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Abstract: Breathing monitoring is crucial for evaluating a patient’s health status. The technologies
commonly used to monitor respiration are costly, bulky, obtrusive, and inaccurate, mainly when the
user moves. Consequently, efforts have been devoted to providing new solutions and methodologies
to overcome these limitations. These methods have several uses, including healthcare monitoring,
measuring athletic performance, and aiding patients with respiratory diseases, such as COPD (chronic
obtrusive pulmonary disease), sleep apnea, etc. Breathing-induced chest movements can be measured
noninvasively and discreetly using inertial sensors. This research work presents the development
and testing of an inertia-based chest band for breathing monitoring through a differential approach.
The device comprises two IMUs (inertial measurement units) placed on the patient’s chest and back
to determine the differential inertial signal, carrying out information detection about the breathing
activity. The chest band includes a low-power microcontroller section to acquire inertial data from
the two IMUs and process them to extract the breathing parameters (i.e., RR—respiration rate;
TI/TE—inhalation/exhalation time; IER—inhalation-to-exhalation time; V—flow rate), using the
back IMU as a reference. A BLE transceiver wirelessly transmits the acquired breathing parameters
to a mobile application. Finally, the test results demonstrate the effectiveness of the used dual-inertia
solution; correlation and Bland–Altman analyses were performed on the RR measurements from the
chest band and the reference, demonstrating a high correlation (r = 0.92) and low mean difference
(MD = −0.27 BrPM (breaths per minute)), limits of agreement (LoA = +1.16/−1.75 BrPM), and
mean absolute error (MAE = 1.15%). Additionally, the experimental results demonstrated that the
developed device correctly measured the other breathing parameters (TI, TE, IER, and V), keeping an
MAE of ≤5%. The obtained results indicated that the developed chest band is a viable solution for
long-term breathing monitoring, both in stationary and moving users.

Keywords: wearable devices; chest movements; inertial sensors; breathing parameters; digital
filtering; Bland–Altman analysis

1. Introduction

The respiration rate (RR) is a vital sign that provides information on clinical deterio-
ration, predicts cardiac arrest, and supports the diagnosis of severe pneumonia, asthma,
dehydration, fever, infections, and overdoses [1–3]. Furthermore, the RR responds to
various stressors, including emotional stress, cognitive load, cold, and hyperthermia. Ad-
ditionally, the RR is a good marker of physical effort and fatigue during exercise, and is
associated with exercise tolerance in different populations [4–6]. Moreover, the levels of
blood gases (i.e., CO2 and O2) and, thus, the blood’s acidity (pH), induce changes in the
RR, according to the respiratory compensation mechanism [7]. Other breathing parameters
are important as markers of the user’s health status. In detail, the inhalation (TI) and
exhalation (TE) times, as well as their ratio (IER—inhalation-to-exhalation time), are strictly
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correlated to the heart rate variability, as well as physical and psychological status [8–10].
Additionally, the flow rate (V) reflects the patient’s pulmonary capability, which can be
affected by several diseases of the cardiorespiratory system (e.g., COPD—chronic obtrusive
pulmonary disease) [11].

Likewise, technological advances in the field of sensing technologies and methods for
breathing monitoring are growing exponentially, and several measurement solutions are
currently available, exploiting various transduction mechanisms (e.g., inertial, capacitive,
piezoresistive, humidity, gas sensors, etc.) [12–15]. Indeed, the scientific community and
various companies are constantly trying to develop new breathing monitoring systems that
are more discreet and nonobstructive than those commonly used (e.g., spirometers and
capnometers). For instance, it has recently been demonstrated that micro-electromechanical
system (MEMS) inertial sensors worn on the torso can measure inclination changes due
to rotational chest-wall movements during respiratory activity, allowing for breathing
monitoring [16–18]. In addition, MEMS inertial sensors have been widely integrated into
wearable systems, given their enhanced performance obtained in recent decades [19–23].
Piezoresistive and capacitive transduction methods are the most used in MEMS inertial
sensors [24,25]. Their strength lies in their versatility and noninvasiveness, making them
ideal for various applications and representing a reliable and inexpensive way of collecting
users’ motion data [24,26,27].

This scientific work reports on the development of an inertia-based chest band to detect
breathing-related chest wall movements using a differential inertial approach. In detail,
the developed chest band includes two IMUs (inertial measurement units) positioned on
the chest and back, allowing for the detection of breathing movements, regardless of body
movements. Additionally, the chest band includes a low-power microcontroller section
to acquire inertial data from the two IMUs and process them to extract the breath-related
differential signal, using the back inertial sensor as a reference. The firmware parameters
were systematically optimized to improve the device’s accuracy. A BLE (Bluetooth low-
energy) transceiver wirelessly transmits the acquired breathing parameters (i.e., RR, TI, TE,
IER, and V) to a mobile application, where data are displayed and summarized. Finally,
several test campaigns are conducted to validate the proposed chest band and approach to
detect the breathing parameters. Additionally, a performance comparison is provided with
another chest band combining a textile-based piezoresistive sensor and a single inertial
sensor for detecting the same breathing parameters reported above [28]. In this way, useful
insights related to the more performant and promising sensing technology are deduced.

The novelties of the presented work are different, and are described as follows: The
presented differential inertial approach ensures a high immunity to the motion artifacts,
as witnessed by the experimental results reported in Section 3. Indeed, the algorithm
evaluates the relative acceleration signal between the chest and back and applies digital
filters for removing the signal components extraneous to breathing. The resulting firmware
is computationally light, enabling its use on hardware with reduced memory and com-
putational power. For these reasons, this approach allows for the accurate and real-time
measurement of breathing parameters locally on the chest band without a host device
performing postprocessing (e.g., PC), unlike similar solutions presented in the literature.
Furthermore, the research activity concerns not only the development and optimization of
the firmware, but also the design hardware section and the analysis of sensor placement,
unlike other similar scientific works, mainly focused on firmware development. This activ-
ity has resulted in a compact, lightweight, complete, and ready-to-use wearable system, as
detailed in Section 2.1.

The main contributions of the proposed research work are:

• The development of a novel chest band for monitoring breathing parameters based on
a differential inertial approach; this includes a low-power microcontroller section that
acquires inertial data from both inertial sensors, processes them to extract breathing
data, and coordinates the transmission of data to a custom mobile app.



Sensors 2022, 22, 9953 3 of 29

• Firmware development for acquiring and processing inertial data from the two IMUs.
In detail, the processing relies on digitally filtering the acquired data to remove the
undesired signal components and applying a peak detection algorithm to detect the
inhalation and exhalation times, useful for deriving other breathing parameters.

• A comprehensive characterization of the developed inertia-based chest band for deter-
mining its performances in terms of the correlation coefficient, mean difference (MD),
limits of agreement (LoA), and mean absolute error (MAE), compared to the reference
measurements. In detail, correlation and Bland–Altman analyses were performed on
the measures gathered by eight users varying in age, gender, and physical constitution.
Additionally, a comparison between the performances of the developed chest band
with another one based on a piezoresistive strain sensor and an IMU, presented in our
previous work, was carried out [28].

The paper’s remainder is arranged as follows: an overview of wearable sensing
devices for monitoring cardiorespiratory parameters is presented. Section 2 introduces the
inertia-based chest band’s architecture and the firmware managing the device’s operation.
Later, the assembly of the inertia-based chest band is introduced. Section 3 reports on the
firmware optimization for improving the chest band’s accuracy; then, the chest band’s
characterization and testing are reported on to determine its performance. Finally, in
Section 4, the results are discussed, with an emphasis on the advantages and disadvantages
of the presented wearable device.

Overview of Wearable Devices for Monitoring Cardiorespiratory Parameters Based
on Inertial Sensors

Accurate breathing monitoring is crucial for monitoring a patient’s health status.
However, the most used methods, which have been proven reliable, are typically obtrusive
and unsuitable for use outside the hospital environment. For this reason, many studies
have focused on finding alternative methods and technologies to current golden standards
(e.g., spirometry), which may or may not require body contact. In detail, inertial sensors
represent an obstructive, cheap, and accurate solution for realizing systems to detect body
movements, such as joints, fingers, the head, etc. [20,29–31]. Thanks to the high resolution
reached by MEMS inertial sensors, they can monitor very tiny movements, such as the
chest movements induced by respiration or the heartbeat [32–35].

Inertia-based breathing sensors show several benefits compared to other methods,
overcoming several limitations. Methods such as impedance pneumography (IP) and
electrocardiographic-derived respiration (EDR) require applying electrodes on the user’s
skin [36]. These contacts can heavily affect the acquired signal’s quality and, thus, the
accuracy of the obtained measurements [37]. In particular, contaminants on the leads can
influence the system performance; similarly, cable and wire impedance can be a source of
errors. In addition, the measurement depends on natural behaviors (i.e., coughing, talking,
etc.) and user posture, whereas body motions and lack in contact can induce artifacts in the
acquired signal. Furthermore, the EDR method using RSA (respiratory sinus arrhythmia)
is affected by the patient’s age, weakens with advancing age and leading to measurement
inaccuracy [38]. Conversely, inertial sensors do not require direct contact with the user’s
skin; hence, they are immune to most of the problems described above.

Likewise, photoplethysmographic (PPG) sensors require contact between the sensor’s
optical section and the patient’s skin [39,40]; this entails that they suffer from the same
problems as EDR and IP approaches related to artifacts induced by body motion and lack
of contact. Generally, IMU-based breathing sensors are also sensitive to body motions;
however, different strategies are feasible in reducing the effects of motion artifacts, such
as the differential approach presented in this paper. Camera-based methods for breathing
monitoring surely have the advantage of being contactless, but currently suffer from
different issues. In detail, they are inaccurate unless using multiple cameras on different
body zones (i.e., thorax, abdomen, lateral side, and back), costly, affected by the patient’s
position changes, inefficiency in the case of occlusions (cloths, blankets, etc.), and are
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complex. Finally, these methods cannot be applied to users engaged in common activities
(taking, coughing, etc.) [41].

Several methods have been presented in the scientific literature for measuring respira-
tory parameters using IMUs. For instance, P. Janik et al. presented a novel wearable sensor
for monitoring breathing and the heart rate using a single inertial sensor [42]. The first
station included a microcontroller unit (MCU) integrating a BLE radio module (nRF52832)
equipped with an LSM9DS1 IMU. The developed system comprised a receiving station
based on the NRF52840 MCU, equipped with a MAX30102 pulse oximeter acting as a
reference sensor that was also used to measure the SpO2. The sensor was placed on the
abdominal wall to detect the movement induced by breathing and heartbeat. The process-
ing chain removed the DC (direct current) component, and the resulting signal’s absolute
value was calculated. Then, the resulting signal was filtered using a low-pass filter and
local peaks were detected, representing the pulse. The experimental tests demonstrated
that 0.038 s (i.e., 4% of a single cycle) was the mean difference compared to a cabled trans-
mission. Additionally, S. Beck et al. in [43] presented a novel method to calculate the angle
between the quaternions of two IMUs to estimate the breathing rate. By positioning one
IMU on the abdomen and the other on the thorax, they reasoned that any motion other
than breathing would alter the overall quatern, but not the angle between the two IMUs.
On a breakout board attached to an Arduino Board, they employed two InvenSenseTM
MPU-6050 three-axis gyroscopes and accelerometers. The relative angle was calculated
using the IMUs’ outputs, which were already prefiltered by themselves, and the change in
this angle was utilized to determine the respiration rate. The gathered data were transferred
to a laptop, where MATLAB was used to apply a tenth-order Butterworth filter on them.

Furthermore, several processing schemes and algorithms were developed for detect-
ing breathing anomalies and disturbances, such as apnea events, involuntary breathing
movement (IBM), etc. [44]. In [45], the authors developed a deep learning model based on
an advanced machine learning algorithm combined with breathing movements, which is
useful for detecting sleep apnea events and estimating their severity. The patch acquires
the acceleration data with a 3D accelerometer and microphone with a 60 Hz sampling rate,
capturing movements and sounds caused by breathing; it was placed on the suprasternal
notch of the subject under test to detect tracheal movements. To estimate the apnea severity,
the proposed algorithm extracts morphological features from breathing-related movements
to train the deep learning classifier to recognize the various breathing events and, finally, to
estimate the apnea hypopnea index (AHI), namely, the number of events per hour. The
authors also developed a supervised deep learning classifier for improving its hyperparam-
eters to increase its accuracy. The results were compared with those obtained through the
PSG (polysomnography), achieving a 0.86 correlation factor. In [46], the authors developed
a technique to classify sleep apnea using a MEMS accelerometer. The dominant component
of the acceleration signal, extracted by using PCA (principal component analysis), was
analyzed, which required processing on 3 × 3 matrixes.

However, two techniques were developed to lower the computational complexity: the
first considers the raw data of the two axes with the most significant variance and applies
the PCA to them, reducing the problem to 2 × 2 matrices. The second method involves
simply choosing the component with the highest variance.

In [35], E.P. Doheny et al. presented an innovative method to measure the respiratory
rate and estimate the position during sleep using an accelerometer placed on the torso. The
raw signal from the accelerometer was processed through a 0.5 Hz low-pass filter and a
0.5 Hz notch filter. For the proposed setup, the chest movement could be observed along
the z-axis, whereas the change in sensor orientation due to breathing was observable by
calculating the rotation of the x-axis [47]. The maximum MAE on the RR was 2.67 BrPM
(breaths per minute) if the sensor was placed on the chest, and 2.25 BrPM if it was placed
on the abdomen. Such a system has the defect of not working in the prone position.

In [48], the authors developed a system to calculate the respiratory rate and cough
frequency using two sensors consisting of a nine-axis IMU (LSM9DS0) and a MEMS
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microphone placed on the chest and abdomen. These were processed through a first-order
complementary filter at 32 Hz. At first, the average between the abdominal and thoracic
displacement angles was computed, obtaining the so-called ventral body cavity angle. To
remove the high-frequency components, this was decimated at 5 Hz, and then a 0.1 Hz
low-pass filter was applied to remove the baseline wander. The Savitzky–Golay filter was
used to improve the signal, applying the algorithm to find the peaks and then calculating
the RR. The results were compared with those derived from the PPG, calculating the angle
displacement on 3 s windows, and applying a 2 Hz low-pass filter of the twentieth order.
A further part of the algorithm was cough recognition: they used an algorithm similar
to that used for speech detection. The peaks were searched in the generated waveform,
identifying coughs.

Additionally, some solutions were reported in the literature based on multiple in-
ertial sensors for the detection of body movements related to respiratory and cardiac
activity [34,49]. In addition, these solutions usually exploit a differential approach, pro-
cessing the difference in inertial data to remove signal components related to undesired
body movements [50,51]. However, this approach involves new issues related to the sen-
sors’ positioning on the body and the integration of sensors into the garment, ensuring
nonintrusiveness and accuracy.

In ref. [52], the authors presented a method for calculating the respiratory and heart
rate, designed to operate even on athletes during heavy movement. The operating principle
involved the application of two sensors, one on the sternum and one on the athlete’s back,
perfectly aligned with each other. Therefore, the signal of the rear sensor, induced only from
movement, was subtracted from the signal of the front sensor, composed of the component
due to movement plus that derived from breathing, thus, resulting in a signal due only to
breathing under movement conditions. The front section comprised an STM32F4 micropro-
cessor with integrated DSP (digital signal processing), a BLE transceiver, a flash memory, a
voltage regulator, a lithium battery, and a LIS3DSH three-axis accelerometer. Instead, the
back device had the same accelerometer and a port for connecting to the front device. The
y-axis data from the sensor, corresponding to the normal direction of the athlete’s chest,
were used, and the difference between the two sensors being to obtain the actual breathing
data. They proceeded with peak detection using an embedded algorithm, calculating the
breathing rate as the reciprocal of the time elapsed between two peaks, with a 100 Hz sam-
pling frequency. As for the heart rate determination, the sampling frequency was increased
to 400 Hz; then, a Butterworth filter with a bandpass between 12 Hz and 28 Hz was applied
to the raw signal. Afterwards, this was smoothed using a further Savitzky–Golay filter,
thus, obtaining the suitable signal on which to apply the embedded algorithm to detect
the peaks, obtaining the heart rate. Compared with the results obtained from a reference
spirometer, the tests carried out on athletes engaged in various activities showed that this
system was particularly reliable when used during intense sporting activities or very light
activities, such as office work. It proved less accurate but still obtained good results for
intermediate activities, such as walking, as they are less oxygen-intensive and require less
chest movement. The normalized root mean square error (NRMSE) was less than 1.42%
between the proposed and reference systems.

Another possible configuration for the RR measurement using a dual acceleration
measurement was reported in [53]. In their proposal, the authors recorded the respiratory
chest wall movements using a dual accelerometer respiratory monitor. The device consisted
of a portable data acquisition board connected to a pair of inertial sensors installed on
the user’s sternum. The acquisition sensors consisted of two MEMS capacitive triaxial
accelerometers calibrated one at a time with a standard procedure to offset the output
and correct any possible systematic errors due to the manufacturing process and physical
structure. The sensors were mounted onto two small circuit boards to record the chest wall
movements. The accelerometer device was configured to measure the average RR based
on the number of respiratory events detected over a 60 s time window. The RR onboard
was calculated according to the following procedures: Firstly, the six acceleration signals
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(X1, X2, Y1, Y2, Z1, and Z2) provided by the two accelerometers were digitized and processed
to obtain the difference signal (D). Higher-frequency components were removed through
the use of a simple smoothing digital filter (moving average). A low-pass filter with a
2 Hz cut-off frequency was used to smooth the signal and remove any nonrespiratory
movements, thus, obtaining the respiratory signal.

Finally, Table 1 reports on a comparison between the scientific works discussed above
from the point of view of the number of employed inertial sensors, installation position,
main processing blocks, and computational complexity evaluated according to personal
evaluations. The aim was to identify the most promising solutions for developing the next
generation of wearable devices for monitoring breathing parameters.

Table 1. Comparative table between the scientific work previously analyzed.

Work N◦ of Inertial
Sensor

Installation
Position Processing Complexity Application

P. Janik et al.
[42]

1
(LSM9DS1) Abdominal wall Digital filtering and

peak detection Low
Breathing and

heartbeat
monitoring

S. Beck et al.
[43]

2
(MPU-6050)

Abdomen and
thorax

Digital filtering and
frequency domain

analysis
Low Breathing

monitoring

M. Hafezi et al.
[45] 1 Suprasternal notch

Time domain features
extraction and deep
learning classifier

High

Breathing
monitoring and

OSA and
hypopnea event

detection

C. L. Bucklin et al.
[46] 1 Suprasternal notch

Frequency domain
analysis, digital filtering,

and PCA
Medium

Breathing
monitoring and

OSA and
hypopnea event

detection
Doheny et al.

[35]
1

(BiostampRC) Torso Digital filtering and time
domain analysis Low Breathing

monitoring
T. Eferamawy et al.

[48]
2

(LSM9DS0)
Abdomen and

thorax
Digital filtering and time

domain analysis Low Breathing
monitoring

J. Vertens et al.
[52]

2
(LIS3DSH) Chest and back Digital filtering and time

domain analysis Low Breathing
monitoring

S. Lapi et al.
[53]

2
(T100) Sternum Digital filtering and time

domain analysis Low Breathing
monitoring

According to us, the solutions involving dual-inertia detection [43,52,53] offer several
advantages compared to those using a single sensor, especially considering the weaknesses
of inertial sensors, namely, the extreme sensitivity to extraneous movements, inducing
motion artifacts in the acquired signal. Indeed, the differential solutions allow for the
removal of extraneous movements related to body motions, which are common to both
sensors. In addition, such scientific works report on very simple processing, mainly
involving digital filtering and a time domain analysis [11,19,20]. Our scientific work intends
to take a step forward with respect to the existing literature, presenting a fully integrated,
low-power, and discreet solution, but, simultaneously, featuring optimal performance for
monitoring the user’s breathing activity.

2. Materials and Methods

The basic idea was to develop a wearable system that measured breathing parameters
using two IMUs placed on the user’s chest and back. The presented chest band was low-
cost, small, and accurate, and used a powerful microcontroller for processing the acquired
inertial signals to extract respiratory activity. It exploited a dual inertial measurement
to determine the slow chest movement regardless of the extraneous body motions. The
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IMUs worn on the torso were employed to measure the inclination and angular changes
during respiration. Indeed, by using two sensors, a differential acceleration measurement
could be performed, removing the signal components related to body motion. If a perfect
alignment of the coordinate systems of both sensors was achieved, this method would
eliminate acceleration measurements introduced by a translational movement that did not
belong to respiration. After transforming and filtering the inertial data, the respiratory
signal could be extracted; the breathing parameters could be calculated by analyzing the
small peaks into the differential inertial signal.

2.1. Architecture of the Developed Inertia-Based Chest Band

The core of the developed wearable device used to measure respiratory frequency
was represented by two inertial sensors. Specifically, two six-axis motion tracking devices
(model MPU-6050, manufactured by Invensense Co., San Jose, CA, USA) were positioned
on the chest and the back of the subject under test and held in position by an elastic band
(Figure 1).
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Figure 1. Schematic view representing the operating principle of developed dual-inertia chest band;
the red arrows indicate the inertial sensors’ placement, whereas the purple ones the chest movements
during the breathing.

The logic behind this device was as simple as it was powerful. The user’s chest
expanded and contracted in relation to inhalation and exhalation, featuring the respiration
cycle during breathing [54]. Ideally, in conditions of absolute immobility, when fixing an
orthogonal reference system of origin on the subject’s chest, the x-axis directed along the
body, the y-axis directed in a normal way with respect to the line of the body with direction
outward from the chest, and the breathing movements were along this last axis.

An IMU is perfectly capable of measuring these movements, but when the subject moves,
even short movements, the measurement would undergo motion artifacts that were not due to
breathing, which could compromise the measurements. To overcome this problem, a second
IMU was placed on the subject’s back in exact correspondence with the front sensor. The back
was not affected by breathing movements, so all data read by the second accelerometer were
exclusively ascribable to the subject’s movements. Therefore, this solution resulted in the first
inertial sensor for reading motions and breathing data, with the latter reading only motion
data. The raw data on the respiration could be obtained by subtracting the data taken by the
front device from the rear one, thus, extracting a respiratory signal regardless of the user’s
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movements. Afterward, the waveform was initially filtered using the digital signal processing
technique to eliminate residual motion artifacts caused by vibrations due to the heartbeat
(precordial motion). Then, a peak detection algorithm was applied to the filtered signal to
determine the inhalation and exhalation times, thus, allowing for determining the breathing
parameters (i.e., RR, TI, TE, IER, and V).

Detailing the device’s architecture, its core was contained in the front box (Figure 2); a
custom-made housing unit contained the electronic acquisition and processing section. This
was constituted through a Seeeduino Xiao board, including the SAMD21G18A microcon-
troller (manufactured by Microchip Inc., Chandler, AR, USA), connected to the first inertial
sensor. An MPU-6050 six-axis MEMS inertial measurement unit was employed, combining
a three-axis accelerometer, three-axis gyroscope, and a Digital Motion Processor™ (DMP).

Sensors 2022, 22, x FOR PEER REVIEW 8 of 31 
 

 

orthogonal reference system of origin on the subject’s chest, the x-axis directed along the 
body, the y-axis directed in a normal way with respect to the line of the body with direc-
tion outward from the chest, and the breathing movements were along this last axis. 

An IMU is perfectly capable of measuring these movements, but when the subject 
moves, even short movements, the measurement would undergo motion artifacts that 
were not due to breathing, which could compromise the measurements. To overcome 
this problem, a second IMU was placed on the subject’s back in exact correspondence 
with the front sensor. The back was not affected by breathing movements, so all data read 
by the second accelerometer were exclusively ascribable to the subject’s movements. 
Therefore, this solution resulted in the first inertial sensor for reading motions and 
breathing data, with the latter reading only motion data. The raw data on the respiration 
could be obtained by subtracting the data taken by the front device from the rear one, 
thus, extracting a respiratory signal regardless of the user’s movements. Afterward, the 
waveform was initially filtered using the digital signal processing technique to eliminate 
residual motion artifacts caused by vibrations due to the heartbeat (precordial motion). 
Then, a peak detection algorithm was applied to the filtered signal to determine the in-
halation and exhalation times, thus, allowing for determining the breathing parameters 
(i.e., RR, TI, TE, IER, and V). 

Detailing the device’s architecture, its core was contained in the front box (Figure 2); 
a custom-made housing unit contained the electronic acquisition and processing section. 
This was constituted through a Seeeduino Xiao board, including the SAMD21G18A mi-
crocontroller (manufactured by Microchip Inc., Chandler, AR, USA), connected to the 
first inertial sensor. An MPU-6050 six-axis MEMS inertial measurement unit was em-
ployed, combining a three-axis accelerometer, three-axis gyroscope, and a Digital Motion 
Processor™ (DMP). 

 
Figure 2. Architecture of the developed inertial-based chest band; the breathing parameters ac-
quired by the chest band are sent through Bluetooth transmission to a mobile application to be 
viewed. 

Figure 2. Architecture of the developed inertial-based chest band; the breathing parameters acquired
by the chest band are sent through Bluetooth transmission to a mobile application to be viewed.

Moreover, the microcontroller board was interfaced with a JDY-23 Bluetooth module
at 2.4 GHz, and supplied with a single-cell Li-Po battery (model HJ751517, manufactured
by Hongjie Electronic Co. Ltd., Kunshan City, Jiangsu, China) featuring a 3.7 V nominal
voltage and 100 mAh capacity. On the back, an additional MPU-6050 was connected to the
front microcontroller via a cable running along the belt (as shown in Figure 1, image on the
left). The belt was essential for holding the two sensors in the correct position. The two
inertial sensors were interfaced with the microcontroller through the I2C bus, discerned by
their 8-bit address.

The microcontroller acquired and processed data from the two inertial sensors and
then derived the respiratory wave; it took the acceleration data from the two sensors
synchronously, calculated the corresponding inertial differential signal, and filtered it
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appropriately. It then applied a peak detection algorithm to detect the exhalations and
inhalations to calculate the respiratory rate. The integrated Bluetooth module would send
the extracted information to a mobile application, allowing the user to display it remotely.
A graphic representation of the device architecture is depicted in Figure 2.

The main strengths of the presented inertia-based chest band are listed below:

• Low dimensions and weight: the chest band was compact (6 cm × 2.8 cm × 1.4 cm
front section and 4 cm × 2 cm × 0.1 cm rear section) and lightweight (35 g), making it
discreet and nonobtrusive.

• Complete and ready-to-use: the development covered both the hardware and firmware
sections, leading to a complete monitoring system applicable in real operative scenarios.

• Real-time monitoring: the developed system provided real-time measurements of the
breathing parameters without postprocessing through an external host device (e.g., PC).

• High immunity to motion artifacts: thanks to the deployed differential inertial ap-
proach, the presented wearable device was relatively immune to artifacts induced by
extraneous body movements.

Additionally, the limitations or shortcomings of the presented system concerned:

• The better integration of the rear IMU inside the chest band, improving the wiring,
or providing a wireless connection with the front section; in this way, the device
wearability would be further enhanced.

• The deployment of advanced digital filtering methods, enabling a better rejection of
noise and artifacts induced by body motions.

These considerations are planned to be the starting point for future evolutions of the
presented wearable device.

2.2. Assembly of the Developed Chest Band

The PCB (printed circuit board) design of the electronic acquisition and processing
section was carried out, placing the Seeeduino Xiao board, the JDY-23 BLE module, and
the four-way connector for the rear sensor on the top layer. In contrast, the bottom layer
housed the front accelerometer equipping the chest band connected to the SAMD21G18A
microcontroller through the I2C interface (Figure 3b).
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The PCB was installed in a custom 3D printed case (with size dimensions of
6 cm × 2.8 cm × 1.4 cm) properly designed to be comfortable and wide enough to
host the board (Figure 4a). It was equipped with buttonholes to allow the passing of
an elastic band used to wear the device. In contrast, the back IMU was installed with
proper support and was fixed to the elastic band through two slots (with size dimen-
sions of 4 cm × 2 cm × 0.1 cm) (Figure 4b). Everything was designed to be as comfort-
able and easy to handle as possible, not to disturb or alter the subject’s breathing or the
measurement process.
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2.3. Firmware of Developed Inertia-Based Chest Band

This section describes the working modalities and firmware development of the
proposed wearable device, managed and controlled using a core section represented by the
Seeeduino Xiao microcontroller board.

The signals acquired from the accelerometer were just raw data and needed to be pro-
cessed and analyzed to detect the exhalation and inhalation instants and, thus, the breathing
rate. To extract the breathing parameters from the acceleration difference signal, the acquired
data had to be filtered to remove extraneous signal components and processed to detect the
inhalation and expiration times. Specifically, a digital low-pass filter with a 0.6 Hz cut-off
frequency was implemented, since the respiratory signal featured a characteristic frequency
between 0.2 Hz and 0.6 Hz. The flowchart of the implemented firmware is shown in Figure 5.

The firmware started declaring variables useful for programming purposes and ini-
tializing the communication interfaces. Notably, the I2C (interintegrated circuit) and UART
(universal asynchronous receiver transmission) interfaces were employed. The first one
was used for communicating with the two accelerometers. A supplementary connection
between AD0 and 3.3 V was necessary to use the second MPU-6050 to change the default
I2C address from 0 × 68 to 0 × 69, allowing to discern between the two devices on the I2C
bus. Moreover, the accelerometer range was configured to be±2 g, and an integrated 21 Hz
low-pass filtering process was activated on the inertial data. The second interface was used
to communicate with the BLE module, which allowed for the transmission of the acquired
RR measurements to a host device (i.e., smartphone or tablet). Later, a variable called
start_time was used to store the time when the time window started, and was initialized
with the current_time. Tw is the time window used for the RR estimation, and it was set
to 30 s (the value chosen in this thesis); peak_counter (or NP) is the variable used to count
the number of positive peaks occurring in the time window, which was initialized to 0. In
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contrast, variables peak_time, t1, t2, t1_prev, and t2_prev were used to store the exhalation
time, inhalation time, and the last inhalation and exhalation times, respectively.
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Afterward, the program flow entered into a continuous loop to acquire and process the
raw data and provide the RR value to the user. Then, a time window (Tw) started, which first
acquired the acceleration data from the two inertial sensors; for obtaining a synchronous
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acquisition of acceleration data from the two IMUs, two symmetrical measurements were
acquired from the rear sensor with respect to the first one. The mean value of the two
contiguous measurements from the rear IMU was considered to estimate the acceleration
value of the second sensor at the time when the front IMU was interrogated. Specifically, a
new data value was acquired from the rear IMU:

ax, back(t− 1); ay, back(t− 1); az, back(t− 1) (1)

Then, a new data value was acquired from the front IMU:

ax, front(t); ay, front(t); az, front(t), (2)

Additionally, new data were acquired from the rear IMU:

ax, back(t + 1); ay, back(t + 1); az, back(t + 1), (3)

This acquisition method reduced the number of errors caused by the nonsynchronous
acquisition from the two inertial measurement units. By calculating the average of the
acceleration data from the rear IMU, an estimation of the acceleration data detected from
the rear IMU at the same time as the front one was obtained (Equation (4)). Therefore, the
average of the data from the rear IMU was calculated:

̂ax, back(t); ̂ay, back(t); ̂az, back(t), (4)

Afterward, the modules of the two acceleration vectors were computed:∣∣∣→a front(t)
∣∣∣; ∣∣∣→a back(t)

∣∣∣, (5)

Additionally, the difference between them was as follows:

∆a =
∣∣∣→a front(t)

∣∣∣− ∣∣∣→a back(t)
∣∣∣, (6)

This acceleration difference signal represents the raw data processed to extract the
respiratory parameters. Afterward, the signal was filtered with a real-time digital filter and
realized with a Butterworth low-pass filter to remove the frequency components over 1 Hz,
thus, removing signal components induced by other body movements. Afterwards, the peak
detection algorithm was implemented to detect the inhaling and exhaling phases. The method
was based on the deviation principle, detecting if a new data point deviated a given number
of standard deviations upward or downward apart from a moving average (also called the
z-score). This algorithm output 1 when the average was above the z-score, and 0 if it was
within the z-score. When the average was below the z-score, it was marked as −1.

Subsequently, an if condition checked for exhalation peaks (peak = −1), storing the
corresponding time (t1); a while loop was introduced to wait for the peak end, avoiding
multiple increments. Afterwards, the peakCounter was increased if the difference between
the current peak time (peak_time) and the previous one (peak_time_prev) was higher than a
given threshold (Tthreshold). This additional verification was intended to eliminate multiple
negative peaks that could be seen in the breathing signal due to unrelated body motions.
The time threshold indicated above was set to 1.1 s (empirically established value). Then,
an if condition checked for inhalation peaks (peak = 1), memorizing the corresponding
time (t2). Afterwards, the program flow verified if the inhalation and exhalation times were
updated with respect to their previous value. According to the values of the inhalation and
exhalation instants, the current inhalation (TI) and exhalation (TE) time durations were
calculated. Additionally, in this case, conditions were applied to the TI and TE values
with thresholds dictated through physiological reasons. If the obtained TI and TE values
were acceptable, they were accumulated in storage variables (TI_sum, TE_sum) and used
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to calculate the mean values on the time windows; then, the t1_prev and t2_prev variables
were updated.

Once the time window ended, the breathing parameters were calculated using the
following equations:

RR = peakCounter × 60
Tw

(7)

TImed =
TIsum

TIcount
, (8)

TEmed =
TEsum

TEcount
, (9)

IER =
TImed
TEmed

, (10)

V =
Vt

TImed
×60, (11)

As evident, the RR was calculated using Equation (7) by counting the number of
inspirations that occurred inside the time window (i.e., 30 s); hence, it had to be considered
a mean value over the observation interval.

The user’s height and the ideal body weight (IBW) were used to determine the tidal
volume (Vt) [55]. Equation (14) used the IBW to compute the tidal volume:

IBW = 50 Kg + 0.91× (h[cm]− 152.4 cm) (for men), (12)

IBW = 45.5 Kg + 0.91× (h[cm]− 152.4 cm) (for women), (13)

Vt= 7 mL/Kg × IBW, (14)

The ratio of the air volume carried during each respiratory cycle (Vt, expressed in
liters) to the inhalation time (TI, expressed in minutes) determined the flow rate (V, in LPM
liter per minute). Finally, the data were transmitted to the host device through the BLE
transceiver. Then, all variables were cleared and the start_time was updated to restart a new
time window. Due to the resultant firmware being computationally light, it could be used
on hardware with less memory and processing power. Indeed, it covered approximately
53 KB of program memory (19% of SAMD21G18A flash memory) and 16 KB of data memory
(50% of SAMD21G18A SRAM (static random access memory)).

3. Results

Section 3 describes the evaluation and testing of the hardware and firmware of the
presented dual-inertia chest band. In detail, eight healthy patients different in gender
(four male and four female), body constitution (72.1 ± 12.0 kg), and age (24.3 ± 1.5 years)
were considered for the device characterization and testing, as well as for the firmware
optimization (Table 2). Depending on the user’s physical structure, the band was worn
on the upper abdomen of each wearer, with the elastic band being adjusted to guarantee
the proper fit of the inertial sensors on the body (Figure 6). The firmware performed a
preliminary assessment as soon as the chest band was placed on to ensure that it was
properly positioned on the user’s body when the patient was standing or sitting. The
algorithm specifically checked the differential inertial signal produced by the modulus
difference of the triaxial acceleration data, which was proximal to zero, indicating a good
alignment between the front and rear IMUs. The chest band could be worn by people
of varied constitutions and genders thanks to this control system, which maintained the
device’s functionality. For all the considered users, a correct calibration was obtained. In
addition, a portable spirometer (model SP10, manufactured by Contec Medical Systems Co.,
Ltd., Qinhuangdao, China) was employed as a reference for the measurements acquired
with the chest band collected simultaneously.
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Table 2. Summarizing table reporting on the characteristics of users that tested and characterized the
chest band.

User Gender Age (Years) Height (m) Weight (kg)

1 Male 24 1.82 78

2 Male 25 1.89 91

3 Male 25 1.83 82

4 Male 27 1.78 78

5 Female 22 1.71 62

6 Female 23 1.67 56

7 Female 24 1.65 61

8 Female 25 1.70 69
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3.1. Firmware Optimization for Enhancing the Chest Band’s Accuracy

Based on several tests carried out in the laboratory, the chest band’s firmware was
improved by optimizing the involved parameters. To improve the algorithm accuracy, and,
consequently, that of the device, in detecting the respiratory frequency, it was decided to
work on five specific parameters included in the algorithm. The combination of these had
an important effect on the accuracy of the same: the cut-off frequency, the peak detector’s
parameters, and the minimum distance between two consecutive peaks.

The first parameter was the cut-off frequency of the low-pass filter, used to exclude
high-frequency components. Most scientific papers dealing with this subject using a
respiratory frequency ranging from 0.5 Hz to 0.8 Hz demonstrated this to be the most
appropriate to describe respiratory behavior, excluding motion artifacts. The algorithm
discussed in this work was developed by setting the cut-off frequency to 0.5 Hz.

The parameters set in the peak detection algorithm had the greatest effect on the
algorithm’s accuracy. This function admitted three main parameters; lag, threshold, and
influence; the meaning of which was explained in the previous section. The starting
parameter set was 56 samples for the lag, 2.95 σ for the threshold, and 0.58 for the influence.

Additionally, the other considered parameter was the minimum distance between
two adjacent peaks (Tthreshold in Figure 5). This time distance should have been at least
1100 ms; experimentally, it was noted that, occasionally, a single inhalation/exhalation
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generated two peaks in the respiratory waveform, which were erroneously considered by
the firmware to be associated with two breaths. Therefore, it was decided to remedy this
false detection at a firmware level by adding a condition that discarded the second peak if
it was less than 1100 ms away from the previous one. This time interval was crucial, since
a too small a value could cause the double counting of the same breathing event, and, in
contrast, a too-high value could erroneously discard valid peaks, especially during faster
breathing, such as that during the expenditure of physical effort.

Initially, tests were conducted using the starting parameter set with the subject sitting,
standing, and moving, obtaining a correlation coefficient between reference and band
measurements of 0.859, 0.897, and 0.864, respectively. Therefore, the device demonstrated
accuracy and reliability, although the results left room for improvement.

With a view towards improvement, the parameters listed above were adjusted to
correct any under or overestimation of the sensors. On-field tests were carried out for each
set of parameters. The tests were carried out by simultaneously measuring, over a 30 s
time window, the RR with the developed chest band and a portable spirometer (model
SP10, manufactured by Contec Medical Systems Co., Ltd., Qinhuangdao, China) used as
a reference. Table 3 shows the different parameter sets tested. Indeed, Table 4 reports a
comparison between the RR measurement provided by the chest band and the reference
ones for each parameter set. These measurements were gathered for a single subject (user
one, Table 2) considered in our analysis.

Table 3. Parameter sets used to optimize the chest band’s firmware. Set 0 was the starting set.

Parameters
Set #

Cut-off
Frequency

(Hz)
Lag Threshold Influence Minimum Peaks

Time Distance (ms)

0 0.5 56 2.95 0.58 1100
1 0.6 52 2.95 0.58 1100
2 0.6 56 2.90 0.58 1100
3 0.6 56 2.85 0.58 1000
4 0.6 58 2.85 0.58 1000
5 0.6 60 2.87 0.58 1000

Table 4. Measurements obtained with the various tested parameter sets; in the left column, the
measurements provided by the band are reported on, whereas, in the right column, the corresponding
reference measurements are shown.

First Set
(BrPM)

Second Set
(BrPM)

Third Set
(BrPM)

Fourth Set
(BrPM)

Fifth Set
(BrPM)

Band Reference Band Reference Band Reference Band Reference Band Reference

18 22 20 24 26 26 32 30 26 26
24 24 24 26 26 26 20 20 26 26
20 24 22 24 20 20 30 26 30 30
30 28 22 24 24 24 30 28 30 30
28 28 22 24 20 22 30 30 32 32
24 26 24 24 22 22 28 28 30 30
24 26 24 24 26 24 24 24 30 32
20 20 22 24 20 20 26 26 26 28
20 22 22 22 22 22 26 26 30 30
22 22 20 22 28 26 32 32 26 28

As shown in Table 4, the fifth parameter gave the best results, proving the closest
possible results compared to manual measurements. Therefore, it was decided to investigate
the results obtained by further testing this parameter set.
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3.2. Characterization of the Developed Inertia-Based Chest Band

After optimizing the parameters involved in the chest band’s firmware, the next step
was to evaluate the performance of the inertia-based chest band in detecting breathing
parameters for different user conditions, namely, when sitting, standing, and walking.
These tests aimed to assess the correct operation of the developed hardware and firmware
when the system was subjected to mechanical stresses or placed in different orientations.

In Figure 7a, the raw inertial signal, namely, the ∆a, is shown (blue trace); the lat-
ter, given by the difference between the data obtained from the front and rear sensors,
contained high-frequency components, partly due to the heartbeat and uncompensated
body movements. As mentioned, these unwanted components were removed through
a Butterworth filter at a frequency of 0.6 Hz. The filter action was evident in Figure 7a
(red trace), representing the filtered signal deprived of the disturbing components with a
frequency higher than the cut-off frequency.
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Figure 7. Plots showing the raw data (blue trace) and filtered data (red trace): wide (a) and detailed
(b) views, with the inspiration and expiration phases highlighted.

The front inertial sensor experienced a positive acceleration along the z-axis as the
abdomen expanded due to breath inspiration, increasing the acceleration modulus dif-
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ference signal. In contrast, as the abdomen contracted during expiration, the front IMU
experienced a negative acceleration along the z-axis, because it tended to return to its initial
position, thus, reducing the resulting differential signal (Figure 7a). Figure 7b provides a
more in-depth view of the collected waveforms.

Additionally, because the peak detection technique was based on a statistical data
analysis, by detecting the points’ deviations from the moving average, the processing chain
was comparatively insensitive to tiny signal amplitude decreases, ensuring proper device
performance. Specifically, it showed the exhale and inhalation instants used by the firmware
to generate the respiratory parameters. The green trace represents the output signal from
the peak detecting algorithm operating according to the dispersion principle (Figure 8),
providing a value of −1 in correspondence to exhalation and +1 in correspondence to
inhalation. Observing both the red (filtered ∆a) and green traces simultaneously, it could
be deduced that the peak detector picked up the exhalation peak at the point where the
green trace stopped growing, and decreased almost instantaneously. The inspiratory peak
was much longer, given that an inhalation phase lasted much longer than an exhalation
one. In addition, specific time instants of the respiratory signal and the related time length
were highlighted in Figure 8. As detailed above, the method created used these data to
determine the instantaneous TE and TI, as well as the corresponding average values, the
IER, and the flow rate in a 30 s time window.

Figure 8. Plot depicting the raw (blue trace) and filtered (red trace) acceleration signals, along with
the output of the peak detection algorithm (green trace) based on the dispersion principle.

Moreover, the signal produced by the chest band was compared with the time trend
of the inhaled and exhaled air volume concurrently acquired with a portable spirometer
(Figure 9). As evidenced, the two signals showed similar patterns, exhibiting peaks and
troughs at very close temporal positions; thus, we could conclude that the developed
wearable device correctly recognized the breathing motions.

Then, the designed inertia-based chest band was tested in various operating scenarios,
including sitting, standing, and walking. Twenty tests were conducted for each operating
condition, comparing the RR readings produced by the chest band with those acquired by
the spirometer. Figure 10 shows the correlation diagram of the measurements provided by
the developed wearable device with the reference one. In these tests, only user one (Table 1),
an adult man of 24 years and weighing 78 kg, was involved. Later, a summarizing table is
presented reporting on the performance of the chest band for the eight tested participants.
To cover a wider RR range, the tests were repeated in various physiological situations (rest
and stress); in the graphs, the number of each data point was shown.
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Figure 9. Comparison between the time trend inhaled/exhaled air volume and differential accelera-
tion signal acquired using the chest band; the peaks in inhaled/exhaled air volume are highlighted.
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Figure 10. Correlation diagrams between measurements obtained from the chest band and the
reference ones obtained with the spirometer for three operative scenarios, namely, for a user: seated
(a), standing (b), and walking at 1 ms−1 (c). The data point’s multiplicity is reported in the graphs.
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Moreover, the correlation between the acquired RR values with the reference ones was
quantified through the Pearson correlation coefficient, expressed as (Equation (15)):

r =
n(∑ RRBandRRRef)− (∑ RRBand)(∑ RRRef)√[

n ∑ RR2
Band − (∑ RRBand)

2
][

n ∑ RR2
Ref − (∑ RRRef)

2
] (15)

Additionally, Figure 11 shows the Bland–Altman plots related to the RR measurements
acquired through the use of the inertia-based chest band and the reference ones for different
operative conditions (i.e., seated, standing, and walking). These data representations
enables the evaluation of the accordance between the two considered measurement methods
through two parameters, namely, the LoA and MD.
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Later, the performances of the developed chest band in monitoring the other breath-
ing parameters (i.e., TI, TE, IER, and V) were evaluated. The data provided using the
portable spirometer constituted the reference, and were acquired simultaneously with
those measured from the presented chest band. Similarly, the measurements were gathered
on a single patient (user one in Table 2); correlation analyses were performed to evaluate



Sensors 2022, 22, 9953 20 of 29

the chest band performances over 20 tests (Figure 12). In particular, the TI, TE, and V
measurements were taken over a single breath.
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Figure 12. Correlation diagrams related to the measurements of TI (a), TE (b), IER (c), and V (d), carried
out through the use of the developed chest band and the spirometer used as reference. The colored
symbols (i.e., blue and yellow dots, orange triangles, and blue squares) indicate the data points.

4. Discussion

This section discusses the experimental results of firmware optimization and device
characterization presented in Section 3. Furthermore, a performance comparison with the
experimental results was conducted in our previous work [28] regarding a piezoresistive
and inertial chest band for monitoring the same breathing parameters as that presented in
this scientific work. Finally, the performance of the chest band on heterogeneous patients
was evaluated.

The following observations could be deduced considering the correlation diagrams of
Figure 10: When sitting, the correlation coefficient obtained was 0.911552 (0.859 for set 0,
+5.7%), whereas, when standing, it was 0.917919 (0.897 for set 0, +2.3%), and when walking,
it was 0.938202 (0.864 for set 0, +7.9%). Therefore, it could be concluded that there was a
tangible improvement in the device’s performance using parameter set 5 compared to the
previous set 0. Additionally, the device’s tendency to be more accurate when the user was
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standing or walking rather than sitting was confirmed. In conclusion, it could be stated
that the device’s accuracy improved considerably through the optimization of the five
parameters described above, obtaining an accurate and reliable RR measurement.

However, the measurement disagreement was ascribable to the spurious peaks created
by body motions, which were not removed in the inertial difference signal. Indeed, the
main problem of this approach to track the user’s respiration laid in the correct positioning
of the chest band; in fact, a perfect alignment between the two inertial sensors was the
key to achieving the optimal operation of the device. In addition, disturbing factors were
represented by a user’s incorrect posture or accidental band movement.

Furthermore, considering the Bland–Altman plots reported in Figure 11, it was possible
to draw conclusions about the data concordance between the chest band and the reference
measures [56]. In detail, the results suggested that when the user was seated, the device
resulted in a −0.4 BrPM mean difference and +1.21 and −2.01 BrPM limits of agreement
(Figure 11a). Conversely, when the user was standing, an MD of +0.7 BrPM and LoA
of +3.86 BrPM and −2.49 BrPM were obtained (Figure 11b). Thus, the results indicated
that when the user was standing, the chest band performance degraded; this was testified
through the greater moduli MD and LoA, indicating that the resulting RR measurements
were affected by a larger bias component and a larger data dispersion around the MD. In
conclusion, for a walking user, an MD of +0.6 BrPM and LoA of +3.18 and−1.98 BrPM were
obtained (Figure 11c). The results suggested that the developed device had a lower bias
when the user was seated than in an upright position. In addition, the greater LoA reflected
a greater potential inaccuracy in the RR measurement. This performance degradation
was ascribable to a misalignment in the front and rear IMUs due to the band’s incorrect
positioning or the user’s posture.

When comparing the chest band’s performance when the user was standing and
walking, a slight performance improvement was obtained when the user was moving,
attributable to the differential cancellation mechanism allowed by the deployed differential
inertial solution. By observing the Bland–Altman plots for all the operating conditions, the
measurement points appeared to be equally distributed when the mean value changed, sug-
gesting that the error between the two measurement approaches was uniform as a function
of the measurement value. Finally, the results showed that the presented wearable device
was trustworthy, accurately estimating the breathing rate under situations encountered in
daily life.

Moreover, by analyzing the correlation diagrams in Figure 12, the Pearson correlation
coefficient could be calculated for the other breathing parameters measured with the chest
band (Table 5). As evidenced, the developed device correctly measured the TI, TE, IER, and
V, as indicated by the high value of the correlation coefficient of measurements acquired
with the chest band and the reference ones. A fortiori, this was evidenced by the low value
of the MAE contained within 5% for all considered parameters.

Table 5. Summarizing table reporting on the performance of the developed chest band in detecting
TI, TE, IER, and V.

Parameter Pearson Coefficient (r) MAE (%)

TI (ms) 0.97 4.3

TE (ms) 0.98 3.8

IER (Adim) 0.70 5.0

V (l/min) 0.98 4.3

4.1. Characterization of the Chest Band for Multiple Users

Later, the wearable device was evaluated over a wider range of users, with differences
in gender, physical constitution, and age (Table 2). The aim was to bring out the eventual
dependencies of the device’s behavior on user characteristics.
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The RR was considered a key parameter to determine the device’s performance.
The operational testing modalities were the same as those used for the earlier subject
(user one); similarly, the RR measurements acquired with the spirometer were taken as a
reference. In terms of the MD, LoA, and MAE, Figure 13 shows the results of the chest
band’s characterization obtained for eight users under the previously considered operating
conditions (i.e., seated, standing, and walking).
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Figure 13. Histograms reporting on the results of the chest band characterization over eight users under
different operating conditions (i.e., seated, standing, and walking); Pearson correlation coefficient (a),
mean difference (b), limits of agreement (c), and percentage mean absolute error (d).

Figure 13 shows that no perceptible correlations from the user characteristics (gender,
constitution, and age) were evident in the performance metrics. Moreover, the trends
obtained for r, MD, LoA, and MAE were in line with those obtained for user one for the
different operative conditions. In detail, the results suggested that the chest band had the
best performance when the user was seated, as witnessed by the lowest LoA and MAE. This
observation could be justified with fewer mechanical solicitations to which the developed
wearable device would undergo, as well as the better posture assumed by the user, which
affected the device’s accuracy. Finally, when the user was seated, the mean performances
obtained by the inertia-based chest band were as follows: 0.92 mean Pearson correlation
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coefficient (r), −0.27 BrPM mean MD (MD), 1.16 and −1.75 BrPM mean LoA (LoA), and
1.5% mean MAE (MAE).

Finally, we asked the eight considered users to evaluate the comfort of the developed
chest band, assigning a vote from one to five; in detail, the meaning of the scale was the
following: one (completely uncomfortable), two (more uncomfortable than comfortable),
three (more comfortable than uncomfortable), four (moderately comfortable), and five
(completely comfortable). The results of the survey are summarized in Figure 14. Each
user wore the chest band continuously for one hour, placing it under the clothes; after this
period, the user was asked to rate the device’s comfort.
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Figure 14. Histograms depicting the survey results related to the comfort of the developed differential
inertial chest band.

As evidenced from the results in Figure 14, all the users rated the comfort of the
developed chest band positively, obtaining a mean score of 4.25. However, much room for
improvement of the device’s comfort was deemed feasible, mainly related to the wiring
of the rear IMU with the front section, or substituting it with a wireless connection, as
discussed in Section 2.1.

4.2. Performance Comparison of the Presented Chest Band with the Scientific Literature

This section presents a comparative analysis of the designed dual-inertia chest band
with our piezoresistive/inertial breathing sensor [23] to determine the differences and
potentialities of the two detection methods. Then, the performance comparison of our
inertia-based breathing sensor with similar solutions reported in the scientific literature is
introduced to evaluate its capabilities, features, and future perspectives.

The chest band employed a single piezoresistive strain sensor for patient breath moni-
toring applications based on the EeonTex smart textile (model LTT-SLPA-20K, created by
Eeonyx Inc., Pinole, CA, USA) and low-power conditioning, processing, and communica-
tion sections. Furthermore, the device integrated an IMU (MPU-6050) to remove motion
artifacts, improving its accuracy and reliability in detecting breathing parameters (i.e., RR,
TI, TE, IER, and V). Indeed, every motion of the patient’s body unrelated to breathing could
introduce components into the collected signal and lead to erroneous measurements of the
target parameters. Even when the user was seated or lying down, body motions brought
on by the trunk’s bending or twisting could impact the strain sensor’s signal. Notably, the
microcontroller section elaborated on the data from the piezoresistive strain sensor jointly
with the inertial data for measuring the breathing parameters [28,34].

The performances of the two chest bands, derived from the correlation and Bland–
Altman analyses, are reported in Table 6 to examine them and reveal opportunities and
potential futures. Specifically, the comparison was carried out considering the RR as a
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key parameter and evaluating the r, MD, LoA, and MAE for three testing conditions, as
previously discussed.

Table 6. Performance comparison of piezoresistive/inertial and differential inertial chest bands
considering the user seated, standing, and walking.

Seated Standing Walking

r MD
(BrPM)

LoA
(BrPM)

MAE
(%)

r MD
(BrPM)

LoA
(BrPM)

MAE
(%)

r MD
(BrPM)

LoA
(BrPM)

MAE
(%)

Piezoresistive/inertial
chest band

[28]
0.96 +0.68 +3.20/

−1.75 3.13 0.95 +0.40 +3.34/
−2.56 3.56 0.93 +0.23 3.65/

−3.28 3.56

Proposed
differential inertial

chest band
0.92 −0.27 +1.16/

−1.75 1.15 0.92 +0.56 +3.48/
−2.53 2.69 0.94 +0.48 3.02/

−1.8 3.26

It was clear from the results reported in Table 6 that the differential inertial chest
band provided improved performance compared to the piezoresistive/inertial chest band
when the user was seated. This observation was justified by the lower MAE (−63.2%), MD
(−60.3%), and LoA (−63.7% and 0%, respectively). These results indicated that the RR
measurements were affected by a lower bias and possible errors determined by the sensing
device. In contrast, for the standing user, the performances of the differential inertial chest
band were still better than the piezoresistive/inertial one, although to a lesser extent than
in the case of the seated user. Indeed, the MAE that resulted from the differential inertial
chest band was lower than the piezoresistive/inertial one (−24.4%), whereas the values of r
were (+3.5%), MD (+28.6%), and LoA (+4.2% and −1.2%, respectively). Finally, considering
the walking user, the differential inertial chest band also offered slightly better performance
compared to the piezoresistive/inertial one in this case, witnessed by the lower MAE
(−8.4%) and LoA (−17.3% and −45.12%), keeping close values of r (+1.1%). Nevertheless,
considering the walking users, a larger MD (+108.7%) affected the RR measurements as a
bias component.

In conclusion, we could state that the differential inertial chest band guaranteed an
overall better performance with respect to the piezoresistive/inertial device presented
in our previous work [28]. Moreover, the presented detection approach offered several
advantages compared to relying just on strain sensors, such as, for instance, the need for no
tight coupling with the user’s body, enabling an easier integration inside garments.

Later, a comparison was conducted with similar devices for detecting breathing param-
eters based on inertial sensors, shown in Table 7; specifically, the percentage of MAE was
chosen as a yardstick between the different devices considered, together with the number
of used inertial sensors and their positioning, the processing unit, the acquisition frequency,
and the availability of a wireless connectivity module. We believed the percentage of the
MAE to be the most suitable quantity to evaluate the accuracy of the RR detection devices,
allowing to take into account the extent of the committed error commensurate with the
respiratory rate measurement.
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Table 7. Comparison of proposed differential inertial chest band with similar breathing measurement
systems reported in the scientific literature.

Work N◦ of Inertial
Sensors

Sensor
Position

Processing
Unit

Acquisition
Frequency

(Hz)

MAE
(%)

Wireless
Connectivity

E. P. Doheny
et al.
[35]

2
(BiostampRC,

MC10 Inc.)

Chest and
Abdomen (b) PC 125 11.13 No

S. Beck et al.
[43]

2
(MPU-6050)

Thorax and
Back (c)

Arduino
MKR1010 N.A. (a) 0.83 No

J. Lee et al.
[57]

1
(Biopac MP

150TM)
Chest (b) PC 500 4.42 No

S. Hughes et al.
[58]

1
(Biopac

TSD109C2)
Clavicular (b) PC 500 13.33 No

F. Jacobs et al.
[59]

1
(Philips

Healthdot)
Lower Rib (c) Healthdot 100 <25 LoRa

D. Jarchi et al.
[60] 1 Chest (c) PC 25 4.28 No

J. Hernandez
et al.
[61]

1
(Google Glass) Head (c) N.A. (a) 256 10.57 WiFi/BLE

Proposed chest
band

2
(MPU-6050)

Chest and
Back (d) SAMD21G18A 100 1.15 BLE 5.0

(a) Not Available; (b) User Position: Supine; (c) User Position: Standing; (d) User Position: Seated.

The presented device is a ready-to-use system for detecting breathing parameters, unlike
other solutions presented in the literature, which focused on the detection method, leaving
out the applications of the wearable device. In addition, the main advantage of the pre-
sented breathing sensor was its real-time processing capability compared to similar solutions,
which relied on the postprocessing of acquired data through algorithms performed on a
PC [35,43,57–60]. On the contrary, our chest band processed the data in real-time, providing
the mean breathing parameters (i.e., RR, TI, TE, IER, and V) at the end of the 30 s. Furthermore,
the presented inertial chest band offered better performance than most of the considered
systems (Table 7); only the system presented in [43] guaranteed a slightly better performance
(−22.6% on MAE) compared to our wearable device. Still, the differential inertial approach
in [43] was based on the offline postprocessing that was carried out through a MATLAB script
on acceleration data acquired from the inertial sensors.

Furthermore, the presented chest band was equipped with a low-power BLE module
for wirelessly transmitting the measurements to a host device. A large part of the reported
scientific works did not have wireless connectivity, but the data transfer was entrusted to an
SD card or on a PC via cable [43,57,58,60]. In addition, other works employed commercial
wearable sensors for gathering the RR measurements, which, however, showed a lower
performance than our system [59,61]. Furthermore, the device in [60] was applied to the
neck, which could easily be subjected to mechanical stresses that could induce artifacts on
the acquired inertial signal. Finally, in [61], the authors employed smart glasses equipped
with an IMU to extract RR measurements, which were more obtrusive than our chest band.

5. Conclusions

Accurate breathing monitoring is important to determine the onset of critical physical
conditions. In the scientific literature, several wearable devices for breathing monitoring
have been presented, operating according to different transduction methods involving con-
tact (e.g., oximetry, ECG, inertial, capacitive, piezoresistive sensors, etc.) or not (humidity
and gas sensors, video-assisted methods, etc.) with the user’s body.
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This paper presented a novel inertia-based chest band for monitoring breathing pa-
rameters (RR, TI, TE, IER, and V). Notably, the device employed a differential inertial
approach, placing two IMUs on the chest to detect the chest movements and back, acting
as a reference. In fact, this approach was based on analyzing the relative acceleration signal
between the back and the chest to eliminate signal components unrelated to breathing,
enabling a high immunity to artifacts induced by human motions. The chest band com-
prised a microcontroller section, which acquired and processed the differential acceleration
modulus for extracting the breathing parameters. The developed firmware relied on digital
filtering and the time domain analysis of the inertial signal; its parameters were optimized
to improve the device’s accuracy and reliability. In conjunction with the firmware develop-
ment, the hardware section was developed, resulting in a compact, lightweight, discreet,
and ready-to-use wearable breathing sensor. The chest band was tested on eight users of
different genders, ages, and physical constitutions. Correlation and Bland–Altman analyses
were employed to determine the device’s performance, using a portable spirometer as
a reference. The experimental tests demonstrated that, for seated users, the differential
inertia-based chest band could reach a high correlation (r = 0.92) and reduced the mean
difference (MD = −0.27 BrPM), limits of agreement (LoA = +1.16/−1.75 BrPM), and mean
absolute error (MAE = 1.15 BrPM) in measuring the RR. Additionally, the developed system
was compared with another piezoresistive/inertial chest band presented in our previous
work [28], showing better performances (−63.2% MAE, −60.3% MD, and −63.7% and 0%
LoA). Moreover, the experimental results indicated that the developed chest band correctly
detected the other breathing parameters (TI, TE, IER, and V), ensuring an MAE of ≤5%.
Finally, we could conclude that the developed differential inertial chest band represented
an optimal solution for long-term breathing monitoring in stationary and moving users.

As future developments, the band’s firmware could run machine learning algorithms
to discern the occurrence of respiratory disorders (e.g., apnea, snoring, asthma, COPD,
etc.) [62,63]. Indeed, thanks to the many available software tools, it is relatively simple to
implement machine learning algorithms to devices characterized by a limited computing
power and memory [64].
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