v’s neighbors, respectively; hl−1

ne[v] is the embeddings held by neighbors of node v at the
(l − 1)-th layer. From the above equations, we can conclude that each node only needs to
utilize its own features and its neighbors’ information to get the predicted output, which
explains why GNN can be implemented in a decentralized way.

3.2. Gnn for Consensus

To utilize GNN for consensus, we first need to explore the graph representation for
the wireless system in Figure 1. In the aforementioned communication network, each
user device can be seen as a node and each link can be seen as an undirected edge. Two
nodes are connected by an edge if they can communicate with each other. Each de-
vice’s model parameters can be seen as its features. We denote the feature of node i as
wi = [w1

i , w2
i , . . . , wD

i] ∈ RD. The corresponding graph representation is shown in Figure 2.

Graph Representation

Wireless Communication System Corresponding Graph

Wireless Link

Figure 2. Graph representation for the considered wireless communication system shown in Figure 1.

However, we cannot take wi for node i as the input graph signals directly since it
would lead to an oversized GNN model and therefore bring difficulties to training when
the number of features D increases. As we can compute the consensus version of features
for each dimension successively, we consider that node i chooses wd

i as its input graph
signal, where wd

i denotes the initial node features at the dimension d. We denote all nodes’
features at the dimension d as wd = [wd

1, wd
2, . . . , wd

N] ∈ RN . For the whole graph, we
consider wd ∈ RN as the input graph signal and the consensus version wd = wd1 as
the desired output, where wd denotes the average of input features at dimension d and
1 represents the vector whose all coefficients are 1. Here, consensus can be regarded as
applying GNN to transfer the input graph signal into constant output graph signals. We
consider a GNN composed of L graph convolutional layers in series with a fully-connected
layer. The graph convolution is defined as a linear-and-sum operation [31]. Given a set of
parameters θ = [θ0, . . . , θK]

>, the graph convolution is formulated as

Θ(S)win =
K

∑
k=0

θkSkwin, (6)

Sensors 2022, 22, 1030 8 of 18

where S denotes the graph shift operator (GSO) matrix and win denotes the input graph
signals. The GSO matrix indicates the connection between nodes. For each entry [S]ij = sij,
we have sij 6= 0, if (i, j) ∈ E or i = j. We can use the adjacency matrix A, the Laplacian
matrix L, and their normalized or translated forms to represent S. Here, we utilize the nor-
malized form of the adjacency matrix as the GSO matrix, i.e., S = A/λmax(A). The graph
convolution filters the input graph signal win with an FIR graph filter Θ(S). We will
compare the performance of FIR graph filter and GNN later in Section 4. As for GNN, each
graph convolutional layer consists of several graph filters and a nonlinear function. At the

l-th convolutional layer, the GNN takes Fl−1 input features
{

wg
l−1

}Fl−1

g=1
and produces Fl

output features
{

w f
l

}Fl

f=1
. Each input feature wg

l−1 is considered as a graph signal and

processed by a bunch of graph filters
{

Θ
f g
l

}
f
. The filter outputs are summarized over the

input index g to produce the aggregated f -th intermediate feature

z f
l =

Fl

∑
g=1

Θ
f g
l (S)wg

l−1 =
F

∑
g=1

K

∑
k=0

θ
f g
kl Skwg

l−1. (7)

Then it passes the activation function σ(·) and outputs the f -th feature of the l-th
layer, as

w f
l = σ(z f

l), (8)

where the activation function σ(·) is taken as the ReLU function in this paper.
Equations (7) and (8) denote the process of each node generating a state embedding
as shown in (4). After passing through all L convolutional layers, we denote the output
of the L-th convolutional layer as wL = [w1

L, w2
L, . . . , wFL

L] ∈ RN×FL . Then, the L-th layer
convolutional features are passing through the fully-connected layer to get the final output

wout = wLθFC, (9)

where θFC = [θ1
FC, θ2

FC, . . . , θFL
FC]

T is the FL × 1 vector of the fully-connected layer. Here,
Equation (9) denotes the process of each node generating the final output as shown in (5).
In this paper, we consider the number of convolutional layers L = 2 and the number of
features F1 = F2 = F = 32.

3.3. Training Process

We sample the data generated by running CPSGD algorithms and calculate the aver-
age output to form a training pair. The reasons are as follows. First, it is hard to generate
the same distribution of training data as the data needed to aggregate when implementa-
tion, while the data generated by running CPSGD algorithms share similar distribution.
In addition, considering the situation that decentralized learning serves as the substitute
of centralized learning, it is natural to utilize the data generated by the latter to train the
former and the data are easy to obtain. The communication cost during the training process
is mainly caused by the model update depending on different wireless scenarios [32,33].
Then we use the mean squared error (MSE) loss as the loss function to train the GNN in a
supervised way. Depending on the sampling location of data, sampling strategies can be
divided into three categories.

• Head-sampling: Sample the data from the first 10% epochs by running CPSGD.
• Tail-sampling: Sample the data from the end 10% epochs by running CPSGD.
• Uniform-sampling: Sample the data at equivalent round intervals and the total number

of data is equal to 10%.

We will verify the performance of three different sampling strategies in Section 5.

Sensors 2022, 22, 1030 9 of 18

3.4. Decentralized GNN Aggregation

With the above training process, a GNN aggregation model can be trained and kept in
each device. In this part, we introduce how to implement the well-trained GNN aggregation
in a decentralized manner. The detailed process is summarized as Algorithm 2. Specifically,
after obtaining the well-trained GNN model and the max eigenvalue λ of the current
typology’s adjacency matrix that can also be acquired by decentralized algorithms [34], we
distribute the GNN’s all parameters and λ to each node. Take node i as an example. It gets
all convolution coefficients θ

f ,g
k,l , ∀k ∈ K, ∀l ∈ L, ∀ f ∈ Fl , ∀g ∈ Fl−1, from L convolutional

layers and θFC from the fully connected layer. Here, θ
f ,g
k,l means the weight over the input

index g to the f -th intermediate feature for the k-th recursion of the l-th convolutional layer.
In Algorithm 2, w f ,d

i,l means the f -th feature of node i at the l-th convolutional layer to get
the initial feature at dimension d. Then, each node utilizes these parameters to iterate based
on both models of its own and its neighbors. Remind that there is a synchronous protocol
to guarantee all nodes proceed the same loop. Finally, each node acquires the average
of resultant models in the whole network. To better demonstrate the architecture of the
proposed decentralized learning scheme, we use the graph representation as shown in
Figure 3. The communication and computation complexities of the proposed decentralized
learning scheme are O(MK) and O(F2LMK) + O(NF) + O(D/ε), respectively, where ε is
the error measured by loss functions.

Algorithm 2 Decentralized GNN Aggregation on RGG

1: Input: the dimension of node’s initial feature D, the number of convolutional layers
L, filter order K, the number of features of the l-th convolutional layer Fl (F0 is the
input dimension), the input feature of each node wi, weight θ

f ,g
k,l of convolutional layers,

weight vector θFC of the fully connected layer, eigenvalue λ.
2: for all nodes i ∈ N in parallel do
3: for d = 1 to D do
4: for l = 1 to L do
5: for f = 1 to Fl−1 do
6: t f ,0

i,l = w f ,d
i,l−1

7: for k = 1 to K do
8: t f ,k

i,l = ∑
j∈Ni

1
λ

t f ,k−1
j,l

9: end for
10: end for
11: for f = 1 to Fl do

12: z f
i,l =

K
∑

k=0

Fl−1

∑
g=1

θ
f ,g
k,l tg,k

i,l

13: w f ,d
i,l = σ

(
z f

i,l

)
14: end for
15: end for
16: wd

i,L := [w1,d
i,L , w2,d

i,L , . . . , wFL ,d
i,L]

17: wd
i = wd

i,LθFC
18: end for
19: wi := [w1

i , w2
i , . . . , wD

i]
20: end for

Sensors 2022, 22, 1030 10 of 18

local
model
update

A1: Step 3?6

aggregation
A1: Step 7

d-th
model

parameter

D-th
model

parameter

? ?

1-st model parameter

l-th
loop

L-th
loop

? ?

1-st loop

 feature 1

neighborhood
exchange

sum &
divide ?w

Loop K times

store
the
data

data
buffer

feature 2

? ?

feature F0

sum &
activate

using GNN weights
A2: Step12 & 13

concat

Multiply
?FC

data buffer

A2:
Step17

A2: Step16

concatenate A2: Step19

A2: Step 8

Figure 3. The architecture of proposed decentralized learning scheme.

4. Performance Evaluation on Average Consensus

In this section, we show simulation results to test the performance of GNN based
average consensus on RGGs and validate the performance advantages compared with the
FIR graph filters.

4.1. Simulation Settings

The simulation settings are given as follows. We employ the same GNN structure
as [29], which is composed of two graph convolution layers and a fully connected layer.
Specifically, we choose the normalized form of the adjacency matrix as the GSO matrix S in
Equation (7) and vary the filter order to see the performance difference. We set each graph
convolution layer’s feature as 32 and choose the activation function as ReLU function.
Besides, the fully connected layer has 32 units. As for the dataset, we use our generated
data to train and test the models. First, we generate the graph samples, which contains
2500 training samples, 250 validation samples and 250 test samples. To generate each
graph sample, we distribute 100 nodes randomly in a square area with side 100 m and
connect two nodes with an undirected edge if their distance is smaller than 20 m. Then,
we generate each node’s feature from the standard normal distribution and calculate their
average value as the label for each graph sample. After that, we process the test set by
randomly removing the edge or node with some certain probabilities. As for the training
parameters, we choose Adam optimizer with all default parameters recommended by [30],
set the batch size as 100 and run 400 epochs to minimize the MSELoss between the output
and the target value. Finally, we get the model that performs the best on the validation set

Sensors 2022, 22, 1030 11 of 18

and test the performance on the processed test set. For comparison, the FIR graph filter
used for average consensus is also implemented.

4.2. Performance of GNN with Different Filter Orders

We test the performance of GNN with the filter order varying in [1, 10, 20, 30, 40]
and the probability of edge removal varying within the interval [0, 0.125]. The results are
summarized in Figure 4. From the figure, we can see that the MSELoss of GNN increases
slightly as the probability of edge removal increases. It shows the robustness of GNN
doing average consensus when some nodes lose the connection with their neighbors, since
GNN has learned to capture the structure of graph to reach average consensus through
the training process. Besides, when the probability of edge removal is fixed, the MSELoss
decreases first and then increases as the filter order increases. The reasons are as follows.
The average consensus can be regarded as a low-pass filter in the frequency domain while
we need high orders to design such a perfect low-pass filter. Models’ performance would
be degraded significantly under the low filter order setting no matter how the limited
parameters change. From the perspective of message passing, the filter order K indicates
that each node can utilize at most K-hop neighbors’ information. It is difficult for each
node to get the exact global average value over large sparse graphs while the filter order is
relatively small. On the other hand, when the filter order increases, the tunable parameters
increase but it cannot always guarantee the better performance since more difficulties
would be brought at the same time. Note that when the filter order is 20, GNN performs
the best since it is a proper value regarding the graph size. We then test the performance of
GNN with the filter order varying in [1, 10, 20, 30, 40] as the probability of node removal
varies within the interval [0, 0.25]. The results are summarized in Figure 5. A similar result
as the scenario of the edge removal can be observed from the figure, that is, the MSELoss
increases slightly as the probability of node removal increases. Note that we do not need to
re-train a new GNN when the input number of nodes changes since the operation in the
GNN is node-invariant.

0 0.025 0.05 0.075 0.1 0.125

Probability of edge removal

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

M
S

E

10–3

K=1

K=10

K=20

K=30

K=40

Figure 4. MSELoss of GNN to the edge removal with different filter orders.

Sensors 2022, 22, 1030 12 of 18

0 0.05 0.1 0.15 0.2 0.25

Probability of node removal

4

5

6

7

8

9

10

11

12

M
S

E

10–3

K=1

K=10

K=20

K=30

K=40

Figure 5. MSELoss of GNN to the node removal with different filter orders.

4.3. Performance Comparison with FIR Graph Filters

We compare the MSELoss of GNN and FIR graph filters with filter order K = 1 and
K = 20 as the probability of edge removal varies within the interval [0, 0.125]. The results
are shown in Figure 6. From the figure, the GNN outperforms the FIR graph filters for
the same filter order. Specifically, given the filter order K = 20, the MSELoss achieved by
GNN is nearly half of that achieved by FIR graph filters. The performance improvement
of GNN, with regard to FIR graph filters comes from the added nonlinear function and
multi-layer structure. Empowered by them, the GNN can capture more features from the
graph structure and therefore achieves lower MSELoss when doing average consensus
than FIR graph filters. We then compare the MSELoss of GNN and FIR graph filters with
K = 1 and K = 20 as the node removal probability changes within the interval [0, 0.25].
The results are shown in Figure 7. From the figure, the errors of both GNN and FIR
graph filters are enlarged with the increase of node removal probability. It is because that
removing more nodes would cause greater changes to the initial graph topologies. As the
number of removal nodes increases, more and more isolated nodes appear, which cannot
exchange information with neighbors and therefore achieves higher MSELoss. Owing to
the nonlinear operation and multi-layer architecture, GNN has a smaller error increase than
FIR graph filters. Besides, GNN achieves lower MSELoss than the FIR graph filters with
the same filter order. The results demonstrate that GNN is scalable to different topologies.

Sensors 2022, 22, 1030 13 of 18

0 0.025 0.05 0.075 0.1 0.125

Probability of edge removal

4

5

6

7

8

9

10

M
S

E

10–3

GNN:K=1

GNN:K=20

FIR:K=1

FIR:K=20

Figure 6. MSELoss of GNN to the edge removal compared with FIR graph filters.

0 0.05 0.1 0.15 0.2 0.25

Probability of node removal

4

5

6

7

8

9

10

11

12

13

M
S

E

10–3

GNN:K=1

GNN:K=20

FIR:K=1

FIR:K=20

Figure 7. MSELoss of GNN to the node removal compared with FIR graph filters.

5. Performance Evaluation over Decentralized Learning

In Section 4, we have verified the effectiveness of GNN doing average consensus on
RGGs and its scalability to different topologies. In this section, we then test the performance
of the proposed decentralized learning scheme in which GNN based average consensus
is embedded.

5.1. Simulation Settings

The simulation settings are given as follows. We consider a wireless communication
system consisting of N = 100 devices. The devices are randomly distributed in a square
area with side 100 m and the link used for data transmission is established if the distance
between two devices is smaller than 20 m. We generate graph samples to model the
connection between devices, which contains 2000 training samples, 250 validation samples,
and 250 test samples. In terms of the decentralized learning model, we choose the multiple
linear regression models added a softmax function. We then choose two datasets to test our
algorithm. One of them is the popular MNIST dataset, which is composed of 60,000 training
samples and 10,000 test samples with 10 classes. As for the other one, we choose more
complex Fashion-MNIST [35] dataset, where the image size, the number of training and

Sensors 2022, 22, 1030 14 of 18

test samples are the same as MNIST. Since we here consider the mobile data to be iid, we
randomly divide the training samples into N equal parts and distribute them to all devices,
respectively. Before performing the decentralized learning tasks, we must train the GNN
first over the training graph samples. The GNN structure is the same as that in Section 4.
For the training process, it has already been described in Section 3, where the epoch of
running CPSGD algorithm is set as 250. Then, we can use the well-trained GNN models
to aggregate the decentralized learning model parameters in the decentralized learning
tasks as described in Section 3. For comparison, CPSGD and DPSGD algorithms are also
implemented in the test. We run each algorithm for 250 epochs and average its performance
over 250 test graph samples.

5.2. Performance Comparison with CPSGD and DPSGD

Table 3 shows the average test accuracy of the proposed algorithm as well as the
baseline algorithms. From the table, we can see that performance of the proposed algorithm
is very close to that of CPSGD and DPSGD. Specifically, the proposed algorithm with the
head-sampling strategy achieves 2.50% lower accuracy than CPSGD when filter order K = 1
and 2.04% lower accuracy when filter order K = 20 for the MNIST dataset. Meanwhile, for
the Fashion-MNIST dataset, it achieves 7.65% lower accuracy when K = 1 and 5.85% lower
accuracy when K = 20. The accuracy gap comes from the error of GNN doing average
consensus. Since the distribution of data needed to aggregate is slightly different from the
training data, trained GNN would have a slightly worse performance than the optimum.
However, errors of GNN doing average consensus would not be accumulated due to the
model update step in Algorithm 1 and therefore the proposed algorithm can still converge
to the near-optimal results. Compared with DPSGD, the proposed algorithm with the
head-sampling strategy achieves 2.47% lower accuracy when filter order K = 1 and 2.01%
lower accuracy when K = 20 for the MNIST dataset. Meanwhile, for the Fashion-MNIST
dataset, it achieves 7.18% lower accuracy when K = 1 and 5.38% lower accuracy when
K = 20. The reasons are as follows. Since the features of mobile data in the neighborhood
are the same with those in the global network under the iid setting, the advantage of
aggregating model parameters across the network is not more obvious than aggregating in
the neighborhood.

Table 3. Comparisons Between Different Methods for MNIST/Fashion-MNIST Image Classification.

Method Sampling Strategies Filter Order
Accuracy

MNIST Fashion-MNIST

CPSGD / / 92.25% 84.64%

DPSGD / / 92.22% 84.17%

Proposed Algorithm

Head-sampling
1 89.75% 76.99%

20 90.21% 78.79%

Uniform-sampling
1 88.89% 76.67%

20 89.32% 78.62%

Tail-sampling
1 88.17% 76.58%

20 89.03% 77.57%

5.3. Performance Comparison between Different Sampling Strategies

From Table 3, we can find that the proposed algorithm with the head-sampling strategy
performs the best among all three sampling strategies. Specifically, the proposed algorithm
with the head-sampling strategy achieves 0.86% higher accuracy than uniform-sampling
and 1.58% higher accuracy than tail-sampling when K = 1, 0.89% higher accuracy than
uniform-sampling and 1.18% higher accuracy than tail-sampling when K = 20 for the
MNIST dataset. Meanwhile, for the Fashion-MNIST dataset, it achieves 0.32% higher accu-
racy than uniform-sampling and 0.41% higher accuracy than tail-sampling when K = 1,
0.17% and 1.22% higher accuracy than uniform-sampling and tail-sampling, respectively,
when K = 20. It is because that head-sampling strategy makes the proposed algorithm

Sensors 2022, 22, 1030 15 of 18

exploit more training data with considerable variation, which benefits the practical im-
plementation. As a reminder, we collect the machine learning model parameters from
each round of the CPSGD algorithm as training data. For the beginning rounds, model
parameters on each device are randomly generated and there is a tremendous difference
from model to model. As the training process continues, the model on each device becomes
more and more similar. Finally, the model on each device becomes almost the same and the
CPSGD algorithm converges. Thus, the training data sampled from the beginning rounds
are more diverse than those from the end rounds, which prevents the GNN from over-fitted
training and help it learn a more accurate model.

5.4. Scalability to Scenarios with Different Topologies

To simulate the network being affected by the link loss, we randomly remove the edge
of test graph samples as the probability varies within the interval [0, 0.125]. Then, we test
the performance of the proposed algorithm with three sampling strategies when the filter
order K = 1 on the MNIST dataset. The results are summarized in Figure 8. From the
figure, we can find that the average accuracy of the proposed algorithm remains almost
unchanged as the probability of link loss increases. The reasons are as follows. First, GNN
based average consensus is robust to the edge removal as we have validated in Section 4.
Thus, using GNN to aggregate the model parameters across the network can still obtain the
accurate averaged global model parameters. Besides, with link loss, errors of GNN reaching
average consensus increase but the model update step in Algorithm 1 would counteract
its negative effects and therefore improves the stability of the algorithm. To simulate the
situation that not all devices participate in the training process, we randomly remove the
node of test graph samples with the probability varying within the interval [0, 0.25]. Then,
we test the performance of the proposed algorithm with three sampling strategies when
K = 1. The results are shown in Figure 9. From the figure, the average test accuracy remains
almost unchanged. It is because that utilizing GNN to reach average consensus is also
robust to the node removal as we have verified in Section 4. Moreover, the model update
step in Algorithm 1 enhances the robustness of the proposed algorithm.

5.5. Non-Iid Scenario

Since the mobile data distribution is affected by many factors including geographic
position, users’ different preferences, the interaction between individuals and social groups,
and so on, we consider the more general non-iid data partition way in this part. The training
samples from the MNIST dataset are sorted according to their classes first. We then divide
them into N equal parts, and distribute them to all devices, respectively. For simplicity,
we fix the graph topology and then gather the training data using the head-sampling
strategy as described in Section 3. As for the GNN structure, we choose the filter order
K = 20 to enhance the ability of GNN doing average consensus. The other simulation
settings are the same as the iid scenario. We then test the proposed algorithm and choose
CPSGD and DPSGD as the baseline algorithms. The results are summarized in Figure 10.
From the figure, we can find that the proposed algorithm approximates the accuracy of
CPSGD algorithm and outperforms the DPSGD algorithm. The average accuracy of the
CPSGD algorithm decreases slightly in the later rounds. It is because that the weight
divergence increases as the iteration proceeds due to non-iid data distribution [36]. Our
proposed algorithm runs fewer rounds when achieving the same performance as the
DPSGD algorithm, which reduces the computational complexity. The reasons are as follows.
Under the non-iid setting, data distribution in the neighborhood cannot reflect the data
distribution across the network. Thus, if models are only aggregated in the neighborhood,
they can only learn the local data features and therefore exhibit a bad performance on
the test sets. However, since our algorithm utilizes the GNN to aggregate the model
parameters across the network, the model on each device can actually learn the global data
features. Besides, the impacts caused by the errors of GNN reaching average consensus is

Sensors 2022, 22, 1030 16 of 18

mitigated by local model updates. Thus, the proposed algorithm performs better than the
DPSGD algorithm.

0 0.025 0.05 0.075 0.1 0.125

Probability of edge removal

0.88

0.882

0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9

A
v

er
ag

e
ac

cu
ra

cy

head-sampling

uniform-sampling

tail-sampling

Figure 8. Average accuracy of the proposed algorithm to the edge removal.

0 0.05 0.1 0.15 0.2 0.25

Probability of node removal

0.88

0.885

0.89

0.895

0.9

0.905

A
v
er

ag
e

ac
cu

ra
cy

head-sampling

uniform-sampling

tail-sampling

Figure 9. Average accuracy of the proposed algorithm to the node removal.

0 50 100 150 200 250

Rounds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v

er
ag

e
ac

cu
ra

cy

CPSGD

Proposed Algorithm

DPSGD

Figure 10. Comparison with other methods on the non-iid dataset.

Sensors 2022, 22, 1030 17 of 18

6. Conclusions and Future Directions

In this paper, we mainly investigate a decentralized learning architecture, which
avoids the possible congestion to the central server in the centralized architecture. We
propose a new decentralized learning scheme utilizing GNN aggregation for training
generalized models in networks that can be modeled as undirected or balanced directed
graphs. First, the GNN structure has been investigated to reach average consensus. Then,
the training strategy for GNN has been designed to implement the scheme into practical
use. Furthermore, we introduce how to implement the GNN aggregation in a decentralized
manner. Finally, simulations results demonstrate that the proposed algorithm is able
to converge to near-optimal results owing to the global aggregation by GNN. Besides,
benefiting from the multi-layer structure and nonlinear function of GNN, it is robust to
the link loss as well as partial device participation. This initial study suggests the great
potential of GNN being used for decentralized learning. Further research directions include
considering the communication compressing scheme as well as extension to different
network topologies. In addition, improving the training of GNNs and ameliorating the
model architecture are promising means to fine-tune our proposal.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, re-
sources, writing—original draft preparation, H.G.; investigation, H.G. and Z.Z.; writing—review and
editing, H.G., M.L. and G.Y.; supervision, G.Y.; project administration, G.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper is supported by the open research fund of Zhejiang Provincial Key Laboratory
of Information Processing, Communication and Networking (IPCAN).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MNIST dataset was analyzed in this study. This data can be found
here: http://yann.lecun.com/exdb/mnist/ (accessed date: 10 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Agarwal, A.; Duchi, J.C. Distributed delayed stochastic optimization. In Proceedings of the 51st IEEE Conference on Decision and

Control, Maui, HI, USA, 10–13 December 2012; pp. 5451–5452.
2. Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; Singer, Y. Online passive-aggressive algorithms. J. Mach. Learn. Res. 2006,

7, 551–585.
3. Lian, X.; Huang, Y.; Li, Y.; Liu, J. Asynchronous parallel stochastic gradient for nonconvex optimization. In Proceedings of the

Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2737–2745.
4. Lian, Z.; Wang, W.; Su, C. COFEL: Communication-Efficient and Optimized Federated Learning with Local Differential Privacy.

In Proceedings of the IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6.
5. Wang, W.; Memon, F.H.; Lian, Z.; Yin, Z.; Gadekallu, T.R.; Phan, Q.; Dev, K.; Su, C. Secure-Enhanced Federated Learning for

AI-Empowered Electric Vehicle Energy Prediction. IEEE Consum. Electron. Mag. 2021, doi:10.1109/MCE.2021.3116917.
6. Yuan, K.; Ling, Q.; Yin, W. On the convergence of decentralized gradient descent. arxiv 2013, arXiv:1310.7063.
7. Nedić, A.; Ozdaglar, A. Distributed subgradient methods for multiagent optimization. IEEE Trans. Automat. Contr. 2009, 54,

48–61. [CrossRef]
8. Jakovetic, D.; Xavier, J.; Moura, J.M. Convergence rate analysis of distributed gradient methods for smooth optimization.

In Proceedings of the 20th Telecommunications Forum, Belgrade, Serbia, 20–22 November 2012; pp. 867–870.
9. Shi, W.; Ling, Q.; Wu, G.; Yin, W. Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim.

2015, 25, 944–966. [CrossRef]
10. Nedić, A.; Olshevsky, A.; Shi, W. Achieving geometric convergence for distributed optimization over time-varying graphs. arXiv

2016, arXiv:1607.03218.
11. Shi, W.; Ling, Q.; Yuan, K.; Wu, G.; Yin, W. On the linear convergence of the ADMM in decentralized consensus optimization.

IEEE Trans. Signal Process. 2014, 62, 1750–1761. [CrossRef]
12. He, L.; Bian, A.; Jaggi, M. Cola: Decentralized linear learning. In Proceedings of the Advances in Neural Information Processing

Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 4541–4551.

http://yann.lecun.com/exdb/mnist/
http://doi.org/10.1109/MCE.2021.3116917
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1137/14096668X

Sensors 2022, 22, 1030 18 of 18

13. Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.-J.; Zhang, W.; Liu, J. Can decentralized algorithms outperform centralized algorithms?
A case study for decentralized parallel stochastic gradient descent. In Proceedings of the Advances in Neural Information
Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5330–5340. [CrossRef]

14. Ram, S.S.; Nedić, A.; Veeravalli, V.V. Asynchronous gossip algorithms for stochastic optimization. In Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18
December 2009; pp. 3581–3586.

15. Ram, S.S.; Nedić, A.; Veeravalli, V.V. Asynchronous gossip algorithm for stochastic optimization: Constant stepsize analysis. In
Recent Advances in Optimization and its Applications in Engineering; Diehl, M., Glineur, F., Jarlebring, E., Michiels, W., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 51–60.

16. Srivastava, K.; Nedić, A. Distributed asynchronous constrained stochastic optimization. IEEE J. Sel. Topics. Signal Process. 2011, 5,
772–790.

17. Ram, S.S.; Nedić, A.; Veeravalli, V.V. Distributed stochastic sub-gradient projection algorithms for convex optimization. J. Optim.
Theory Appl. 2010, 147, 516–545.

18. Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 2007, 95,
215–233. [CrossRef]

19. Lee, M.; Yu, G.; Li, G.Y. Graph Embedding-Based Wireless Link Scheduling with Few Training Samples. IEEE Trans. Wireless
Commun. 2021, 20, 2282–2294.

20. Lee, M.; Hosseinalipour, S.; Brinton, C.G.; Yu, G.; Dai, H. A Fast Graph Neural Network-Based Method for Winner Determination
in Multi-Unit Combinatorial Auctions. IEEE Trans. Cloud Comput. 2020. [CrossRef]

21. Lee, M.; Yu, G.; Dai, H. Decentralized Inference with Graph Neural Networks in Wireless Communication Systems. IEEE Trans.
Mobile Comput. 2021. [CrossRef]

22. Nekovee, M. Worm epidemics in wireless ad hoc networks. New J. Phys. 2007, 9, 189. [CrossRef]
23. Tang, H.; Lian, X.; Yan, M.; Zhang, C.; Liu, J. D2: Decentralized training over decentralized data. In Proceedings of the 35th

International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1–8. [CrossRef]
24. Lu, S.; Zhang, X.; Sun, H.; Hong, M. GNSD: A gradient-tracking based nonconvex stochastic algorithm for decentralized

optimization. In Proceedings of the IEEE Data Science Workshop, Minneapolis, MN, USA, 2–5 June 2019; pp. 315–321. [CrossRef]
25. Hosseinalipour, S.; Azam, S.S.; Brinton, C.G.; Michelusi, N.; Aggarwal, V.; Love, D.J.; Dai, H. Multi-Stage Hybrid Federated

Learning over Large-Scale D2D-Enabled Fog Networks. arXiv 2020, arXiv:2007.09511.
26. Xiao, L.; Boyd, S. Fast linear iterations for distributed averaging. In Proceedings of the 42nd IEEE International Conference on

Decision and Control, Maui, HI, USA, 9–12 December 2003; pp. 4997–5002.
27. Kishida, M.; Ogura, M.; Yoshida, Y.; Wadayama, T. Deep learning-based average consensus. IEEE Access 2020, 8, 142404–142412.
28. Sandryhaila, A.; Kar, S.; Moura, J.M.F. Finite-time distributed consensus through graph filters. In Proceedings of the 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 1080–1084.
29. Iancu, B.; Isufi, E. Towards Finite-Time Consensus with Graph Convolutional Neural Networks. In Proceedings of the 28th

European Signal Processing Conference, Virtual, 18–22 January 2021; pp. 2145–2149. [CrossRef]
30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arxiv:1412.6980.
31. Gama, F.; Isufi, E.; Leus, G.; Ribeiro, A. From graph filters to graph neural networks. arXiv 2020, arXiv:2003.03777.
32. Ren, J.; He, Y.; Wen, D.; Yu, G.; Huang, K.; Guo, D. Scheduling for cellular federated edge learning with importance and channel

awareness. IEEE Trans. Wireless Commun. 2020, 19, 7690–7703.
33. He, Y.; Ren, J.; Yu, G.;Yuan, J. Importance-aware data selection and resource allocation in federated edge learning system. IEEE

Trans. Veh. Technol. 2020, 69, 13593–13605.
34. Kempe, D.; McSherry, F. A decentralized algorithm for spectral analysis. In Proceedings of the 36th Annual ACM Symposium on

Theory of Computing, Chicago, IL, USA, 13–16 June 2004; pp. 561–568.
35. Han, X.; Kashif, R.; Roland, V. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
36. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-IID data. arXiv 2018, arXiv:1806.00582.

http://dx.doi.org/10.1109/TSP.2014.2304432
http://dx.doi.org/10.1109/JSTSP.2011.2118740
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1109/TWC.2020.3040983
http://dx.doi.org/10.1109/TCC.2020.3046883
http://dx.doi.org/10.1109/TMC.2021.3125793
http://dx.doi.org/10.1088/1367-2630/9/6/189
http://dx.doi.org/10.1109/ACCESS.2020.3014148

	Introduction
	Literature Review
	Main Contribution
	Organization

	Decentralized Learning Tasks over Network
	System Model
	Decentralized Learning Model

	Gnn Aggregation Based Average Consensus
	Overview of GNN
	Gnn for Consensus
	Training Process
	Decentralized GNN Aggregation

	Performance Evaluation on Average Consensus
	Simulation Settings
	Performance of GNN with Different Filter Orders
	Performance Comparison with FIR Graph Filters

	Performance Evaluation over Decentralized Learning
	Simulation Settings
	Performance Comparison with CPSGD and DPSGD
	Performance Comparison between Different Sampling Strategies
	Scalability to Scenarios with Different Topologies
	Non-Iid Scenario

	Conclusions and Future Directions
	References

