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Abstract: To solve the problem in which the output power and wavelength of semiconductor lasers in
fiber optic sensing systems are easily affected by the drive current and temperature, a high-precision
current drive and temperature control system was developed in this study. The embedded system
was used to provide a stable drive current for the semiconductor laser through closed-loop negative
feedback control; moreover, some measures, such as linear slow-start, current-limiting protection,
and electrostatic protection, were adopted to ensure the stability and safety of the laser’s opera-
tion. A mathematical model of the temperature control system was constructed using mechanism
analysis, and model identification was completed using the M sequence and differential evolution
(DE) algorithms. Finally, the control rules of the fuzzy proportional integral differentiation (PID)
algorithm were optimized through system simulation to make it more suitable for the temperature
control system designed in this research, and the accurate control of the working temperature of
the semiconductor laser was realized. Experimental results showed that the system could achieve
a linearly adjustable drive current in the range of 0–100 mA, with an output current accuracy of
0.01 mA and a temperature control accuracy of up to 0.005 ◦C.

Keywords: semiconductor laser; thermoelectric cooler; constant current driver circuit; temperature
control; system identification; fuzzy PID

1. Introduction

Due to the advantages of semiconductor lasers, such as small size, light weight,
high efficiency, and easy modulation [1,2], they have been widely used in precision mea-
surements [3], environmental monitoring [4], gas detection [5], and other fields. In an
optical-fiber sensing system, an external signal under testing changes the optical properties
of the fiber, such as the power, wavelength, frequency, phase, and polarization state, ac-
cording to certain physical laws; this signal is sensed by measuring the change in optical
properties. This measurement type mainly involves a real-time modulation of the light
propagation in optical fibers by the external signals to be measured. It can be classified into
five types, depending on the change in the physical properties of the light waves modulated
by external signals: intensity modulation, frequency modulation, wavelength modulation,
phase modulation, and polarization state modulation [6]. As any small change in the light
waves can directly affect the measurement results, there are strict requirements for the out-
put optical power, central wavelength, and other output characteristics of semiconductor
lasers in fiber-optic sensing systems. However, since semiconductor lasers are sensitive,
changes in both their drive current and operating temperature can result in significant
impacts on their output characteristics [7,8]. The typical optical power-current modulation
rate, wavelength-current modulation rate, and wavelength-temperature modulation rate
are 0.2 mW/mA, 0.01 nm/mA, and 0.1 nm/◦C, respectively [9]. Moreover, semiconductor
lasers are susceptible to damage, due to static electricity and inrush currents [10]. Thus, to
ensure the detection accuracy and operational stability of fiber-optic sensing systems, it is
essential to design a high-precision current drive and temperature control system.
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Some researchers have conducted extensive research on the drive and temperature
control systems of semiconductor lasers and have achieved a few results. For example,
Zhang et al. [11] achieved a wide range of temperature control, from −12 to 120 ◦C, with
the variable-domain PID control algorithm; however, its temperature control accuracy was
only 0.1 ◦C. Cheng et al. [12] designed a temperature control system for semiconductor
lasers based on an analog PID algorithm with a maximum error of 0.08 ◦C. Wang et al. [13]
used an incremental PID algorithm to achieve a temperature control error of ~0.05 ◦C for a
semiconductor laser. Moreover, a system designed by Luo et al. [14] achieved an adjustable
drive current of 0–100 mA, with maximum relative errors of 0.06% for current control and
0.03 ◦C for temperature control. Through experimentation, Zhao et al. [15] found a certain
sinusoidal fluctuation relationship between the output power of the laser and the working
temperature of the laser. By analyzing the reasons for this phenomenon, the temperature
control circuit with the ADN8830 chip as the core was improved so that the temperature
control accuracy was increased from 0.5 ◦C to 0.02 ◦C. Gao [16] used a genetic algorithm to
optimize the control parameters of the PID controller, in order to obtain optimal parameter
values so that the temperature fluctuation range of the semiconductor laser was within
0.02 ◦C. Xin et al. [17] developed a double closed-loop temperature control system. The
outer-loop temperature control was based on the integrated module MTD1020T as the
core, and a temperature control accuracy of 0.5 ◦C could be achieved by optimizing the
digital PID parameters; the inner-loop temperature control was based on the LTC1923
control chip as the core, and a temperature control accuracy of 0.01 ◦C could be achieved by
adding the differential amplification link and setting the PI link. The experimental results
showed that the achieved temperature control accuracy of the semiconductor laser was
within 0.02 ◦C in 4 h. Su et al. [18] used a current series negative feedback circuit to achieve
a continuously adjustable semiconductor laser drive current in the range of 0–100 mA;
furthermore, the MAX1978 chip as the core with an analog PID circuit achieved 0.01 ◦C
temperature control accuracy of the semiconductor laser. Chen et al. [19] used the MAX1978
chip to achieve a temperature control accuracy of 0.01 ◦C, and extended the operating
linear region of the constant current source. Xu et al. [20] implemented the design of a
dual-channel current source using a deep negative feedback circuit, which could provide a
drive current with a regulation accuracy of 0.01 mA for a semiconductor laser. Through the
unremitting efforts of researchers, the performance of the drive and temperature control
system of semiconductor lasers has continuously improved. However, there is still room
for further improvement with regard to the accuracy of current and temperature control,
and there have not been enough studies on the construction of temperature control system
mathematical models.

This study systematically introduces the design ideas for a semiconductor laser cur-
rent drive and temperature control system. By studying constant-current drive circuits,
laser protection circuits, laser temperature measurement and control systems, model con-
structions of temperature control systems, and the simulation and optimization of control
algorithms, a high-precision semiconductor laser current drive and temperature control
system was designed. The experimental results showed that the system designed in this
study can provide a stable driving current for the semiconductor laser with a regulation
accuracy of 0.01 mA, and can improve the temperature control accuracy of the semicon-
ductor laser to 0.005 ◦C. This study’s mathematical model of temperature control system
was constructed with high accuracy by a combination of mechanism analysis and system
identification. This method has good applicability, and can provide a good reference for
relevant researchers.

2. Characteristics of Semiconductor Lasers

A semiconductor laser is a miniaturized laser with a positive-negative (PN) junction
or a positive-intrinsic-negative (PIN) junction as the working medium [21]. The threshold
current, output power, and wavelength of semiconductor lasers all vary with temperature,
due to the large effect of temperature on the physical properties of PN junctions [22,23]. In
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addition, the output power and wavelength of semiconductor lasers are directly related
to their operating current [24]. To keep the output characteristics of semiconductor lasers
stable, it is necessary to analyze their current and temperature characteristics.

2.1. Current Characteristics

The power-current (P-I) characteristics of semiconductor lasers are shown in Figure 1a.
When the injection current of a semiconductor laser gradually increases, the output optical
power slowly increases. However, when the injection current exceeds a certain value, the
output optical power sharply increases. The current that corresponds to this inflection point
is the threshold current of the semiconductor laser. Figure 1b shows the wavelength-current
(W-I) characteristic curve of a semiconductor laser at 25 ◦C. It can be seen that as the drive
current increases, the output wavelength of the semiconductor laser gradually moves
toward the long wave direction. Therefore, the stable output optical power and wavelength
of semiconductor lasers need to be achieved by precisely controlling their drive current.
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2.2. Temperature Characteristics

It has been shown that the temperature effect on the operating performance and
stability of semiconductor lasers is mainly reflected in the temperature effect on their
wavelength, threshold current, output power, and service life [25]. The temperature
characteristics of semiconductor lasers are shown in Figure 2. Due to the considerable
current density and dissipated power density that the PN junction is subjected to internally,
there are inevitably various nonradiative losses, free carrier absorption, and other loss
mechanisms [26]. As a result, a significant portion of the used electrical energy is converted
into heat, causing a rapid rise in the temperature of semiconductor lasers. When the
temperature of a semiconductor laser increases, the output power decreases, and heat
consumption increases, thus further increasing the laser’s temperature and resulting in a
vicious circle. As shown in Figure 2a, with an increase in temperature, the inflection point
of the P-I characteristic curve gradually moves to the right. Thus, the threshold current
of semiconductor lasers increases with an increase in temperature. Moreover, when the
temperature increases from 10 ◦C to 90 ◦C, the threshold current increases from 17 mA to
43 mA, and the output power of the semiconductor laser at the same operating current
decreases with an increase in temperature. In addition, temperature changes cause changes
in the forbidden bandwidth, with the active layer gap narrowing as the temperature
increases, and the output wavelength shifting in the long-wave direction (i.e., producing
a red shift) [27]. Figure 2b shows the temperature effect on the output wavelength of a
semiconductor laser at a drive current of 46 mA. To improve the stability of the laser’s
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output optical power and wavelength, the laser operating temperature needs to be kept
constant.
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3. Current Drive and Temperature Control Circuit Design
3.1. Overall Design Scheme

As shown in Section 2, to ensure a stable wavelength and optical power output from
a semiconductor laser, a stable drive current needs to be provided, and the operating
temperature needs to be kept constant. Therefore, this study proposed a high-precision
semiconductor laser current drive and temperature control system. The overall design
scheme is shown in Figure 3, and it mainly includes three parts: a constant-current drive
module, a temperature control module, and a microcontroller module. The constant-current
driver module consists of a voltage-controlled constant-current circuit, a sampling feedback
circuit, and a laser protection circuit to provide a stable and adjustable operating current
for the laser. The temperature control module collects the operating temperature of the
laser diode (LD) via a negative temperature coefficient (NTC) thermistor, and controls
the operating temperature of the LD by regulating the current level and direction of the
thermoelectric cooler (TEC) via a driver chip (MAX1968). The microcontroller module uses
an embedded microprocessor (STM32F103), which is responsible for driving the digital-to-
analog converter (DAC) and analog-to-digital converter (ADC) in the circuit module, and
for completing the data processing and algorithmic operations in the system.

3.2. Constant-Current Driver Circuit Design

Using the negative feedback principle, the constant-current drive circuit controls the
magnitude of the drive current by adjusting the level of conduction of the metal oxide
semiconductor field effect transistor (MOSFET), in order to ensure the stability of the drive
current. As shown in Figure 4, the drive current flows through the LD and generates
a voltage drop across Rs. The amplifier circuit formed by operational amplifier U2 and
resistors R2-R5 amplifies the voltage across resistor Rs to build a feedback voltage Vf , and
transmits Vf to the inverted input of U1. The voltage at the positive phase input of U1 is
the set voltage Vi. Moreover, the degree of MOSFET conduction is regulated by comparing
the voltage magnitude of Vf with that of Vi, thus controlling the amount of drive current
flowing through the LD. The whole constant-current driver circuit has a simple structure,
and contains four parts: a voltage reference source (Vi), error amplifier (U1), adjustment
transistor (Q1), and a feedback loop (U2, Rs, R2-R5). The voltage reference source, i.e.,
the set voltage Vi, is provided by the DAC8830, and the operational amplifier U1 acts
as an error amplifier, forming a control loop for the drive current with the adjustment
transistor and the feedback loop. When the drive current fluctuates, the output voltage
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of the error amplifier changes accordingly, and the change in drive current is suppressed
by the negative feedback regulation effect of the control loop. For example, when the
drive current is decreased, the feedback voltage Vf generated through the feedback loop is
reduced as well. The reference voltage originates from the positive phase input of the error
amplifier to provide a stable reference voltage. The decrease in Vf will result in an increase
in the output voltage of the error amplifier, and an increase in the gate voltage of the
regulator tube Q1. The higher gate-source voltage difference of Q1 will cause an increase in
the drain current, thus suppressing the decrease in drive current and maintaining a stable
output.
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The circuit in Figure 4 shows that when the drive current of LD is kept stable, the
following equations apply:

VU2+ =
R2

R2 + R3
·ILD·Rs, (1)

VU2− = VU2+ , (2)

Vf =

(
1 +

R4

R5

)
·VU2− , (3)
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Vf = Vi. (4)

In Equations (1)–(4), ILD denotes the drive current flowing through the LD, and VU2+

and VU2− denote the voltages at the forward and reverse inputs of the operational amplifier
U2, respectively. The sampling resistor Rs has a resistance of 1 Ω, R2 = R4 = 10 kΩ, and
R3 = R5 = 1 kΩ. By combining Equations (1)–(4) and substituting the specific values of
the relevant components for calculation, the drive current flowing through the LD can be
obtained as follows:

ILD =
Vi(

1 + R4
R5

)(
R2

R2+R3

)
·Rs

=
Vi

10Rs
. (5)

From Equation (5), it can be seen that the drive current ILD of the LD shows an ideal
linear relationship with the set voltage Vi. The 10 in the denominator of Equation (5)
represents the amplification factor of the amplification circuit that contains operational
amplifier U2 and resistors R2-R5. Without modifying the range of the set voltage Vi, the
magnitude of enlargement can be changed by changing the resistance values of R2-R5;
hence, the set range of the drive current can be tuned.

3.3. Current Limiting and Electrostatic Protection Circuit Design

Under practical operating conditions, excessive drive current and static electricity
are important causes of damage to lasers, and can also shorten their service life [28]. The
current limiting protection circuit for the laser was designed using the same operating
principle as the constant-current driver circuit. The voltage at the positive-phase input
of the operational amplifier U3 is the current-limiting voltage Vlim. When Vi < Vlim, the
degree of conduction of the MOSFET Q1 is less than that of Q2, and the driving current is
determined by Q1 and has a magnitude of Vi/10. When Vi > Vlim, the degree of conduction
of the MOSFET Q1 is greater than that of Q2, and the size of the drive current in the
drive circuit is clamped by Q2. At this time, the size of the current flowing through LD
is Vlim/10. In addition, the small capacitance ceramic capacitor C3, large capacitance
electrolytic capacitor C4, and transient diode D1 are connected in parallel at both ends of
the LD. Through C3, the high-frequency noise carried by the circuit front is filtered out. The
purpose of connecting C4 in parallel is to limit the voltage mutation at both ends of the LD,
and D1 is used to protect the LD from damage due to static electricity. Figure 5 shows the
specific circuit.
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3.4. Linear Slow-Start Design of the Drive Circuit

In addition to the current limiting and electrostatic protection circuits described in
Section 3.3, the LD drive circuit requires a slow-start design so that the drive current
increases gradually from zero to a set value, in order to avoid any inrush current damages
when the LD is switched on and off [29]. In previous studies, resistor-capacitor (RC)
slow-start circuits were usually used to suppress surge currents in LD driver circuits.
The traditional RC slow-start circuit, which uses the capacitor charging and discharging
principle, can eliminate the impacts of inrush currents. However, in the slow-start process
of the RC slow-start circuit, the rate of increase in the voltage across the capacitor is not
linear, but similar to a logarithmic function, which makes it difficult to accurately control the
timing of the slow-start process [30]. This study proposed a DAC-based software-controlled
linear slow-start strategy, which enables not only the precise control of the slow-start time,
but also enables linear variation in the drive current. The operation principle is that when a
semiconductor laser drive current is set, the microcontroller automatically calculates the
corresponding set voltage Vi, and divides the set voltage Vi equally to calculate the voltage
increment Vinc. When the drive circuit is activated, the microcontroller controls the output
voltage of the DAC for it to increase linearly from zero, each time by the value of Vinc,
until the output voltage reaches the set voltage Vi. The slow-start circuit test results are
shown in Figure 6, and it can be seen that the LD drive current linearly increased from
0 mA to 100 mA, with a slow-start time of 5 s. This strategy solves the problem of precisely
controlling the slow-start time in traditional RC slow-start circuits, and achieves linear
variation in the drive current. The slow-start time and the slope of the current change can
also be flexibly adjusted by modifying the control parameters of the DAC software.
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3.5. Temperature Control Circuit Design

A temperature measurement circuit consisting of an NTC thermistor can sense the
temperature changes in the LD, and the temperature control of the LD can be realized by
adjusting the magnitude and direction of the TEC current. The NTC thermistor RTH was
connected in series with a detection resistor with an accuracy of 0.01% as part of a voltage
divider circuit for proportional measurements. An NTC thermistor is a sensor resistance
whose resistance value decreases with increasing temperature. When the temperature
of the LD changes, the resistance value of the NTC thermistor will change accordingly,
causing the voltage at both ends of the NTC thermistor in the series voltage divider circuit to
change. Moreover, a constant excitation voltage is used to supply the voltage divider circuit,
and ADC is used to collect the voltage across RTH in order to determine the resistance
of RTH , and thus the temperature of the LD. ADI’s AD7124 was chosen for the ADC2 in
Figure 3. Using the AD7124’s internal reference voltage as the excitation voltage for the
NTC thermistor and detection resistor, and using this voltage as a reference voltage for
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the AD7124 to perform measurements, the errors in the excitation voltage source could be
eliminated, resulting in proportional measurement results.

The TEC operating state was controlled by MAX1968, a dedicated TEC driver chip.
The direction and magnitude of the TEC drive current are determined by the control
voltage magnitude of the MAX1968, and the relationship between the TEC drive current
and control voltage is as follows:

ITEC =
VCTLI −VREF

10·RSENSE
, (6)

where ITEC is the TEC drive current, VCTLI is the control voltage of the MAX1968, VREF is
the reference voltage (1.5 V), and RSENSE is the sense resistance of the TEC drive current
(50 mΩ). The DAC was selected to replace the resistive voltage divider circuit, in order to
control the voltage magnitudes of the MAXV, MAXIP, and MAXIN pins, allowing flexible
settings for the maximum voltage, maximum forward current, and maximum reverse
current across the TEC for its protection. Figure 7 shows the TEC drive circuit.
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4. Implementation of the Temperature Control Algorithm
4.1. Model Construction of the Temperature Control System

Building reasonable and accurate system mathematical models helps to better under-
stand control systems, and to enhance their performance. The NTC thermistor and TEC in
the temperature control system both have thermal inertia, and the idealized mathematical
model of the TEC can be regarded as a first-order inertia link [31]. It takes some time for
the thermistor to sense temperature change in the LD, and some time for the feedback
control of the TEC to manifest itself. Therefore, the semiconductor laser temperature control
system can be regarded as a first-order inertia link object with an additional hysteresis link.
Thus, the first-order inertia link to introduce a delay link is based on the transfer function,
expressed as follows:

G(s) =
K

Ts + 1
e−τs, (7)

where T is the time constant of TEC, K is the scaling factor, and τ is the pure lag time
constant.

For the constructed mathematical model of the temperature control system, a model
identification method based on the pseudo-random binary sequence and a DE algorithm
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was adopted to find the unknown quantities of T, K, and τ. The pseudo-random binary
sequence, also known as the M sequence, is a sequence of random variables generated by
a linear shift register that contains both “0” and “1” logic. The nature of the M sequence
is close to that of white noise signals, and the principle is simple and easy to implement
in engineering, as it can ensure that the system has good recognition accuracy [32]. The
DE algorithm, as an emerging and evolutionary computational technique, has been used
with success in a number of fields due to its simplicity, the low number of parameters
to be determined, its fast convergence, and strong global search capabilities [33]. The
generated M sequence was fed into the temperature control system as an excitation signal,
and the logic “0” and “1” in the M sequence were converted into the corresponding TEC
operating current. After the previous experiments and analysis, for the control system
in this study, the order of the M sequence was set to 4 (i.e., the M sequence cycle period
was 15), and the pulse width was set to 5 s, which was more reasonable. Meanwhile, the
temperature change information of the LD was collected. When acquiring data, it should be
noted that when the M sequence was first applied to the system, the output of the control
system was non-stationary for a period of time, due to the non-zero initial conditions. To
ensure the accuracy of identification, this non-stationary process should be avoided, and
data can normally be obtained beginning from the second cycle of the M sequence. The
unknown quantities of T, K, and τ were used as population individuals of the DE algorithm,
setting the population size to 50 and the number of iterations G to 100. Figure 8 shows the
solving process of the DE algorithm. The basic DE algorithm made the population diversity
smaller as the number of evolutionary generations increased during the solution process,
converged to local extremes prematurely, or caused the algorithm to stagnate. This was
undoubtedly fatal to the DE algorithm that relied on population differences for evolution,
and deteriorated the performance of the algorithm during the evolutionary process. In
order to solve the mentioned drawbacks of the basic DE algorithm, Equations (8) and (9)
were used to complete the mutation operation as well as the crossover operation for the
characteristics of the DE algorithm, respectively, in order to avoid premature convergence
of the DE algorithm to local extremes.

hi = Xr1 + (Fmin + 0.5·(1− cos(i·π/G))(Fmax − Fmin)(Xr2 − Xr3) (8){
vi,j = Xi,j, rand(0, 1) > (CRmin + 0.5·(1− cos(i·π/G))(CRmax − CRmin))
vi,j = hi,j, else

(9)

Equation (8) indicates that in the jth iteration, three individuals, Xr1, Xr2, and Xr3
(r1 6= r2 6= r3 6= i), are randomly selected from the population, and the generated variance
vector is hi. The terms Fmin and Fmax stand for the minimum and maximum values of
the scaling factor, which are generally chosen from [0,2]. The condition for the crossover
operation on the population is shown in Equation (9). When the random number between 0
and 1 is greater than the set crossover condition, the crossover vector vi,j keeps the original
vector value Xi,j the same; otherwise, it is replaced with the generated variance vector
hi,j. In Equation (9), CRmin and CRmax denote the minimum and maximum values of the
crossover operator, respectively, and the range of values is in [0,1].

Based on the excitation signal and output response of the temperature control system,
the model was identified using the DE algorithm to solve unknown parameters. The
excitation signal and output response of the system identification are shown in Figure 9.
The LD temperature varied with the TEC current, showing a steady periodic variation. As
the number of iterations (G) increased, the fitness function converged rapidly to reach a
minimum value of 15.41149 after 38 iterations, as shown in Figure 10a. The final transfer
function of the temperature control system can be obtained as follows:

G(s) =
−0.061575
7.1748s + 1

e−0.412s. (10)
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(b) output response.

Based on the excitation signal, the corresponding system response was calculated
using the obtained transfer function, and compared with the original data collected from
the temperature control system. As shown in Figure 10b, the calculated values of the system
response fit well with the collected raw data, indicating that the system functions obtained
from the model identification scheme based on the M sequence and DE algorithms had
a high degree of accuracy, and that it could be used for subsequent optimization of the
control algorithm.

The system model constructed in this study demonstrated both applicability and high
accuracy. For the laser temperature control system with a similar design structure as that in
the study, the mathematical model given in Equation (7) could be directly applied. Only
some parameters of the M sequence and DE algorithms needed to be modified according
to the actual situation during the system identification process, in order to ensure a final
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system model with high accuracy. To ensure the accuracy of system identification, it is
necessary to fully collect the input and output data of the system; however, a large amount
of data leads to long computation times for the DE algorithm. It will be a future research
direction for this method to reduce the computation time by optimizing the DE algorithm
under the requirement that the accuracy of system identification will not be reduced.
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4.2. Fuzzy PID Controller

Temperature control systems mostly use PID control algorithms. However, to improve
the accuracy of temperature control due to complex interference factors, the PID parameters
must be continuously adjusted during the control process [34]. Therefore, in this research,
a fuzzy PID controller was chosen as a temperature control algorithm; it could compensate
for accuracy shortcomings of fuzzy control and realize the real-time adjustment of the
control parameters of the PID algorithm. The working principle of the fuzzy PID controller
is shown in Figure 11. The fuzzy PID controller takes the error e and the error rate of
change ec as inputs, and adjusts the proportional coefficient Kp, integral coefficient Ki, and
differential coefficient Kd of the PID algorithm according to the set fuzzy control rules in
order to meet requirements of the control parameters at different e and ec. Thus, control
systems could have good dynamic and static performance.
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Figure 11. Schematic of the fuzzy PID controller.

According to the actual condition of the semiconductor laser temperature control
system, the intervals of e, ec, Kp, Ki, and Kd were set as [−15,15], [−5,5], [−5,5], [−2,2], and
[−2,2], respectively, and the fuzzy subsets of the input and output parameters were all set
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as follows: {negative big, negative medium, negative small, zero, positive small, positive
medium, positive big} = {NB, NM, NS, ZO, PS, PM, PB}. Moreover, the affiliation function
was triangular, and the centroid method was chosen for clarity. The centroid method takes
the center of gravity of the area enclosed by the affiliation function curve and the horizontal
coordinate as the final output value of the fuzzy controller. For the case of a discrete domain
with m output quantization levels, we use the following:

u =
∑m

k=1 vkµv(vk)

∑m
k=1 µv(vk)

, (11)

where u is the exact value of the fuzzy controller output after defuzzification, vk is the
value in the domain of the fuzzy control quantity, and µv(vk) is the affiliation value of vk.
The centroid method has smoother output control, and the output will change even if it
corresponds to a small change in the input signal. The ∆Kp, ∆Ki, and ∆Kd in Figure 11 are
the exact output values of the fuzzy controller after defuzzification by the centroid method.
The new control parameters were obtained by adding the corresponding corrections ∆Kp,
∆Ki, and ∆Kd to the original control parameters Kp, Ki, and Kd, in order to achieve real-time
modification of the control parameters of the PID controller. The final control signal was
obtained by the incremental PID calculation shown in Equation (12):

∆u(k) = Kp[e(k)− e(k− 1)] + Kie(k) + Kd[e(k)− 2e(k− 1) + e(k− 2)], (12)

where ∆u(k) denotes the kth control signal increment, and e(k), e(k− 1), and e(k− 2)
represent the error values of the kth, k− 1, and k− 2 times, respectively.

The fuzzy control rules at the core of a fuzzy controller are not specific to a particular
mathematical model, and can be applied to a wide range of control systems. To improve
the performance of the temperature control system, the fuzzy control rules were simulated
and optimized for the temperature control system designed in this study. The fuzzy
control rules that were formed from previous experiences were used as the initial fuzzy
control rules. Simulink is a software package for modeling, simulation, and analysis of
dynamic systems integrated in MATLAB, which has powerful modeling capabilities and
visualization functions and has been widely used in the simulation and design of control
systems [35]. According to the mathematical model constructed in Section 4.1, Simulink
was used to build the simulation system shown in Figure 12, and also to obtain its input and
output data. According to the response of the system, the initial fuzzy control rules were
iteratively adjusted using the MATLAB fuzzy toolbox, and the final fuzzy control rules
were obtained, as shown in Table 1. The optimized fuzzy PID controller was simulated
using Simulink to compare with the regular PID controller, and the simulation results
as shown in Figure 13. As can be seen from Figure 13, compared with the regular PID
controller, the optimized fuzzy PID controller had two advantages: the response was more
rapid when the set value was changed, and the overshoot was reduced; moreover, the
change was smoother near the set value, avoiding frequent oscillations.

Table 1. Table of the fuzzy control rules (∆Kp/∆Ki/∆Kd).

E
EC

NB NM NS ZO PS PM PB

NB PB/NB/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB ZO/ZO/NM ZO/ZO/PS
NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/ZO/ZO
NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO
ZO PM/NM/ZO PM/NM/NS PS/NS/NS ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO
PS PS/NM/ZO PS/NS/ZO ZO/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO
PM PS/ZO/PB ZO/ZO/PS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB
PB ZO/ZO/PB ZO/ZO/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB
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5. Experimental Results and Analysis

The semiconductor laser current drive and temperature control system designed
in this study is shown in Figure 14. The system is powered by a direct current (DC)
regulated power supply, and the personal computer (PC) collects and displays the system
operation information in real time. The experiments were conducted at 27 ◦C in an indoor
environment without significant ventilation.
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regulated power supply, (2) constant-current driver circuit, (3) butterfly semiconductor laser, (4) tem-
perature control circuit, (5) microcontroller, and (6) PC.
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5.1. Experiments with Constant-Current Output Characteristics

The driving current test range was set from 0 to 100 mA, and the driving current was
set at 2 mA intervals to obtain the relationship between the actual and set values of the
driving current. Based on the experimental data, the actual value of the drive current, ILD,
was fitted to the set value, ISET , using the least squares method, and the fitted curve was
demonstrated, as shown in Figure 15a. Its first-order fitting equation is as follows:

ILD = 0.99981× ISET − 0.15211. (13)
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Using the linearity formula, as follows:

γ1 = (|∆Imax|/Imax)× 100%, (14)

the linearity between the set and actual values of the drive current was found to be 0.0129%.
Moreover, the maximum deviation ∆Imax between the actual and set values of the drive
current was 0.0129 mA, which occurred at 14 mA, and the maximum current setting value
Imax was 100 mA.

The drive current stability was tested by setting the drive current to 50 mA, and the
test results were demonstrated, as shown in Figure 15b. During the test time period, the
maximum value of the drive current was 50.0065 mA, the minimum value was 49.9928 mA,
and the average value was 49.9998 mA. Using the following stability equation, the drive
current stability was found to be ~0.0274%, where I0 is the drive current setting value:

γ2 = [(Imax − Imin)/I0]× 100%. (15)

The laser operating current could be kept stable for a long time, which helped to
improve the stability of the output wavelength and optical power of the semiconductor
laser. In practical applications, the linearity between the input and output of the drive
circuit will become worse due to the influence of instability factors, such as the deviation of
the components themselves and the ambient temperature. By fully differentiating Equation
5 and substituting specific values, the degree of influence of each part of the drive current
control loop on the current stability can be calculated. The stability of the drive current
is mainly affected by the fluctuation of the reference voltage and the temperature drift
of the sampling resistor. In order to obtain a more stable drive current, it is necessary to
continue improving the stability of the reference voltage, and to use a sampling resistor
with a smaller temperature drift.
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5.2. Temperature Control Experiments with Semiconductor Lasers

The semiconductor laser drive current was set to 50 mA, and the initial operating
temperature was set to 30 ◦C. After the laser operating temperature was stabilized, the
set temperature was changed to 20 ◦C, 22 ◦C, 24 ◦C, 26 ◦C, and 28 ◦C, in turn, to test
the temperature control stability. As shown in Figure 16a, after the set temperature was
changed, the LD temperature rapidly approached the target value, reached the temperature
minimum in ~20 s, and gradually stabilized around the target value after a small overshoot,
where the maximum overshoot was ~0.07 ◦C. As the difference between the set temperature
value and initial operating temperature increased, the overshoot of the temperature profile
slowly increased, and the time taken for the temperature profile to stabilize around the
set value also accordingly increased. The drive current setting was kept constant, and the
laser operating temperature was set to 25 ◦C. After the LD temperature was stabilized,
the continuous change data were intercepted for half an hour to observe the temperature
control accuracy. As shown in Figure 16b, the actual operating temperature of the LD
fluctuated up and down around the set temperature, and the temperature fluctuation was
small, with a minimum temperature of 24.995 ◦C, a maximum temperature of 25.004 ◦C,
and a maximum temperature error of 0.005 ◦C, thus exhibiting high temperature control
accuracy.
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6. Conclusions

In this study, a high-precision semiconductor laser current drive and temperature
control system was proposed on the basis of analyses performed on semiconductor laser
characteristics, hardware circuit design, control system mathematical model construction,
and control algorithm simulation and optimization. Closed-loop negative feedback control
was used, and it reduced current fluctuations and improved the linearity and stability
of the drive current. The DAC-based software-controlled slow-start strategy overcame
the disadvantages of conventional RC slow-start circuits, such as imprecise delay times,
while realizing a linear variation in the drive current. Moreover, the M sequence and DE
algorithm combined with the system identification scheme was able to accurately model
the temperature control system and provide an important basis for the optimization of
control algorithms. A fuzzy PID controller was used to adjust the PID control parameters
online, and the fuzzy control rules were optimized through system simulation to make the
fuzzy controller more suitable for the temperature control system of the semiconductor
laser designed in this research. The experimental results showed that the system achieved a
linear adjustable drive current within 0–100 mA, with a linearity of 0.0129% and a stability
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of 0.0274%, and that it showed good temperature control stability with a temperature
control accuracy of 0.005 ◦C.

Overall, the current drive and temperature control system designed in this study can
be used in applications that require high laser output stability, and it can also be used as a
reference for the design of current drive and temperature control systems for semiconductor
lasers.
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