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Abstract: Stepping-based targets such as the number of steps per day provide an intuitive and
commonly used method of prescribing and self-monitoring physical activity goals. Physical activity
surveillance is increasingly being obtained from wrist-worn accelerometers. However, the ability to
derive stepping-based metrics from this wear location still lacks validation and open-source methods.
This study aimed to assess the concurrent validity of two versions (1. original and 2. optimized) of the
Verisense step-count algorithm at estimating step-counts from wrist-worn accelerometry, compared
with steps from the thigh-worn activPAL as the comparator. Participants (n = 713), across three
datasets, had >24 h continuous concurrent accelerometry wear on the non-dominant wrist and
thigh. Compared with activPAL, total daily steps were overestimated by 913 ± 141 (mean bias ±
95% limits of agreement) and 742 ± 150 steps/day with Verisense algorithms 1 and 2, respectively,
but moderate-to-vigorous physical activity (MVPA) steps were underestimated by 2207 ± 145 and
1204 ± 103 steps/day in Verisense algorithms 1 and 2, respectively. In summary, the optimized
Verisense algorithm was more accurate in detecting total and MVPA steps. Findings highlight
the importance of assessing algorithm performance beyond total step count, as not all steps are
equal. The optimized Verisense open-source algorithm presents acceptable accuracy for derivation of
stepping-based metrics from wrist-worn accelerometry.

Keywords: physical activity; accelerometry; ambulatory measurement; algorithms

1. Introduction

Physical activity (PA) of any intensity is associated with reduced all-cause mortality [1,2]
and reduced risk of chronic disease, including type 2 diabetes [3] and cardiovascular disease [4].
Current physical activity guidelines for adults recommend ≥150 min/week of moderate-to-
vigorous PA (MVPA) for optimal health benefits [5]. Meanwhile, number of steps per day
as a way of describing physical activity level is a simple and easily accessible metric [6] and
intuitively resonates with the general public to a greater degree than time spent in MVPA [7].
Evidence also suggests that number of steps per day has a similar pattern of association with
health outcomes as time in MVPA [2,8,9].

During the past decade there has been an exponential rise in the consumer wearables
market, whereby 21% of US adults now own a wearable device with the capability of
monitoring physical activity (Pew Research, 2020). A recent systematic review showed that
wearing a consumer physical activity device is effective at increasing physical activity [10].
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These monitors are primarily worn on the wrist and most focus on the number of steps
achieved per day as their main physical activity metric. Furthermore, these metrics are
estimated using proprietary algorithms which are not shared with researchers. In addition,
research-grade physical activity monitors are increasingly worn at the wrist, e.g., in UK
Biobank [11] and the National Health and Nutrition Examination survey in the USA [12].
Recently, in the UK Biobank dataset, del Pozo Cruz and colleagues found that more
daily steps were associated with a lower risk of all-cause and cancer mortality for up
to 10,000 steps/day [13]. However, other findings have demonstrated benefits to health
outcomes such as cardiovascular disease risk markers, cardiovascular events and all-cause
mortality are markedly reduced beyond ~8000 steps a day in adults [2,8,14,15]. Apart from
the most recent study by del Pozo Cruz et al. [13], the evidence-base relating to step-counts
and health has mostly originated from hip- or thigh-worn accelerometers, which, until
recently, were the common placement locations for research accelerometry. Thus, there
remains a distinct lack of research pertaining to step counts derived from wrist-worn
accelerometry. Wrist-worn accelerometers are increasingly being used within large-scale
population surveillance research [11,16]. Therefore, being able to generate step-counts
is desirable in order to provide clearer physical activity prescription, which can also be
self-monitored using consumer wearable devices.

Alongside the growth in use of commercial and research-grade wrist-worn accelerom-
eters, numerous methods exist for deriving step counts from wrist-worn accelerometers,
most of which remain proprietary and vary widely in accuracy. Toth et al. [17] reported
that when wearing two different devices on each wrist and using different step-detection
methods to estimate step counts during one free-living day, the difference in the number
of steps between actual steps derived from video-recorded steps and the step-detection
methods ranged between −25% to +102%. Recently, Ducharme et al. [18] presented a peak
detection method for estimating steps from hip- and wrist-worn accelerometers, showing
greater accuracy than existing proprietary algorithms available within the ActiLife soft-
ware. Furthermore, two different neural network algorithms were trained and tested by
Luu et al. [19], and reported a high step-count accuracy compared with video-recorded
steps when applied to the open-source Clemson dataset [20]. However, this was assessed
in three different activities to simulate different gait patterns in a small sample of 30, thus,
its ability to detect steps in free-living conditions remains unknown. The open source
Verisense step-count algorithm for wrist accelerometer data [21] is another peak detec-
tion algorithm that was validated using the Clemson dataset [20], that has demonstrated
accurate detection of steps (mean absolute percent error of <10%) during a controlled
45-minute cardiac rehabilitation session in 22 older adults [22], but had a tendency to
underestimate cadence as walking speeds increased [23]. This same algorithm was used in
a recent UK Biobank analysis [13]. However, to date there are no data on the performance
of this algorithm in a free-living setting. Further, the algorithm has recently been optimized
following validation during walking and running to better capture cadence as walking
speed increases [23]. Thus, there is a need for detailed robust free-living comparison of
the original and optimized Verisense methods, for estimating steps from wrist-worn ac-
celerometry, with valid established methods. This provides an evidence base for use of the
algorithm and informs further optimization of algorithms, where warranted. The aim of
this study was to assess the concurrent validity of the Verisense step-count algorithm at
estimating step-counts from wrist-worn accelerometery in three free-living datasets.

2. Materials and Methods
2.1. Design and Participants

Data from three trials were used in this analysis to ensure representation of age, PA
levels and accelerometer brand.

SMART Work and Life: A total of 756 desk-based workers were recruited from six
councils in the UK [24]. To be eligible for this study, participants were required to be
≥18 years of age, work ≥60% full-time equivalent, spend most of their waking day sitting
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and be able to walk without assistance. Baseline data from this study for both activPAL and
Axivity devices were used in this analysis. Ethical approvals from the two lead institutions
were obtained prior to the study commencing.

Equivalency: A sample of 56 adults was recruited from two UK universities (Uni-
versity of Leicester and Loughborough University) to wear multiple different brands of
accelerometer on the dominant and non-dominant wrists, and the thigh to assess changes
in PA metrics between wear location and brands [25]. We used the Axivity data only
worn on the non-dominant wrist for this analysis, in addition to the activPAL data. No
inclusion/exclusion criteria were specified other than the ability to wear the accelerom-
eter devices during the monitoring period. Ethical approval was obtained from ethics
representatives from the University of Leicester prior to the study commencing.

STAND UP: A total of 60 participants aged ≥60 and 65–79 years who engaged in
≤75 min of self-reported vigorous-intensity PA per week and were able to walk unassisted
were eligible (Clinical trial number NCT02453204). We used free-living data from both the
activPAL and GENEActiv monitors in this analysis. Ethical approval was provided from
an NHS Research Ethics Committee (Derby, UK).

2.2. Participant Characteristics

Self-reported demographic data were obtained during baseline visits. Participant sex,
ethnicity, date of birth (from which age was calculated), height and body mass were collected.
Height and weight were used to calculate body mass index (BMI) for descriptive purposes.

2.3. Accelerometer Assessment

Wrist-worn accelerometers: The Axivity was worn on the non-dominant wrist in
SMART Work and Life and Wrist equivalency studies. The GENEActiv was worn on the
non-dominant wrist in STAND UP study. Across all studies, the accelerometers were set
up to record at a sampling frequency of 100 Hz and with a dynamic sampling range of
±8 g. Devices were worn continuously for 24 h/day on the non-dominant wrist for 7 days,
except for SMART Work and Life which measured behaviors over 8 days.

Thigh-worn accelerometer: The activPAL (model: activPAL3 micro) was used in all
three studies, recording accelerations at a sampling frequency of 20 Hz and with a dynamic
range of ±2 g. The device was attached to the right thigh and worn for 7 days, except for
SMART Work and Life, in which it was worn for 8 days. Participants wore the monitor
continuously 24 h/day, only removing it to take part in water-based activities or to re-attach
the device with a fresh dressing. Steps per day determined from the activPAL was used
to assess concurrent validity of the Verisense algorithm. The activPAL was the reference
measure as it has demonstrated high accuracy in detecting step count and stepping cadence
during controlled laboratory and free-living conditions [26–28]

2.4. Deriving Steps from Wrist-Worn Accelerometer Data: Algorithm Conception
and Development

The algorithm chosen (henceforth referred to as the Verisense algorithm) for this
analysis was based on initial work estimating steps using acceleration patterns from smart-
phones [29]. This algorithm uses a peak detection method with a set minimum acceleration
threshold. Each peak is subsequently assessed for periodicity, similarity, and continuity
to filter out artefacts that are not steps [29]. Due to the tendency for a high number of
false positives observed when applying this method to wrist-worn accelerometry [21] an
additional threshold was included which removed steps if the magnitude of the acceler-
ation peak was not sufficient. Initially, 7776 combinations of thresholds were assessed
prior to the best performing combination being published online, referred to as Verisense
1 hereafter [21]. Following preliminary validation in SMART Work and Life data [30], a
training subset of 16 participants from the SMART Work and Life dataset, representing
participants with good agreement, as well as under- and over-estimation of step counts,
was used to optimize the parameter thresholds within the algorithm to reduce bias. Data
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for these 16 participants were not included in this analysis because the parameter thresh-
olds were optimized specifically for those files. Thus, the sample size for the SMART
Work and Life study was reduced from N = 656 to 640. In total, 1152 different parameter
threshold combinations were tested on the subset of data. and the combination which
balanced performance improvements in under- and over-estimation of step counts was
deemed most appropriate to apply to the full dataset. These optimized algorithm param-
eter thresholds and the Verisense algorithm are referred to as Verisense 2 hereafter (see
Table 1 for parameter threshold specifications between both versions of the algorithm and
Supplemental material S1 for further information on algorithm parameter optimization).

Table 1. Threshold changes between Verisense algorithms.

Threshold Description Parameter Unit Verisense 1 Verisense 2

Peak detection threshold Samples 3 4
Minimum periodicity threshold Samples 5 4
Maximum periodicity threshold Samples 15 20

Similarity threshold G −0.5 −1.0
Window size of continuity Samples 4 4

Number threshold of continuity Number of windows 4 4
Variance threshold for motion recognition Variance of G 0.001 0.01

Magnitude threshold G 1.2 1.25

2.5. Accelerometer Data Processing

All devices were initialized for data collection and downloaded, following wear, using the
relevant manufacturers’ software. Axivity devices were initialized and raw data downloaded
in raw.cwa format using OmGui (OmGui Version 1.0.0.30, Open Movement, Newcastle UK).
GENEActivs were initialized, and raw data downloaded in .bin format using GENEActiv
PC (version 3.1). The activPAL devices were initialized and raw data downloaded in .csv
format using PALanalysis (version 8.11.8.75, PAL Technologies, Glasgow, UK). Raw activPAL
data were processed in GGIR to make use of the non-wear detection algorithms within this
process to ensure that only days with synonymous 24 h wear for both monitors were included
in the analysis. Raw data for the Axivity, GENEActiv and activPAL were processed within
open source software R (version 4.1.2, www.cran.r-project.org, accessed on 23 March 2022)
using R-package GGIR version 2.6-0 [31]. GGIR is an R-package to process multi-day raw
accelerometer data for physical activity and sleep research. Signal processing within GGIR
calibrates the raw data using local gravity as a reference [32], identifies periods of non-wear
and instances of data clipping due to high acceleration values. Following this, the raw
acceleration across three axes were combined to summarize dynamic acceleration as Euclidian
Norm minus 1 g (ENMO), expressed in milli-gravitational units (mg), and averaged over 5 s
epochs. Parameters used in GGIR are detailed in Supplementary methods S2. We utilized
the external function embedding feature present in GGIR to synonymously run the Verisense
algorithms 1 and 2 on the raw wrist accelerometer data, with the number of steps detected
provided per 5 s epoch. From this we derived step cadence per 5 s epoch to generate the
number of steps that were MVPA steps (≥100 steps/min), before collapsing the dataset to
daily data.

Following the above procedures, any day of data which resulted in a post-calibration
error greater than 10 mg was removed from the analysis. Additionally, only days containing
24 h wear-time from both the wrist and the thigh monitor were included (days which relied
on imputation of data from other days to generate 24 h data were removed). The PAL batch
was used to generate daily summaries for time spent sitting, standing and stepping, and
the number of steps achieved.

2.6. Statistical Analysis

Continuous participant characteristics were calculated as mean ± standard deviation
(SD) and categorical data as the number (percentage). Bland–Altman validation analysis

www.cran.r-project.org


Sensors 2022, 22, 9984 5 of 14

was used to compare the number of steps and MVPA steps between the activPAL and the
Verisense algorithms for each dataset and the datasets combined. Mean bias and limits of
agreement (LoA) were generated to describe the level of agreement [33]. All analyses were
performed in Rstudio using the Blandr package (version 0.5.1). All values are expressed as
mean (95% Confidence intervals), unless stated otherwise. Bland–Altman plots were also
generated within R using packages Blandr and ggplot2 (version 3.3.5).

3. Results

In total, 713 (86%) participants across the three studies had data from both the wrist
accelerometer and activPAL on ≥1 day of 24 h wear. This consisted of 640 (85%), 46
(82%) and 27 (90%) from the SMART Work and Life, Equivalency and STAND UP studies,
respectively. Table 2 summarizes the descriptive characteristics of the participants in each
study separately and combined. Briefly, participants were aged 44.6 (9.7) years, 71.0%
female, 71.2% White European and with a mean BMI of 26.2 (5.9). STAND UP participants
were the least active, and Equivalency participants the most active regardless of whether
PA was derived from the wrist or thigh accelerometers; though differences between groups
were greater when PA was measured at the thigh, compared with the wrist (see Table 2).

Table 2. Participant characteristics for each study.

Characteristic SMART Work and
Life Wrist Equivalency STAND UP Overall

N 640 46 27 713
Age (years) 44.8 (10.3) 24.6 (4.5) 73.3 (4.2) 44.6 (9.7)

Sex, n female 463 (72.3%) 29 (63.0%) 14 (51.9%) 506 (71.0%)
Ethnicity, n White British 455 (71.1%) 39 (84.8%) 14 (51.9%) 508 (71.2%)

BMI (kg/m2) 26.4 (6.1) 23.2 (3.8) 26.4 (3.9) 26.2 (5.9)
Sitting time (min/day) 603.6 (94.8) 589.3 (130.0) 557.2 (116.0) 601.0 (98.5)

Standing time (min/day) 233.6 (75.6) 216.1 (76.1) 300.0 (85.4) 235.1 (77.1)
Stepping time (min/day) 110.9 (34.0) 117.8 (52.9) 114.9 (34.7) 111.5 (35.5)
Average acceleration (mg) 27.6 (7.9) 31.1 (9.6) 25.1 (4.9) 27.7 (8.0)

Intensity gradient −2.54 (0.23) −2.38 (0.33) −2.75 (0.20) −2.55 (0.24)

BMI, Body mass index; values are expressed as mean ± SD or n (%), unless stated otherwise. The intensity
gradient describes the negative curvilinear relationship between physical activity intensity and the duration of
time spent in that intensity during a 24 h day. A more negative gradient (lower value) represents less time spent
in higher intensity activities.

The Bland–Altman results for each study, and overall, are shown in Table 3 and Figure 1
(all studies combined) and Figure 2 (separate studies). Datapoints above 0 indicated that
the Verisense algorithm overestimated steps, relative to the activPAL, while datapoints
below the line indicated that the Verisense algorithm underestimated steps. relative to the
activPAL. Results of the original algorithm (Verisense 1) are in the left panel and those for
the optimized algorithm (Verisense 2) in the right panel. Across all three samples combined,
the Verisense 1 algorithm resulted in a mean overestimation of 913 (772, 1054 (95% limits
of agreement, upper and lower dashed lines)) steps/day compared with the activPAL
(see Figure 1, left panel). This was equivalent to a 9.7% overestimation. The bias in steps
from the Verisense 2 algorithm was lower, with an overestimation of 742 (592, 891) steps
a day, equating to a 7.9% overestimation. Similar limits of agreement between the two
algorithms were seen (Table 3). There was also a proportional bias observed in the Verisense
1 algorithm, evident in the negative slope of the best-fit line (Figure 1, left panel). This
suggested that, as the number of activPAL assessed daily steps increased, the bias reduced
and started underestimating steps from ~13,000 steps and above. However, the Verisense 2
algorithm resulted in no proportional bias (horizontal best-fit line) across the range of daily
steps (Figure 1, right panel), except for a small proportional bias in the Equivalency dataset
(Figure 2, middle right).
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Table 3. Agreement between steps derived by the activPAL and steps derived by the Verisense
algorithms applied to wrist accelerometer data.

Outcome SMART Work and
Life Equivalency STAND UP Overall

N 640 46 27 713
N valid days 4.9 (4.7, 5.0) 2.1 (1.8, 2.4) 3.9 (3.2, 4.6) 4.7 (4.5, 4.8)

ActivPAL steps 9369
(9117, 9622)

10,345.3
(8924, 11,767)

7282.7
(6214, 8352)

9352.2
(9103, 9601)

Verisense original algorithm (1)

Verisense steps 10,239
(10,025, 10,454)

10,829
(9723, 11,935)

9922
(9052, 10,792)

10,265
(10,058, 10,472)

Mean difference to
activPAL

+870
(730, 1009)

+501
(−311, 1313)

+2639
(1789, 3490)

+913
(772, 1054)

95% LoA’s −2648, 4388 −4860, 5861 −1573, 6852 −2837, 4663

Verisense refined algorithm (2)

Verisense steps 10,056
(99,796, 10,316)

11,269
(10,017, 12,521)

8975
(7969, 9981)

10,093
(9844, 10,344)

Mean difference to
activPAL

+687
(535, 839)

+942
(150, 1733)

+1692
(749, 2635)

+742
(592, 891)

95% LoA’s −3139, 4513 −4280, 6164 −2982, 6366 −3235, 4718

N valid days, number of days which contained 24 h wear for both accelerometers; LoA, Limits of Agreement.
Values are expressed as mean (95% CI) steps per day unless stated otherwise.
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Figure 1. Bland–Altman plot showing the differences in total steps/day derived from the Verisense
1 and Verisense 2 algorithms compared with the activPAL across the mean total steps/day for the
overall sample. The blue line depicts mean (95% CI) proportional bias. Dashed black lines depict ±
95% limits of agreement and mean bias. LoA, Limits of Agreement.
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When assessing the samples separately, the overestimation of steps was largest in
the least active sample, STAND UP, for both the Verisense 1 and Verisense 2 algorithms.
despite the mean bias between the Verisense 1 and Verisense 2 being reduced by a third
(Table 3). In the most active sample, Equivalency, despite initially having the smallest bias
in the Verisense 1 algorithm. of 501 steps/day, in the Verisense 2 algorithm exhibited an
increased bias to 942 steps/day within the Equivalency sample, with the limits of agreement
remaining similar.
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The Bland–Altman results for the number of steps at a MVPA intensity are shown
in Table 4 and Figure 3 (all studies combined) and Figure 4 (separate studies). Across
all three samples combined the number of MVPA steps derived from the Verisense 1
algorithm was 2207 (2062, 2351) steps/day lower compared with the number of MVPA
steps/day derived from the activPAL (Table 4). The number of MVPA steps derived
from the Verisense 2 algorithm resulted in a smaller underestimation of 1204 (1101, 1307)
steps/day compared with MVPA step/s day derived from the activPAL (Figure 3, right
panel compared with the left panel). The relative change in the underestimation of MVPA
steps/day between Verisense 1 and Verisense 2 algorithms were broadly similar, with
reductions of 46%, 48% and 51% in the Equivalency, STAND Up and SMART Work and Life
datasets, respectively. All three datasets, combined (Figure 3) and individually (Figure 4),
displayed a proportional bias, such that, as the number of MVPA steps/day increased, the
underestimation of MVPA steps, compared with the activPAL, increased (negative sloped
best-fit line). This proportional bias improved slightly in the Verisense 2 algorithm, though
remained evident.

Table 4. Agreement between MVPA steps derived by the activPAL and MVPA steps derived by the
Verisense algorithms applied to wrist accelerometer data.

Outcome SMART Work and
Life Equivalency STAND UP Overall

N 640 46 27 713
N valid days 4.9 (4.7, 5.0) 2.1 (1.8, 2.4) 3.9 (3.2, 4.6) 4.7 (4.5, 4.8)

ActivPAL MVPA steps 4309
(4102, 4516)

5214
(4092, 6336)

2913
(2110, 3716)

4306
(4104, 4508)

Verisense original algorithm (1)

Verisense MVPA steps 2085
(1979, 2192)

2426
(1851, 3001)

1893
(1345, 2442)

2099
(1995, 2204)

Mean difference to
activPAL

−2224
(−2074, −2374)

−2788
(−2055, −3521)

−1019
(−662, −1377)

−2207
(−2062, −2351)

95% LoA’s −6010, +1562 −7571, +1995 −2791, +752 −6055, +1641

Verisense refined algorithm (2)

Verisense MVPA steps 3149
(2999, 3299)

3935
(3065, 4805)

2418
(1767, 3070)

3098
(2954, 3243)

Mean difference to
activPAL

−1160
(−1061, −1260)

−1279
(−785, −1773)

−494
(−186, −803)

−1204
(−1101, −1307)

95% LoA’s −3684, +1363 −4503, +1945 −2022, +1033 −3954, +1547

N valid days, number of days which contained 24 h wear for both accelerometers; LoA, Limits of Agreement;
MVPA steps, moderate to vigorous steps (100 steps/min). Values are expressed as mean (95% CI) Moderate to
vigorous steps per day unless stated otherwise.
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of Agreement.

4. Discussion

This study examined the performance of an open-source algorithm to estimate daily
stepping-based metrics from wrist-worn accelerometer data, before and after optimization
of the parameter thresholds on a subset of data to improve estimation accuracy. Our results
showed that the step count from a wrist-worn accelerometer resulted in mean overestima-
tion of 913 (9.7%) steps/day, compared with the activPAL worn on the thigh. However,
with the optimized algorithm, the overestimation reduced to 742 (7.9%) steps/day, whilst
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greatly reducing the proportional bias observed. In contrast to the overestimation of total
steps, MVPA steps (>100 steps/min) were underestimated. This is consistent with the
underestimation of cadence observed during higher walking speeds and running [23].
Importantly, the optimized version of the Verisense algorithm (Verisense 2) improved the
accuracy, with a shift from underestimating MVPA steps by 2207 steps/day to underesti-
mating MVPA steps by 1204 steps/day. This showed that the updated parameter thresholds
performed better at estimating both step volume and intensity outcomes. However, the
bias that remained is still noteworthy and should be considered when comparing steps
using this algorithm to steps from the activPAL.

Our finding that the total daily step count estimates were higher when derived from
the wrist compared with the thigh is consistent with similar research investigating differ-
ences in behavioral metrics based on accelerometer wear location. Using activities of daily
living, previous analyses have shown that estimates of step count were ~1200 steps/day
higher when derived from consumer-grade wrist-worn devices. compared with a pedome-
ter worn at the waist [34,35] and direct observation [36]. When comparing ActiGraph
accelerometers worn synonymously on the waist and wrist during 7 days of free-living,
Tudor-Locke et al. [37] reported the device worn on the wrist estimated 2500 more steps/day
compared with that on the waist. Our analysis also resulted in the overestimation of
steps/day, likely due to the higher rate of false positives observed during activities which
involve predominantly the use of arms and hands, for example, washing the dishes, prepar-
ing food or using a computer. This overestimation of steps/day was evident despite MVPA
steps being underestimated. The relative balance of MVPA and other activities in each
sample could explain why the SMART Work and Life and STAND UP samples, which were
less active in terms of activPAL steps, reported higher bias than the more active Equiva-
lency participants. Indeed, Ducharme et al. [18] reported a 2.8× higher prediction error in
step counts from the wrist compared with the waist, describing the difficulty of deriving
steps from the wrist location, due to erroneous classification of superfluous wrist move-
ments that are common in free-living behavior. In terms of magnitude of overestimation,
Toth et al. [17] assessed the estimation of step counts from a research-grade accelerometer
worn on the non-dominant wrist using three different proprietary algorithms compared
with video-recorded steps, as the criterion measure. They reported a −28% to +195% mean
absolute percent error. The mean absolute percent error for Verisense 2 was 20.9%, which is
modest in comparison, supporting its use in future research. An algorithm including use of
further wearable sensors, e.g., GPS or accelerometers on additional body locations may lead
to improved accuracy. However, it would not be possible to apply such an algorithm to the
large datasets worldwide that currently deploy wrist-worn research-grade accelerometers.

When comparing the number of MVPA steps estimated by both versions of the
Verisense algorithm, we saw a marked improvement in the underestimation between
algorithms compared with the comparator, equivalent to ~50% reduction in the bias in
the Verisense 2 algorithm compared with Verisense 1. As the algorithm was optimized
to reduce the total step count bias, it is possible that the parameters could be altered
further to perform better in detecting MVPA steps in the future. However, the under-
estimation of MVPA steps within each sample did improve substantially following op-
timization This is consistent with improved performance of the optimized algorithm
observed during walking and running [23]. Understanding performance of the algorithm
for different ranges of cadence is important as cadence may be an important factor in
the prevention of adverse health outcomes, such as type 2 diabetes [3,38]. Until recently,
the majority of studies reported limited associations of step cadence with all-cause mor-
tality when adjusting for total daily steps [8,15]. However, the UK Biobank analysis by
del Pozo Cruz et al. [13] did find that higher stepping cadence for the peak 30 minutes
of the day was associated with lower incident CVD and all-cause mortality outcomes,
independent of total daily steps. Despite disparities in the literature about its relevance for
health, assessing an algorithm’s ability to perform accurately in distinguishing between
steps of different intensities in free-living data, while minimising false positives and false
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negatives, is an important factor in algorithm development. However, there has been
limited attention to this in the literature to date.

Strengths and Limitations

The main strengths of this study were the large sample size with concurrent wrist
and thigh accelerometry free-living data across three diverse datasets covering young,
middle-aged and older adults. Despite the sample mostly consisting of office workers,
there was a wide range of physical activity within the overall sample which assisted in the
optimization of parameters for the Verisense 2 algorithm, evidenced by the reduction in
total and MVPA stepping bias, and, in particular, removing the proportional bias observed
for total step counts in Verisense 1. An additional strength was that the algorithm is
open-access [21] and works directly as an external function within the open-source R
package GGIR, making it immediately accessible to other researchers for application to
their datasets without the need for specialist software. Further, recent research shows
that the algorithm performed similarly for three widely used brands of research-grade
accelerometer (GENEActiv, ActiGraph and Axivity) worn on either wrist [23]. A limitation
in this study was the lack of criterion measure. The activPAL has shown high accuracy when
measuring steps during free-living activities and simulated activities of daily living [26,39].
However, it is worth noting that there may be some accuracy lost during particularly low
walking speeds, where steps below ~40 steps/min are not detected [39,40]. Numerous
health-related research using steps used the activPAL to determine steps during free
living [8,41,42]. Due to the free-living nature of the data collected, it was not feasible to
directly observe steps on such a large sample.

5. Conclusions

In conclusion, this study found that an optimized version of the open-source Verisense
step-count algorithm was more accurate than the original version in detecting total and
MVPA steps in free-living data. compared to step count from a thigh-mounted activPAL.
These findings highlight the importance of assessing algorithm performance beyond total
step count, as not all steps are equal, when investigating stepping metrics with markers
of health. The refined Verisense open-source algorithm presents acceptable accuracy for
derivation of stepping-based metrics from wrist-worn accelerometry.
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