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Abstract: For fluid resuscitation of critically ill individuals to be effective, it must be well calibrated
in terms of timing and dosages of treatments. In current practice, the cardiovascular sufficiency of
patients during fluid resuscitation is determined using primarily invasively measured vital signs,
including Arterial Pressure and Mixed Venous Oxygen Saturation (SvO2), which may not be available
in outside-of-hospital settings, particularly in the field when treating subjects injured in traffic
accidents or wounded in combat where only non-invasive monitoring is available to drive care. In this
paper, we propose (1) a Machine Learning (ML) approach to estimate the sufficiency utilizing features
extracted from non-invasive vital signs and (2) a novel framework to address the detrimental impact
of inter-patient diversity on the ability of ML models to generalize well to unseen subjects. Through
comprehensive evaluation on the physiological data collected in laboratory animal experiments, we
demonstrate that the proposed approaches can achieve competitive performance on new patients
using only non-invasive measurements. These characteristics enable effective monitoring of fluid
resuscitation in real-world acute settings with limited monitoring resources and can help facilitate
broader adoption of ML in this important subfield of healthcare.

Keywords: fluid resuscitation; cardiovascular sufficiency; machine learning; physiological data;
non-invasive monitoring

1. Introduction

Substantial loss of blood can lead to hemorrhagic shock, organ dysfunctions, and death,
if not treated promptly and effectively [1–3]. However, if patients are over-resuscitated,
the excessive administration of fluids or blood can put an extra burden on the patient’s
organs and result in poor outcomes of gravity equal to or even worse than that of under-
resuscitation [4–6]. Hence, accurate judgement on the circulatory sufficiency of the subject
during resuscitation would allow better titration of fluids and vasoactive drugs, as well as
help determine when further treatment is unwarranted to sustain tissue vitality [7–9].

Within the context of resuscitation from critical illness associated with cardiovascular
insufficiency, we introduce the term “Cardiovascular Sufficiency” to refer to the state of
cardiovascular parameters consistent with adequate blood flow to meet the metabolic
demands of the body without being in overt failure. Such a state may exist because the
subject is on mechanical ventilatory support, receiving vasoactive drug infusion or boluses
of fluids. However, once in a sufficient state, no additional changes in care are needed.
Clinicians can readily define when a patient is in a cardiovascular insufficient state, and
sufficiency occurs when not in that state. As an operational definition, cardiovascular
sufficiency defines when additional resuscitative efforts or increases in resuscitative drug
support are not needed.

Cardiovascular sufficiency can be achieved by the return of normal end-organ function.
However, such clinically-relevant end-points usually take long time to manifest. Therefore,
clinicians often continue aggressive resuscitative efforts beyond the levels needed to attain
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sufficiency, leading to complications associated with volume overload and vasoactive drug
over-infusion. In the highly instrumented patients receiving cardiovascular resuscitation
from circulatory shock, cardiovascular sufficiency can be temporarily defined as a state
wherein Mean Arterial Pressure (MAP) is above some target level (usually >65 mmHg),
reduced excessive sympathetic tone characterized by the absence of tachycardia (heart rate
(HR) < 110/min), resolution of any of metabolic acidosis (often quantified by serum lactate
levels < 2 mmol/dL), and adequacy of oxygen delivery to the tissues to meet their metabolic
demand (usually approximated by a mixed venous oxygen saturation (SvO2) > 70%) [10,11].
Although MAP, HR, and serum lactate levels can be rapidly and continually assessed
at the bedside in most hospitalized patients, estimates of SvO2 require highly invasive
monitoring with a pulmonary artery catheter to sample pulmonary arterial blood. If
estimates of SvO2 or overall cardiovascular sufficiency could be made continuously using
non-invasive measures of physiologic time series data, then the current criteria for deciding
the resuscitation sufficiency could be directly applied.

In this paper, we propose (1) a Machine Learning (ML) approach to predict the cardio-
vascular sufficiency at different time steps during the entire resuscitation horizon using
only features extracted from non-invasive physiological data and (2) an analytic protocol
that overcomes vulnerability of the resulting models to inter-patient variability.

For an ML approach to be successfully deployed in real-world healthcare applications,
a common challenge to overcome is the inter-patient diversity [12]. The indigenous physio-
logical variability among the patients in the training data can lead to harmful effects on
the generalizability of the trained model on previously unseen patients. Reference to a
personal baseline collected during the patients’ stable state can greatly help reduce the
detrimental effects of heterogeneity among the patients and improve the performance of
the downstream machine learning models [13–15]. However, for patients presenting in
already acute states, e.g., trauma patients rushed in for care, there is no such luxury of
observing the patients’ personal baseline information when they were stable. In this paper,
we propose a novel framework, Optimized Aggregation of Predictions, to alleviate the need
for personal baseline reference data by smartly aggregating the predictions made by the
models with access to the personal baselines of previously seen patients. When applied to
assess the resuscitation sufficiency of a new patient, the trained model will be deployed
in combination with the personal baselines of previously seen patients to produce the
final outcomes.

We experiment and evaluate our approaches using a porcine model of induced hem-
orrhagic shock and fluid resuscitation. Our results show that when using our proposed
ML approach, we can achieve: (1) accurate prediction of resuscitation sufficiency using fea-
tures derived from only non-invasive vital signs and (2) competitive performance on new
patients without the requirement of accessing their own stable personal baselines. These
two key advantages will allow our ML approach, once validated in humans, to be readily
deployable in real-world acute out-of-hospital settings with limited monitoring resources.

2. Materials and Methods
2.1. Data

A laboratory porcine model of induced hemorrhagic shock and fluid resuscitation was
utilized for our experiments. Sixteen healthy female pigs were sedated for induction, and all
subjects had a pulmonary artery catheter (PAC) (Vigilance catheter; Edwards LifeSciences,
Irvine, CA, USA) inserted via the internal jugular vein, a triple lumen 18-gauge catheter
inserted into a femoral artery, and a large-bore introducer (8F) inserted into the femoral
vein. The arterial pressure signal was simultaneously recorded on a LiDCOplus monitor
(LiDCO, London, UK). Triplicate bolus thermodilution cardiac output was used to calibrate
the LiDCO monitors and the PAC continuous cardiac output.

After the configuration, the animals were stabilized for 30 min to establish personal
baselines, and then bled using a roller pump (Masterflex L/S easy-load II pump; Cole-
Parmer, Vernon Hills, IL, USA) at a constant rate of 10 mL/min until their MAP decreased
below 40 mmHg. Then, after a waiting period of 30 min, the fluid resuscitation started
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and then ended by the clinicians when the circulatory status was deemed sufficient, and
evidence of cardiovascular stability had been observed. Physiological data at different gran-
ularities were collected in the process, including the beat-to-beat, non-invasive estimates
of MAP, stroke volume variation (SVV), pulse pressure variation (PPV) using plethysmo-
graphic waveform analysis, and the high-resolution waveform data recorded at 250 Hz,
including invasive arterial pressure, electrocardiogram (ECG), photo-plethysmography
pulse oximetry, SvO2, SpO2, and airway pressure.

2.2. Labeling of Sufficiency

During the resuscitation stage, sufficiency assessments were conducted every 5 min
or 11 min, when a fluid bolus was administered (application of each fluid bolus took
6 min). Expert clinicians used the means of the invasively collected Arterial Pressure
waveform and SvO2 waveform during the 2-min segments preceding each assessment
to label the current sufficiency state of the subject. If the mean Arterial Pressure and the
mean SvO2 were both above their respective target values, the subject was considered
“sufficient” during this assessment segment, and “insufficient” otherwise. The target values
of Arterial Pressure and SvO2 were determined by the mean and the standard deviations
of the Arterial Pressure and SvO2 waveforms during the stable period of each individual
subject. The sufficiency state labeling of one subject is shown in Figure 1 as an example.

0 50 100 150 200 250 300
0

50

100

150

Time [min]

Arterial Pressure
SvO2

labeled:sufficient
labeled:insufficient

stabilization
bleeding

resuscitation

Figure 1. When the mean of Arterial Pressure and the mean of SvO2 (both invasively measured) are
above the target values (dashed lines), the subject is labeled as “sufficient” at the given assessment
time, or as “insufficient” otherwise.

In addition to the data collected during the 2-min assessment segments during the
resuscitation period, we also sampled 2-min segments evenly from the stable, bleeding, and
waiting stages for model training, and we labeled these segments using the same criteria.
For each 2-min segment, moving windows of 20 s were extracted every 10 s, resulting in
11 time windows extracted from each segment. All such windows falling within the same
segment shared the same sufficiency label with the segment. The descriptive statistics of
the resulting dataset are provided in Appendix A.

2.3. Featurization

For each 20-s window, heart rate variability (HRV) measurements [16–18] and ag-
gregated statistics were derived from the non-invasive ECG waveform, and beat-to-beat
geometric features [19–21] were derived from the non-invasive photo-plethysmography
pulse oximetry waveform. Beat-to-beat measures, including MAP, SVV, and PPV, which
were directly extracted from the non-invasive beat-to-beat estimates, and HR and pulse tran-
sit time (PTT), which were derived from the non-invasive ECG and photo-plethysmography
pulse oximetry waveforms, were also included in our feature set. For all the beat-to-beat
features, the median, inter-quartile range (IQR), and linear slope were computed over all
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the heartbeats within the same window and used as aggregated features. We ended up
with 42 features in total. The detailed description of the features is provided in Appendix B.

2.4. Normalization Using Personal Baseline

To mitigate the inter-subject variation during model training, we normalize each
training subject’s data using its own personal baseline established from the subject’s
stablization period data. For each training subject, each feature is normalized using its
median and 90% range computed from the data points collected during the stable stage.
Median and 90% range are used instead of mean and standard deviation, as commonly
used in feature scaling, in order to prevent the potential negative effects of non-standard
noise and outliers. The medians and the 90% ranges of all features are referred to as
“normalization factors” in the following sections. If we have d features, the normalization
factors of a subject will be a pair of vectors (m, r), m ∈ Rd, r ∈ Rd. Given data X ∈ Rd and
(m, r), the normalized data X̄ will be

X̄ =
(X−m)

r
. (1)

2.5. Optimized Aggregation of Predictions

To achieve accurate predictions on new patients with no available personal baseline
information, we propose a novel framework, Optimized Aggregation of Predictions, which
aggregates the binary predictions made by the model trained using the normalized data
of training subjects. The threshold used for converting the prediction scores to binary
predictions is tuned on the validation set. From a list of thresholds, the threshold which
maximizes the correlation between the predictions made by the trained model on the
validation data normalized with reference to its own personal baseline, and the aggregated
binary predictions made by the same model on the validation data standardized using the
normalization factors of different training subjects is selected. By using the normalization
factors of each training subject, different “normalized” versions of the validation data
are generated, and different binary predictions will be made by the same model on these
different “normalized” versions. Then, these binary predictions are aggregated by taking
the percentage of the positive predictions, in a majority voting scheme. The block diagram
of this procedure is shown in Figure 2. The model can be any type of machine learning
algorithm with a numeric score output, and we used the Random Forest model [22] in our
experiments. The list of candidate thresholds was created by uniformly sampling from the
unique prediction scores made on the validation data points by the model.

At test time, the different “normalized” versions of the test data are generated in a
similar fashion using the normalization factors of the training subjects. The single optimal
threshold selected on the validation set will be used to convert the prediction scores for
each “normalized” version of the test data to binary predictions, and the majority vote %
will be the final prediction output, as shown in Figure 3. In the medical context, this voting
output has a clinically relevant interpretation as it directly informs the clinicians of how
confident the model is by measuring how many previously seen patients have voted for
the positive prediction made for the current subject.

2.6. Model Training and Evaluation

We trained a Random Forest model using Python sklearn library [23] over extracted
moving windows to classify the sufficiency state, with sufficient windows belonging to
the positive class and insufficient the negative class. To accommodate our relatively small
cohort, we trained and evaluated our model using a leave-one-subject-out cross-validation
protocol, i.e., during each training iteration, the moving windows of one single subject were
held-out as the test set, while the data of all the other subjects were used for training and
validation. When tuning the binary prediction threshold using the Optimized Aggregation of
Predictions framework, we conducted an inner-loop leave-one-subject-out cross-validation
to select the optimal threshold, i.e., the threshold which yielded the highest average
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correlation across all validation subjects was chosen and utilized on the test subject. To
make our evaluation as similar to the real-world clinical scenarios as possible, we trained
our model using all data points during all stages but only evaluated the performance
on the resuscitation stage. The data during the resuscitation periods of 4 subjects were
corrupted due to device issues in the laboratory experiments. After the verification with
the clinicians, their resuscitation data were removed, and only 12 out of 16 subjects were
used in validation and testing.

Validation Data

Normalized 
w.r.t. baseline 

of training 
subject 1

Normalized 
w.r.t. its own 

personal 
baseline

Normalized 
w.r.t. baseline 

of training 
subject 2

Normalized 
w.r.t. baseline 

of training 
subject n

Prediction 1 Prediction 2 Prediction n Prediction*

Binary
Prediction 1

Binary
Prediction 2

Binary
Prediction n

Threshold i

Majority Vote %

Model

Correlation

For each Threshold i, below procedure is conducted

Input: 
• Model trained using normalized training data
• A list of candidate thresholds: Threshold 1, Threshold 2, …

Output: 
Threshold* which yields the highest correlation between Prediction* and Majority Vote %

Figure 2. The Optimized Aggregation of Predictions framework. From a list of candidate thresholds,
the one which maximizes the correlation between the predictions made by the trained model on the
validation data normalized with reference to its own personal baseline (Prediction*, denoted by blue)
and the aggregated binary predictions made by the same model on the validation data standardized
using the normalization factors of different training subjects (Majority Vote %, denoted by red) is
chosen to be used for converting the prediction scores to binary predictions on the test data.

Test Data

Normalized 
w.r.t. baseline 

of training 
subject 1

Normalized 
w.r.t. baseline 

of training 
subject 2

Normalized 
w.r.t. baseline 

of training 
subject n

Prediction 1 Prediction 2 Prediction n

Binary
Prediction 1

Binary
Prediction 2

Binary
Prediction n

Threshold*

Output: Majority Vote %

Model

Figure 3. The predictions for the test data using the threshold chosen via optimization performed
using the validation data as shown in Figure 2.
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3. Results
3.1. Moving Window Classification Performance

The Receiver Operating Characteristic (ROC) curves and the performance metrics of
our approach are shown in Figure 4 and Table 1. The mean and the standard error (Due
to the high inter-subject variation in our data, standard error bounds are provided for the
aggregated results instead of 95% confidence intervals) of the ROC curves and the metrics
are computed by aggregating the results of leave-one-subject-out cross-validation. The
model trained and tested using only non-normalized features (referred to as “Without
Personal Baseline”) and the model trained and tested using only normalized features
(referred to as “With Personal Baseline”) are provided as references, as the former intuitively
represents the worst performance expected when the personal baselines from neither the
training subjects nor the test subjects are available, and the latter intuitively represents
the best performance expected when there is the luxury to observe the stable personal
baselines of the new patients. As expected, when the personal baselines of the test subjects
are available, the “With Personal Baseline” model achieves the highest Area Under ROC
curve (AUROC) scores. When there is no access to the personal baselines of the test subjects,
our Optimized Aggregation of Predictions approach is able to achieve a comparable AUROC to
the “With Personal Baseline” model and a better performance than the “Without Personal
Baseline” model. In addition to the aggregated results, we also provide the ROC curves
of two individual test subjects in Figure 5 as examples, with the 95% confidence intervals
computed using the Wilson score interval [24].

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4. The mean and the standard error bands of the ROC curves of three different approaches
for resuscitation sufficiency prediction. The False Positive Rate (FPR) and the False Negative Rate
(FNR) are scaled logarithmically in the middle and right plots to emphasize the performance at the
clinically relevant low prediction errors settings.

Table 1. The mean and the standard error intervals of the AUC scores, True Positive Rate (TPR) at
low False Positive Rate (FPR), and True Negative Rate (TNR) at low False Negative Rate (FNR) of
three different approaches for resuscitation sufficiency prediction.

Approach AUROC TPR at FPR = 0.030 TNR at FNR = 0.023

Without Personal Baseline 0.892 (0.873, 0.911) 0.223 (0.098, 0.412) 0.195 (0.102, 0.439)
With Personal Baseline 0.947 (0.930, 0.963) 0.387 (0.101, 0.670) 0.607 (0.399, 0.737)
Optimized Aggregation of Predictions 0.929 (0.908, 0.950) 0.343 (0.134, 0.551) 0.358 (0.261, 0.542)

The two types of prediction errors, namely the false positives and the false negatives,
can both lead to unfavorable patient outcomes. To emphasize the model’s performance
at the clinically relevant low error settings, the True Positive Rate (TPR) at low False
Positive Rate (FPR) and the True Negative Rate (TNR) at low False Negative Rate (FNR)
are also provided. The lowest FPR and FNR are determined by the minimum frequency
of insufficient (negative) and sufficient (positive) windows in our test subjects (the details
are provided in Appendix A). At the low FPR region, our approach achieves TPR of 0.343,
very close to the highest TPR 0.387 achieved by “With Personal Baseline” model, which
means that our approach is able to correctly identify 34.3% of all the sufficient moving



Sensors 2022, 22, 1024 7 of 12

windows (the positive class) in test subjects, while only misclassifying 3 insufficient moving
windows as sufficient out of 100 such predictions, on average. The false predictions of
sufficiency (false positive errors) may wrongly advise the stopping of the resuscitation and,
thus, lead to under-resuscitation. If, in practice, a decision threshold is chosen accordingly,
at low FPR to avoid such unfavorable outcomes, our approach is still able to identify 34.3%
sufficient windows correctly. Similarly, if a decision threshold is chosen at low FNR region
to avoid the misclassifications for sufficient windows (false negative errors) which may lead
to over-resuscitation, our approach is able to correctly classify 35.8% insufficient windows,
much higher than the 19.5% achieved by the “Without Personal Baseline” model, while only
giving 2.3 false alerts of insufficiency out of 100 such predictions, on average. By comparing
the performance at the operationally useful low FPR and FNR regions, we demonstrate the
high practical utility potential of the proposed approach when the stable personal baselines
of new patients are not available, as is often the case in urgent field care scenarios.
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Figure 5. ROC curves of two example test subjects. The 95% confidence intervals are computed using
the Wilson interval scores.

3.2. Cost-Optimal Decision Threshold Selection

When ML approaches are transitioned to real-world healthcare applications, clinicians
would typically settle on using a single decision threshold, which, in our case, was used
to determine the sufficiency state at any given time point during the resuscitation. We
utilize the framework explained in Reference [25] to select the optimal decision threshold
by minimizing the expected cumulative costs of classification errors.

If we can estimate the relative frequencies of the positive and the negative examples
in the test data (denoted by p and n, respectively), as well as the expected ratio of the
average unit cost of each false positive error (CFP) to the average unit cost of each false
negative error (CFN), we can draw an iso-performance line in the ROC plane, with the slope
computed as n

p ·
CFP
CFN

. The points on the same iso-performance line will represent a collection
of hypothetical decision thresholds with the same expected misclassification costs. At the
same time, a feasible decision threshold will also reside on the ROC curve of the trained
model. Thus, the cost-optimal decision threshold corresponds to the point on the ROC
curve which is tangential to the iso-performance line whose slope is determined by the
estimated p, n, CFP, and CFN .
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The ratio CFP
CFN

can be determined by the domain knowledge for the specific clinical
task. For our task, false positive errors correspond to misclassifying insufficient as sufficient
which may lead to under-resuscitation, while false negative errors, corresponding to
misclassifying sufficient as insufficient, may lead to over-resuscitation. Since both are
unfavorable outcomes, we provide the evaluation of three different settings: CFP

CFN
= 1 when

both are equally costly, CFP
CFN

= 3 when under-resuscitation is threefold more unfavorable,

and CFP
CFN

= 1
3 when over-resuscitation would be perceived three times more costly than the

opposite type of error.
The same ROC curves from Figure 4 are used for this cost analysis. The iso-performance

lines and the selected cost-optimal decision thresholds corresponding to the three settings
of CFP

CFN
ratios are shown in Figure 6. The n

p ratio is estimated by taking the average relative
frequency between the insufficient windows and the sufficient windows across all test
subjects. The decision thresholds for our Optimized Aggregation of Predictions approach
are directly shown as the fraction of training subjects voting for sufficiency. As we have
16 subjects in total, and leave-one-subject-out cross-validation is used for evaluation, for
each held-out test subject, 15 subjects are used for training. When the average unit cost of
false positive errors is considered to be higher than the average unit cost of false negatives,
i.e., under-resuscitation is more costly than over-resuscitation, a higher decision threshold
will be chosen to lean towards prevent the more costly errors. On the contrary, a lower
decision threshold will be selected to avoid missing of sufficiency when over-resuscitation
is considered more costly ( CFP

CFN
= 1

3 ). After the optimal decision threshold is chosen under

each CFP
CFN

assumption, the numeric outputs of the approaches are converted to binary
predictions, and the McNemar’s tests [26,27] are conducted to compare our approach
against the two reference approaches. The moving windows from all test subjects are
concatenated together for the McNemar’s tests.

13/15

4/150.485

0.442
0.362

0.702

0.425

0.378

Figure 6. The iso-performance lines and the selected cost-optimal decision thresholds (shown in boxes)
corresponding to the three different settings of CFP

CFN
.

The contingency tables and the p-values from McNemar’s tests are shown in Figure 7.
From the 3 tables in the upper row, we can see that the proposed approach performs
significantly better than the “Without Personal Baseline” approach with p-values < 0.001
across all 3 settings of CFP

CFN
, as the number of mistakes our approach makes in the examples

correctly predicted by the “Without Personal Baseline” approach (the upper right entries of
McNemar’s contingency tables shown) is consistently lower than the number of mistakes
that the “Without Personal Baseline” approach would make in the examples that our
approach is able to correctly classify (the lower left entries in these tables). Based on the
statistics in the 3 tables in the lower row, the “With Personal Baseline” approach still has the
best performance. However, in real-world urgent acute settings when the stable personal
baseline information is typically not available, the proposed approach is able to significantly
improve the performance of the resuscitation sufficiency assessment model by leveraging
the personal baselines of previously seen patients.
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p-value < 0.001

Optimized Aggregation  
of Predictions

Correct Incorrect

Without 
Personal 
Baseline

Correct 1837 111

Incorrect 232 714

p-value < 0.001

Optimized Aggregation  
of Predictions

Correct Incorrect

With 
Personal 
Baseline

Correct 1959 612

Incorrect 110 213

CFP  = 1

p-value < 0.001

Optimized Aggregation  
of Predictions

Correct Incorrect

Without 
Personal 
Baseline

Correct 1299 44

Incorrect 313 1238

p-value < 0.001

Optimized Aggregation  
of Predictions

Correct Incorrect

With 
Personal 
Baseline

Correct 1516 969

Incorrect 96 313

p-value < 0.001

Optimized Aggregation  
of Predictions

Correct Incorrect

Without 
Personal 
Baseline

Correct 1837 128

Incorrect 232 697

p-value < 0.001

Optimized Aggregation  
of Predictions

Correct Incorrect

With 
Personal 
Baseline

Correct 1979 625

Incorrect 90 200

CFN

CFP  = 3CFN

CFP  =CFN

1
3

Figure 7. The contingency tables and the p-values for the McNemar’s tests.

The CFP
CFN

ratio may vary across different healthcare sites or organizations due to the
different tiers of care, varying implementation of the best practices of care, or even tem-
porally varying availability of healthcare providers or other resources. With the proposed
framework, which selects the optimal decision threshold by minimizing the expected costs
of misclassifications, the same trained model can be tuned to optimize the operational per-
formance under varying assumptions of relative costs of errors specific to the circumstances
where the model is going to be used, without the requirement of re-training it. This eval-
uation framework provides a practical solution to the scenario when the main difference
between the various application scenarios is due to the varying costs of prediction errors,
rather than the differences between the underlying distributions of the clinical data with
which the model is trained.

4. Discussion

In this paper, we proposed a machine learning approach to model the cardiovascular
sufficiency state of patients undergoing resuscitation with several specific designs to bridge
the gaps between our method and its potential implementation in real-world field and
urgent care practice. Our main contributions include:

• Using only non-invasively collected, easily-available physiological data, the level of
cardiovascular sufficiency during resuscitation can be accurately determined, which
enables the proposed approach to be implemented in a wide range of real-world
applications with limited or no access to invasive monitoring.

• The proposed general framework, Optimized Aggregation of Predictions, can alleviate
the need for stable personal baseline information of the new patients, the main source
of non-informative variability in hemodynamic monitoring data. It accomplishes
that by leveraging personal baselines of previously seen patients, even when facing
high inter-patient diversity in the data. This allows the proposed framework to be
readily implementable in real-world field and urgent care settings, including care for
patients presenting in acute states, for whom we do not have access to the vital sign
data measured when they were stable.

• We demonstrated how to choose the optimal set-point of the resuscitation sufficiency
assessment models by combining ROC curve analysis and the expected relative cost
ratios of prediction errors, to achieve the optimal performance in various application
scenarios that differ in relative error cost ratios due to operational factors, such as dif-
ferent tiers or implementations of care, or availability of personnel and other resources.

The main limitation of our work lies in the highly controlled nature of the experiment
design of the laboratory porcine model, and the relatively small number of subjects in our
cohort, though precautionary techniques, such as leave-one-subject-out cross-validation,
have been utilized to mitigate the risk of over-fitting the models.

Our future directions include adapting the presented work to larger and more com-
plicated human patient databases collected in intensive care units in hospitals and similar
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data collected in emergency medicine scenarios in the field and during medical evacuation
of wounded or injured subjects. We are also adopting our approach to serve as a fully auto-
mated closed-loop resuscitation control system capable of switching between aggressive
and maintenance resuscitation modes, or turning it off completely when appropriate, based
on evidence observed in non-invasively collected vital signs data in real-time.
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Appendix A. Descriptive Statistics of the Dataset

Each subject in our cohort experienced several stages during the laboratory exper-
iments: stabilization, bleeding, waiting, and resuscitation, as stated in Section 2.1. Our
model was trained using all the moving windows extracted from both the pre-resuscitation
stages (stabilization, bleeding, and waiting) and the resuscitation stage, while the perfor-
mance evaluation was conducted using only the resuscitation stage data. The cumulative
descriptive statistics of data observed at the different stages of experiment are provided in
Table A1.

We take the maximum of the lowest FPR and FNR achievable by each test subject as
the minimum FPR and FNR in the ROC curves in Figures 4 and 5. Based on the actual
frequency of the insufficient (negative) and sufficient (positive) windows in each subject,
the maximum lowest FPR is 1/min (number of insufficient windows) = 1

33 = 0.030, and
the maximum lowest FNR is 1/min (number of sufficient windows) = 1

43 = 0.023.

Table A1. The statistics of the number of moving windows in different stages.

Class Statistics
Number of Moving Windows in Each Subject

Pre-Resuscitation Resuscitation

Sufficient
(Positive class)

mean ± standard error 257.33± 27.13 139.50± 18.05
min 195 43
max 550 241

Insufficient
(Negative class)

mean ± standard error 693.75± 42.49 101.67± 16.99
min 495 33
max 900 220

Appendix B. Featurization

The features we derived from the non-invasive vital signs are described in Table A2.
The HRV features were computed according to Reference [28]. For the HRV and aggregated
statistics features, there is only 1 measurement for each 20-s moving window. For the beat-
to-beat features, we computed the median, IQR, and linear slope over all the heartbeats
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falling within the same window, resulting in 3 aggregated measurements for each beat-to-
beat feature. With 9 HRV and aggregated statistics features and 11 beat-to-beat features, we
ended up with 9 + 11× 3 = 42 features in total.

Table A2. The features derived from non-invasive vital signs.

Source Vital Sign Feature Name Feature Type

Photo-plethysmography Waveform Systolic Amplitudes Beat-to-Beat
Photo-plethysmography Waveform Peak-to-Peak Interval Beat-to-Beat
Photo-plethysmography Waveform Pulse Interval Beat-to-Beat
Photo-plethysmography Waveform Upstroke Time Beat-to-Beat
Photo-plethysmography Waveform Beat Skewness [29,30] Beat-to-Beat

ECG Waveform HR Beat-to-Beat

ECG Waveform Standard Deviation of HRVthe NN Interval (SDNN)

ECG Waveform
Square Root of

HRVthe Mean Squared Differences of
Successive NN Intervals (RMSSD)

ECG Waveform Very Low Frequency (VLF) HRV
ECG Waveform Low Frequency (LF) HRV
ECG Waveform High Frequency (HF) HRV
ECG Waveform Normalized Low Frequency HRV
ECG Waveform Normalized High Frequency HRV
ECG Waveform LF/HF HRV
ECG Waveform Approximate Entropy Aggregated Statistics

Photo-plethysmography Waveform, Pulse Transit Time (PTT) Beat-to-BeatECG Waveform
Non-invasive Beat-to-Beat Mean Arterial Pressure (MAP) Beat-to-BeatEstimates
Non-invasive Beat-to-Beat Stroke Volume Variation (SVV) Beat-to-BeatEstimates
Non-invasive Beat-to-Beat Pulse Pressure Variation (PPV) Beat-to-BeatEstimates
Non-invasive Beat-to-Beat Dynamic Arterial Elastance Beat-to-BeatEstimates (Eadyn, = PPV/SVV) [31]
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