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Abstract: Rapid analysis of components in complex matrices has always been a major challenge
in constructing sensing methods, especially concerning time and cost. The detection of pesticide
residues is an important task in food safety monitoring, which needs efficient methods. Here, we
constructed a machine learning-assisted synchronous fluorescence sensing approach for the rapid and
simultaneous quantitative detection of two important benzimidazole pesticides, thiabendazole (TBZ)
and fuberidazole (FBZ), in red wine. First, fluorescence spectra data were collected using a second
derivative constant-energy synchronous fluorescence sensor. Next, we established a prediction model
through the machine learning approach. With this approach, the recovery rate of TBZ and FBZ
detection of pesticide residues in red wine was 101% ± 5% and 101% ± 15%, respectively, without
resorting complicated pretreatment procedures. This work provides a new way for the combination
of machine learning and fluorescence techniques to solve the complexity in multi-component analysis
in practical applications.

Keywords: machine learning; synchronous fluorescence; red wine; pesticide residues; thiabenda-
zole; fuberidazole

1. Introduction

Pesticides have a crucial function in avoiding pests and illnesses and enhancing food
production, thus they are widely employed in agricultural production across the world.
Nonetheless, pesticide residues not only have an impact on the environment but also on
the health of humans [1]. According to studies, pesticides have a long residual life and
may readily infiltrate food during processing, which has hazardous effects on humans [2,3].
Therefore, detection and management of pesticide residues, particularly the detection of
pesticide content in food, are of vital relevance [4]. Red wine, being one of the most popular
beverages in the world, has medical benefits such as the prevention of cardiovascular
disease, as well as beauty effect and weight reduction benefits [5,6]. However, residual
benzimidazole pesticides from the grape growing process may enter the wine during
the winemaking process, causing harm to the drinker [7,8]. Thiabendazole (TBZ) and
fuberidazole (FBZ), two benzimidazole pesticides, are particularly widely used in grape
growth. Various countries attach great importance to benzimidazole pesticide residues
in food and have established maximum residue limits ranging from 0.01 to 10 mg/kg,
respectively [9]. Moreover, according to the US Environmental Protection Agency (EPA)
and World Health Organization (WHO), the allowable daily intake of TBZ is 0.1 and
0.3 mg/kg [10]. Thus, our research on the rapid detection of TBZ and FBZ in red wine has
the significance of protecting the life and health of consumers.

Conventional approaches for detecting benzimidazole pesticides include liquid
chromatography-mass spectrometry and high-performance liquid chromatography [11–14].
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However, the current approaches are typically expensive and time consuming, limiting
wide application. Li. et al. [15] has quantified TBZ and FBZ in red wine using a combination
of three-dimensional fluorescence spectroscopy and trilinear decomposition techniques,
but this method is still time consuming because it is based on the acquirement of full
fluorescence matrix data. Thus, it is necessary to develop a simple, fast, and inexpensive
technique for detecting benzimidazole pesticides.

Synchronous fluorescence spectrometry, a technique initially described by Lloyd [16]
in 1971 to map fluorescence spectra in the presence of simultaneous scanning of both
excitation and emission monochromators, has been widely utilized for the investigation
of mixtures. The simultaneous fluorescence approach is used by a growing number of
scientists for the determination of compounds in complicated matrices, and it may be
combined with other techniques, such as derivative technique, to accomplish further
spectral separations [17–22]. Among these, the constant-energy synchronous fluorescence
approach utilized in this work can effectively simplify the spectra, narrow the spectral band,
and eliminate the influence of scattered light by selecting an appropriate constant-energy
difference, making it advantageous for the detection of mixtures.

In recent years, with the continuous development of machine learning technology, its
combined use with spectroscopy has also increased, allowing for the separation and identi-
fication of mixtures by machine learning combined with spectroscopic methods [23–34].
The mathematical separation method provided by the machine learning method opens up a
new way for spectral analysis; its combination with synchronous fluorescence spectrometry
can realize rapid detection of substances with serious overlap.

In this study, we investigated the effect of the second-order derivative constant-energy
simultaneous fluorescence sensing technique on the separation of TBZ and FBZ and estab-
lished the corresponding dataset. We then examined the performance of different machine
learning methods on our dataset, built the appropriate models, and tested the models’
effectiveness on independent test sets. Compared with the traditional detection methods,
this paper proposes a novel detection method to achieve rapid detection of TBZ and FBZ in
red wine.

2. Materials and Methods
2.1. Reagent and Materials

The standards for TBZ and FBZ were purchased from Beijing Bailingway Technology
Co., Ltd., Beijing, China. Amounts of 100 mg/L TBZ-ethanol stock solution and 100 mg/L
FBZ-ethanol stock solution were prepared, respectively. The standard stock solution was
diluted to the necessary concentration with ethanol to create the standard working solution,
and all solutions were stored at 4 ◦C in a light-resistant environment. The red wine samples
were commercially available wines and were kept in a refrigerator at 4 ◦C in darkness.

2.2. Instruments

The scanning of the fluorescence spectra was performed using a laboratory-constructed
multifunctional fluorescence spectrophotometer [15,35,36]. The instrument was equipped
with a xenon lamp light source of 150 W, slit passband of 5 nm for the excitation and
emission monochromators, negative high voltage of −700 V, a 1 cm × 1 cm quartz cuvette
for spectral detection, and software to control the fluorimeter written in Turbo C 2.0.
Ultrasonic extractors (250 W, 59 kHz) were manufactured by Ningbo Xinzhi Biotechnology
Co., Ltd., Ningbo, China. Rotary evaporators (RE-52C) were manufactured by Gongyi
Yuhua Instruments Co., Ltd., Gongyi, China. The design of the mathematical model was
completed by Matlab R2021a.

2.3. Methods
2.3.1. Pre-Treatment Method of Wine Samples

In this study, two pre-treatment methods were evaluated.
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Extraction method: An amount of 1.0 mL red wine sample was placed in a 100 mL
conical flask and 2 mL ultrapure water was added. The solution was then ultrasonic
extracted with 5 mL dichloromethane for 5 min, and the dichloromethane layer was
collected. The extraction process of the red wine layer was repeated three times, and the
combined dichloromethane layer was collected and spun dry with the rotary evaporator.
The product was dissolved in ethanol to fix the volume of 5 mL for measurement.

Dilution method: the red wine was diluted 50 times with ethanol and spiked with the
standard as the sample to be examined.

2.3.2. Calibration Set and Test Set

The calibration set and the test set are the datasets from which the computer learns to
produce models and, correspondingly, to validate the correctness of the generated models.
In this work, a series of samples containing a mixture of TBZ and FBZ were created and
randomly separated into calibration and test sets. The calibration set and test set in this
study are described in detail in Result and Discussion.

2.3.3. Detection Method

All fluorescence spectra were recorded by a fluorescence sensor at a scan rate of
240 nm/min, and the second derivative constant-energy synchronous fluorescence spectra
were recorded by an electronic differential system attached to the spectrofluorometer.

Several models, including a linear regression model, a Gaussian regression model, a
support vector regression model, a decision tree model, and an artificial neural network,
were tested on the spectral data, and the hyperparameters were optimized by Bayesian
search, random search, and grid search in order to establish a suitable model for simul-
taneous quantitative analysis of TBZ and FBZ in red wine. In this study, the ten-fold
cross-validation method is used to improve the generalization performance of the model,
the learning algorithm adapted to the data features is selected, and the hyperparameters
are optimized for the algorithm. A suitable model is developed, and the model is applied
to test actual samples to validate the model’s applicability.

3. Result and Discussion
3.1. Fluorescence Spectral Analysis and Solvent Selection

Figure 1 depicts the fluorescence spectra of TBZ and FBZ in water and ethanol. In our
investigation, ethanol was chosen as the solvent for the fabrication of standard samples
and the dilution of wine samples, because its fluorescence intensity was much larger than
that with water.

As shown in Figure 1, the spectra of TBZ and FBZ have substantial overlap, and
it is difficult to quantify the mixture simultaneously using conventional fluorescence
spectroscopic techniques. Because the physical pre-separation required by conventional
fluorescence methods is time consuming and labor intensive, we considered combining
second derivative constant-energy synchronous fluorescence spectrometry with machine
learning techniques for the simultaneous detection of TBZ and FBZ in red wine.
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Figure 1. Excitation and emission fluorescence spectra of thiabendazole (TBZ) (300 ng/mL) and 
fuberidazole (FBZ) (30 ng/mL) in water and ethanol. 
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by the change of constant energy difference more intuitive, we adjusted the concentration 
levels of the two substances according to their fluorescence properties, so that they had 
similar fluorescence intensity. 

As shown in Figure 2, the negative peak at 320~340 nm represents the primary dis-
tinction between the spectra of TBZ and FBZ. From the figure, we can see that the peak 
width of the second derivative constant energy synchronous fluorescence spectrum is nar-
row and the shape of the peak is sharp, which provides convenience for further detection. 
The selected constant-energy differences have a certain degree of spectral resolution, and 
for our experiment, we chose the constant-energy difference of 2000 cm−1.  

Nonetheless, the figure demonstrates that the second derivative constant-energy syn-
chronous fluorescence spectra of both TBZ and FBZ at this constant-energy difference can-
not be completely separated, so we considered the introduction of machine learning tech-
nique for additional processing in order to separate the spectra mathematically. 

Figure 1. Excitation and emission fluorescence spectra of thiabendazole (TBZ) (300 ng/mL) and
fuberidazole (FBZ) (30 ng/mL) in water and ethanol.

3.2. Extraction Method
3.2.1. Selection of Constant-Energy Difference

During the simultaneous scanning process, the constant-energy synchronous fluo-
rescence method maintains a constant-energy difference, as in Equation (1), between the
excitation and emission wavelengths. This method can narrow the spectral band for a
better separation of the mixture.

∆v =

(
1

λex
− 1

λem

)
× 107 (1)

where the unit of ∆v is cm−1 and the units of λex and λem are nm.
Improving the spectral separation efficiency of this approach hinges on the selection

of a proper constant-energy difference. In this work, FBZ (30 ng/mL) and TBZ (300 ng/mL)
were chosen as the test samples in conjunction with second derivative constant-energy
synchronous fluorescence spectroscopy. In order to make the spectral difference caused
by the change of constant energy difference more intuitive, we adjusted the concentration
levels of the two substances according to their fluorescence properties, so that they had
similar fluorescence intensity.

As shown in Figure 2, the negative peak at 320~340 nm represents the primary distinc-
tion between the spectra of TBZ and FBZ. From the figure, we can see that the peak width
of the second derivative constant energy synchronous fluorescence spectrum is narrow
and the shape of the peak is sharp, which provides convenience for further detection. The
selected constant-energy differences have a certain degree of spectral resolution, and for
our experiment, we chose the constant-energy difference of 2000 cm−1.

Nonetheless, the figure demonstrates that the second derivative constant-energy
synchronous fluorescence spectra of both TBZ and FBZ at this constant-energy difference
cannot be completely separated, so we considered the introduction of machine learning
technique for additional processing in order to separate the spectra mathematically.
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Figure 2. Second derivative constant-energy synchronous fluorescence spectra of TBZ (300 ng/mL) 
and FBZ (30 ng/mL) at different constant-energy differences (cm −1). 

3.2.2. Calibration Set 
The 24 calibration sets consisted of manually generated samples with the concentra-

tion composition shown in Table 1, and the resultant second derivative constant-energy 
synchronous fluorescence spectra are depicted in Figure 3. Concentration ratios were 
changed to check the mutual interference of TBZ and FBZ to the spectra. 

Table 1. Concentration of 24 calibration sets. 

No. TBZ (ng/mL) FBZ (ng/mL) No. TBZ (ng/mL) FBZ (ng/mL) 
1 300 40 13 100 20 
2 300 50 14 300 30 
3 100 50 15 100 40 
4 200 30 16 300 10 
5 100 10 17 400 50 
6 500 20 18 300 20 
7 200 10 19 400 30 
8 500 10 20 200 20 
9 400 40 21 200 50 

10 100 30 22 500 30 
11 200 40 23 300 0 
12 400 10 24 0 30 

Figure 2. Second derivative constant-energy synchronous fluorescence spectra of TBZ (300 ng/mL)
and FBZ (30 ng/mL) at different constant-energy differences (cm−1).

3.2.2. Calibration Set

The 24 calibration sets consisted of manually generated samples with the concentra-
tion composition shown in Table 1, and the resultant second derivative constant-energy
synchronous fluorescence spectra are depicted in Figure 3. Concentration ratios were
changed to check the mutual interference of TBZ and FBZ to the spectra.

Table 1. Concentration of 24 calibration sets.

No. TBZ (ng/mL) FBZ (ng/mL) No. TBZ (ng/mL) FBZ (ng/mL)

1 300 40 13 100 20
2 300 50 14 300 30
3 100 50 15 100 40
4 200 30 16 300 10
5 100 10 17 400 50
6 500 20 18 300 20
7 200 10 19 400 30
8 500 10 20 200 20
9 400 40 21 200 50
10 100 30 22 500 30
11 200 40 23 300 0
12 400 10 24 0 30
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Figure 3. Second derivative constant-energy synchronous fluorescence spectra of 24 calibration sets. 
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Figure 3. Second derivative constant-energy synchronous fluorescence spectra of 24 calibration sets.

3.2.3. Machine Learning

In this study, a series of regression methods, including linear regression, Gaussian
regression, support vector regression, decision tree, and neural network, were investigated,
and the hyperparameters were improved using Bayesian search, random search, grid search,
etc. The establishment and optimization of the model are mainly completed through the
regression learner and regression network of Matlab. A manually formulated test set was
used to verify the generalization performance of the model, and the root mean square error
(RMSE), as in Equation (2), was established to characterize ve the models:

RMSE =

√√√√(
y f it − y0

)2

n
(2)

where yfit is the predicted value of the model for calibration set, y0 is the actual value, and
n is the number of samples.

From Table 2, we can see that the support vector regression model has the best
performance. Therefore, we further optimize the regression method to establish a prediction
model.

Table 2. Performance of Different Algorithms for Extraction Method.

Regression Methods RMSE for TBZ RMSE for FBZ

linear regression 57.29 8.41
Gaussian regression 57.56 7.02

support vector regression 45.19 4.86
decision tree 76.84 9.25

neural network 67.13 11.03

Finally, we developed a support vector regression (SVR) model, which is a model for
regression quantification based on a support vector machine model. When given a training
sample, as in Equation (3), a model such as Equation (4) is constructed so that f (x) is as
close to y as possible:

D = [(x1, y1), (x2, y2), . . . , (xm, ym)] with yi ∈ R (3)

f (x) = wTx + b (4)
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where x and b are the model parameters to be confirmed.
With the derivative constant energy simultaneous fluorescence sensing technique,

we obtained the wavelength points of the corresponding calibration set. We took these
fluorescence data as inputs and the concentrations of the corresponding TBZ and FBZ as
outputs. Through ten-fold cross-validation, we adjusted the hyperparameters and obtained
the best model. Finally, we used the obtained model for the prediction of the test set. The
process is shown in Figure 4.
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Figure 4. The process of our model building.

The performance of the model on the 12 test sets is shown in Table 3, with the recovery
rate in the range of 85~110%, which meets the requirement of practical testing.

Table 3. Predicted results of the developed prediction model for the manually formulated test set.

Actual Predict Recovery

TBZ (ng/mL) FBZ (ng/mL) TBZ (ng/mL) FBZ (ng/mL) TBZ (%) FBZ (%)

250 15 264 16.5 105.8 109.9
800 20 705 18.5 88.2 92.6
150 10 159 8.5 105.8 85.2
250 20 256 18.9 102.3 94.2
300 0 295 0 98.3 /
200 50 190 51.5 95.2 103.0
500 10 484 10.4 96.7 104.3
600 20 642 21.5 107.0 107.4
300 30 283 31.5 94.3 104.9
500 0 490 0 98.1 /
500 25 511 26 102.1 104.1

0 25 0 23.5 / 94.1

Average recovery 99 ± 10 100 ± 15

3.2.4. Predicted Results for Actual Samples

The established support vector regression model-assisted ultrasonic extraction method
was employed to analyze the adulterated commercially available wines. From Table 4, we
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can see that the recoveries of TBZ and FBZ are basically within the range of 100% ± 10%.
This demonstrates that the established approach can be used for the determination of actual
samples.

Table 4. Predicted results of the actual spiked samples.

Actual Predict Recovery

TBZ (ng/mL) FBZ (ng/mL) TBZ (ng/mL) FBZ (ng/mL) TBZ (%) FBZ (%)

200 70 230.2 72.2 115.1 103.1
150 60 158.9 56 105.9 93.4
100 50 91.5 49.3 91.5 98.7

Average recovery 104 ± 10 98 ± 5

3.3. Dilution Method

In order to simplify and increase the efficiency of the test, we considered diluting the
original wine directly and prepared the calibration series and the test series using the same
method.

3.3.1. Fluorescence Spectra of Diluted Wine Samples Spiked with TBZ and FBZ

As shown in Figure 5, the excitation and emission spectra of 300 ng/mL TBZ and
30 ng/mL FBZ were examined in order to determine the influence of the wine matrix on
the fluorescence characteristics of TBZ and FBZ. From the figure, we can see that there is a
difference between the spectra obtained by the dilution method compared with that of the
standard sample due to the influence of the red wine matrix. However, for this study, this
influence can be learned and compensated for by a machine learning model to establish a
fluorescence detection method that combines the dilution and machine learning methods.
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ethanol and diluted wine samples and diluted wine.

3.3.2. Selection of Constant-Energy Difference

For the study of constant-energy difference, a mixed sample of TBZ (300 ng/mL) and
FBZ (30 ng/mL) was added to the diluted wine, the constant-energy difference was chosen
as shown in Figure 6, and the test results are depicted in the figure. We found that the
selected constant energy difference has the separation effect for two pesticides in diluted
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red wine. For our experiment, a constant-energy difference of 5000 cm−1 was chosen.
However, we discovered that a constant-energy difference of 5000 cm−1 is insufficient
to distinguish between the spectra of the two medications with 300~330 nm; thus, it is
important to integrate the machine learning approach for identification.
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Figure 6. Dilution method: second derivative constant-energy synchronous fluorescence spectra of
TBZ (300 ng/mL) and FBZ (30 ng/mL) spiked in diluted wine sample at different constant-energy
differences (cm−1).

3.3.3. Correction Set

In the dilution method, the calibration set was constructed using diluted wine samples
as the matrix. The concentration is shown in Table 5, and the second derivative constant-
energy synchronous fluorescence spectra is depicted in Figure 7.

Table 5. Concentration of 27 calibration sets.

No. TBZ (ng/mL) FBZ (ng/mL) No. TBZ (ng/mL) FBZ (ng/mL)

1 100 50 15 400 50
2 100 40 16 400 40
3 100 10 17 400 10
4 100 20 18 400 30
5 100 30 19 500 30
6 200 30 20 500 20
7 200 10 21 500 50
8 200 40 22 500 10
9 200 50 23 500 40
10 300 50 24 0 10
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Table 5. Cont.

No. TBZ (ng/mL) FBZ (ng/mL) No. TBZ (ng/mL) FBZ (ng/mL)

11 300 40 25 0 50
12 300 30 26 100 0
13 300 10 27 500 0
14 300 20
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tion sets.

3.3.4. Machine Learning

The selection and optimization process of the machine learning method was identical
to that of the extraction method, and the prediction model was established by applying
the support vector regression model. The performance of different algorithms is shown in
Table 6.

Table 6. Performance of Different Algorithms for Extraction Method (Machine Learning).

Regression Methods RMSE for TBZ RMSE for FBZ

linear regression 71.07 7.39
Gaussian regression 43.15 3.78

support vector regression 31.07 2.77
decision tree 75.52 8.35

neural network 108.38 9.20

Three kinds of wine samples were used to test the model, and the results are presented
in Table 7. By using the dilution method, we find that the recovery rate satisfies the
detection requirements, and it can basically achieve the same accuracy as the extraction
method.
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Table 7. Predicted results of dilution method combined with support vector regression model.

Wine Brands
Actual Predict Recovery

TBZ (ng/mL) FBZ (ng/mL) TBZ (ng/mL) FBZ (ng/mL) TBZ (%) FBZ (%)

1

200 0 212 0 106.2 /
0 30 0 27 / 92.6

200 20 187 21 93.8 107.3
400 20 384 21 96.0 105.2
150 10 137 8 91.8 85.7
250 50 231 52 92.6 104.5
300 0 318 0 106.2 /
400 35 418 37 104.6 106.4
500 15 481 12 96.3 85.2
500 25 495 22 99.0 91.1

2

400 0 418 0 104.6 /
0 40 0 42 / 105.6

200 20 217 21 108.7 108.2
150 20 168 19 112.3 98.6
250 10 268 12 107.4 122.2

3
400 20 401 18 100.4 93.8
250 0 231 0 92.6 /
500 20 518 22 103.7 111.1

Average recovery 101 ± 5 101 ± 15

4. Conclusions

In this study, a support vector regression-assisted second derivative constant-energy
synchronous fluorescence spectrometric approach was developed to achieve the simultane-
ous and rapid detection of two benzimidazole pesticides, TBZ and FBZ, in red wine. Either
simple extraction or direct dilution is enough for sample pre-treatment, without resorting
to complicated procedures of separation and purification. It is an efficient new technique
for detecting mixtures in complicated systems.

From the results, the following conclusions can be drawn:

• The application of a derivative constant-energy synchronous fluorescence sensor
preliminarily separates the spectra of the mixture, which facilitates the application of
machine learning;

• Machine learning can further assist the fluorescence sensor to analyze and realize
rapid detection of mixtures in a complex matrix;

• The method proposed in this study is simple and quick, which overcomes the dis-
advantages of traditional detection methods in terms of being time consuming and
having high cost.
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