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Abstract: Conventional classification of hand motions and continuous joint angle estimation based
on sEMG have been widely studied in recent years. The classification task focuses on discrete motion
recognition and shows poor real-time performance, while continuous joint angle estimation evaluates
the real-time joint angles by the continuity of the limb. Few researchers have investigated continuous
hand action prediction based on hand motion continuity. In our study, we propose the key state
transition as a condition for continuous hand action prediction and simulate the prediction process
using a sliding window with long-term memory. Firstly, the key state modeled by GMM-HMMs is set
as the condition. Then, the sliding window is used to dynamically look for the key state transition. The
prediction results are given while finding the key state transition. To extend continuous multigesture
action prediction, we use model pruning to improve reusability. Eight subjects participated in the
experiment, and the results show that the average accuracy of continuous two-hand actions is 97%
with a 70 ms time delay, which is better than LSTM (94.15%, 308 ms) and GRU (93.83%, 300 ms).
In supplementary experiments with continuous four-hand actions, over 85% prediction accuracy is
achieved with an average time delay of 90 ms.

Keywords: sEMG; GMM-HMMs; key state transition; model pruning; continuous two-hand action
prediction; sliding window

1. Introduction

The surface electromyography (sEMG) signals, as electrical signals reflecting neuro-
muscular function, can produce 30–150 ms earlier than the movement of hand action [1].
It contains useful information about human motion intention and is extensively used to
control prosthetic hands [2–4]. There has been considerable interest in recognizing human
motion intention by sEMG signals in recent years.

Two main aspects of applications have been implemented: discrete motion classifica-
tion and continuous joint motion estimation [5]. Discrete motion classification is used to
recognize specific gestures of the upper limb [6–9] and lower limb [10–13] without strict
constraints on the extent of motion.

Relevant works on motion classification emphasize using appropriate features and
classifiers to enhance recognition accuracy. Narayan et al. [14] used a discrete wavelet
transform (DWT) to extract the time–frequency features of sEMG signals. SVM was ap-
plied to classify six gestures with the features. The results showed that 95.8% accuracy
could be achieved. Liu et al. [15] used the autoregressive power spectrum to recognize
13 different gestures, and the average accuracy was up to 95%. In another research study,
Yang et al. [16] proposed that RMS values could be used to build feature vectors. After
the division of substates for HMM, a GMM-HMMs model was proposed to distinguish
six hand motions; the classification accuracy was more than 95% in eight-channel sEMG.
Deep learning methods have also been widely studied [17,18]. Shen et al. [19] proposed a
method to complete hand motion classification based on a convolutional neural network
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and stacking ensemble learning. The experimental results on the NinaPro DB5 dataset [20]
outperformed other methods. The average accuracy was 11.5%, 13.6%, and 10.1% higher
than LDA, SVM, and LCNN, respectively. Hu et al. [21] used an attention-based hybrid
CNN and RNN architecture to capture better temporal properties of electromyogram
signals for gesture recognition problems. A new sEMG image representation method
that enabled deep learning architectures to extract implicit correlations between different
channels for sparse multichannel electromyogram signals was proposed. The recognition
accuracies on different datasets were higher than the state-of-the-art performance.

Although discrete motion classification is widely investigated in the field of sEMG-
based pattern recognition, it is still hard to satisfy the real-time requirements efficiently.
One reason is that it does not consider the factors which affect realistic scenarios, such as
the discontinuity of the discrete motion. Generally, human-hand action is a continuous
process for practical applications, and continuous motion estimation is more applicable for
hand action recognition.

Currently, continuous joint motion estimation is the primary research direction in
continuous motion estimation, which realizes intention recognition by establishing a map-
ping relationship between sEMG signals and a continuous variable such as joint angle or
joint torque. Motion estimation plays an essential role in stable control for robots [22–25].
In recent studies, two methods have mainly been used: one is based on the biomechan-
ical model [26], and the other is concentrated on the regression model [27]. Research
based on the biomechanical model has been widely considered [28–30]. For example, Ao
et al. [31] proposed a method based on combining the Hill muscle model and a linear scale
model to control the ankle exoskeleton robot. The method improved the performance of
human–robot cooperation control for an ankle power-assisted exoskeleton robot. Duran-
dau et al. [32] used person-specific neuromechanical models to estimate biological ankle
joint torques. The method provided a new solution for systematically adopting wearable
robots. Although the biomechanical model has been widely validated in the control of
robots, it still cannot satisfy the requirements for robot joint flexibility and precise posi-
tioning in terms of recognition accuracy and real-time performance. In order to realize
a real-time and precise estimation, regression models, such as neural network models,
multivariate linear models, and polynomial models have been proposed [33–35]. Gui
et al. [36] and Artemiadis et al. [22] confirmed that regression models implemented the
real-time control of the limb exoskeleton.

These methods for continuous joint motion estimation only consider the continuous
motion process of the upper and lower limbs. Similar to the upper and lower limb move-
ments, hand actions are also continuous, and it is necessary to explore the continuous
process mechanism of hand actions. Furthermore, the accurate prediction of continuous
hand actions based on this process mechanism can recognize the subsequent gesture in
advance, which is conducive to the coherent execution of continuous hand actions.

In our study, a method for sEMG-based continuous hand action prediction is proposed.
The overview of the motion prediction is described in Figure 1. Our method was based on
the GMM-HMMs model, which assumed the time-varying properties of the Markov chain.
Six states were divided to explain the process of continuous hand actions. The key state
transition was chosen as the prediction condition to realize the advanced prediction of hand
actions. Sliding windows with long-term memory were used to simulate the prediction pro-
cess. Eight subjects were recruited to perform twelve continuous two-hand actions and four
continuous four-hand actions, and every continuous two-hand action was modeled. As a
result, twelve models needed to be used in the prediction task. Considering the processing
time and mutual interference of multimodel recognition, we set four different groups
while each group containing three models starting with the same hand gesture. Then,
model pruning was used to bind the specific group based on the degree of model-fitting.
Implementing model pruning could decrease the number of models and reduce crosstalk
between models. Compared with previous studies on discrete motion classification and
continuous joint motion estimation, our study supplemented the research on sEMG-based
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continuous hand action prediction and provided a new idea for future work.
The main contributions of this paper are as follows:

• A new supplement to the research of sEMG-based motion intention recognition.
• A modified Viterbi algorithm of GMM-HMMs which can build long-term memory for

the prediction process.
• A Model pruning which can expand the number of participating hand gestures for

continuous multihand action prediction.

Section 2 describes the GMM-HMMs model, where the key state transition, slid-
ing windows with long-term memory, and the model pruning are presented elaborately.
Section 3 introduces experimental setups for twelve continuous two-hand actions and four
continuous four-hand actions. Experimental results and discussions of continuous two-
hand actions, continuous four-hand actions, and baseline results are presented in Section 4.
Section 5 concludes the paper.

Figure 1. The structure of the proposed prediction framework. Part A illustrates the state division
and modeling process; state 4 is the key state transition of the setting. Twelve models are trained and
then divided into four groups according to the different starting gestures of continuous two-hand
actions. Part B displays the prediction simulation process using a sliding window with long-term
memory. Based on Part A and Part B, Part C performs model pruning; the groups pointed by the
dotted line are pruned.

2. Methods
2.1. GMM-HMMs

Different from discrete motion classification, the prediction of continuous hand actions
needs more information on time dependence. The hidden Markov model is applicable
for time series modeling [37]. By assuming a Markov random process, the relationship
between hidden states and observation can be linked, and the continuous connection can
be further developed. In the study, we propose a model based on GMM-HMMs to analyze
the continuous two-hand actions. RMS values were extracted as features for GMM-HMMs
and divided into 6 parts. Different GMM-HMMs of continuous two-hand actions were
built. An HMM can be defined as:

λ = (A, B, π) (1)

where A is the transition probability matrix, B is the observation probability matrix, and π
is the initial state distribution. The hidden states can be defined as s = [s1,s2,. . . ,sN] where N
is the number of hidden states. In our work, N = 6, and s1 refers to hand transition (rising),
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s2 refers to hand stabilization, s3 refers to hand transition (declining), s4 refers to hand
transition (rising), s5 refers to hand stabilization, and s6 refers to hand transition (declining).
A =

{
aij
}

defines the probability of transferring from state i at time t to state j at time t + 1.
B = {bi(Ot)}, 1 ≤ i ≤ N defines the probability that state i generates Ot at time t, where Ot
is a vector of feature values at time t. The initial state distribution, π = {πi}, defines the
probability of being in state i at the start time point. The states of HMMs were modeled by
a Gaussian mixture model.

2.2. Key State Transition and the Marginalization of Sliding Windows

The results should be achieved before hand actions are completed for the ideal pre-
diction of continuous hand actions. Typically, a robust and reliable judging condition for
prediction is essential. Continuous two-hand actions were divided into six states, and the
fourth state, which played a vital role in linking the front and rear gestures, could be used
as a key state transition for prediction. During continuous hand actions, the period of
hand transition is much shorter than that of hand stabilization, and the overall real-time
performance can be improved if the correct prediction results can be obtained during the
period of hand transition. Relevant research has shown that prediction results can be
obtained during hand transition [38]. It indicates that the application of key state transition
can predict the subsequent hand gesture in advance.

After providing the judging condition for continuous hand action prediction, RMS
values were sequentially input into the trained models, and then the path of the key state
transition could be backtracked by maximum state probability [39]. Many factors still
constrained the prediction process, especially its processing time. Although we prepro-
cessed the sEMG signals, the features were still too long to input into the model. Moreover,
continuous hand action prediction aims to recognize the next gesture in advance, instead
of recognizing the whole process. Unlike classification tasks that used complete features to
recognize hand actions, our study utilized a sliding window method to update features
for a dynamic prediction. Generally, the sliding window is mainly used to limit the time
steps of RMS values and simulates the prediction process. After inputting RMS values
in a sliding window to the models, the path of states in these steps could be backtracked
by the Viterbi algorithm [37]. Since the sliding window could only record the state path
information of the current window, we used the marginalization of sliding windows to
establish long-term memory between the front and rear sliding windows. Moreover, the
sliding window method could realize dynamic prediction through the relational informa-
tion between windows. Overall, the specific implementation was based on the Viterbi
algorithm. The Viterbi algorithm, which can decode the key state transition, is expressed
as follows:

δt(i) = max
i1,i2,...it−1

P(it = i, i1, i2, . . . it−1, Ot, Ot−1, . . . O1|λ), i = 1, 2, . . . N (2)

where δt(i) denotes the maximum probability of state paths with the state i at time t; λ
denotes the setting of GMM-HMMs; Ot denotes the observation at time t; and N denotes
the number of states.

To derive the global state path, the state recursion was expressed as follows:

ψt(i) = argmax
1≤j≤N

[δt−1(j)aji], i = 1, 2, . . . N (3)

With the description of the Viterbi algorithm, we provide a modified Viterbi algorithm to
realize the marginalization; the specific marginalization based on the sliding windows was
expressed as:

πi = P(s(1) = si) =


1, i = 1

i = 1, 2, 3, . . . , N
0, otherwise

(4)
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The maximum probability of the state in the first sliding window was calculated as:

δt(i) =


πibi(o1), t = 1

i = 1, 2, . . . , N
max

1≤j≤N
[δt−1(j)aji]bi(ot), 2 ≤ t ≤ T

(5)

The maximum probability of the state in the subsequent sliding windows was modified as:

δt(i) =


max

1≤j≤N
[δT(j)aji]bi(ot), t = 1

i = 1, 2, . . . , N
max

1≤j≤N
[δt−1(j)aji]bi(ot), 2 ≤ t ≤ T

(6)

When t is equal to 1, the last state probability distribution of the previous sliding
windows was used to initialize the subsequent sliding windows.

The following formula could backtrack the path of the state transition:

ψt(i) =


0, t = 1

i = 1, 2, . . . , N
argmax
1≤j≤N

[δt−1(j)aji], 2 ≤ t ≤ T
(7)

where bi(ot) denotes the observation probability density in state i at time t; aji represents
the transition probability from state j to state i; πi is the initial state probability distribution;
and T is the length of the sliding window.

Generally, the marginalization is based on the inheritance of constraints on the state
probability distribution of previous sliding windows. By utilizing δt(i) of the last time step
in the previous window as the initialization of the subsequent window, long-term memory
between sliding windows was realized. The specific illustration is shown in Figure 1.

2.3. Model Pruning

The number of models is proportional to that of hand gestures in GMM-HMMs-based
gesture recognition [40]. For real-time prediction tasks, inputting features into multiple
models is bound to be time-consuming. In addition, many irrelevant models may also
interfere with the prediction results. In order to reduce the mutual interference of multiple
models on recognition results and real-time performance, we propose a method for model
pruning. It was noted that model pruning could be used in continuous multigesture ac-
tion prediction.

After constructing a set of GMM-HMMs on continuous two-hand actions, we could
find the most probable model by using the maximum likelihood criterion with the dis-
tribution of the observation sequence [16]. During the configuration of model pruning,
we applied that criterion to locate pruning models. The process of model pruning could
be generalized into three steps. In order to facilitate further description, we set the front
gesture in continuous two-hand actions as h f and the other as hr. Four different groups
corresponding to four hand gestures were set, and each group contained three models
starting with the same hand gesture.

Firstly, RMS values in the sliding window were input into multiple models, and then
the state path with the maximum probability could be derived. It was noted that the maxi-
mum likelihood varied cumulatively using the marginalization of sliding windows. With
the movement of the sliding window, the maximum likelihood would vary based on the
degree of model-fitting. We searched for the key state transition in the model which had
the maximum likelihood.

Secondly, the next hand action hr could be predicted based on the best-fitting model
and the key state transition. We could bind the associated models by searching for the
trained models, which were modeled by the hr group. Selected models could be determined
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from the whole model, and the number of models in the prediction task could be reduced.
Finally, the key state, which was the fourth state of the h f group, could be used as the

first state of the hr group. In order to collaborate with this setting, the new starting point
of the sliding window was also updated to the location of the key state. Furthermore, we
could realize better predictions with fewer models. The detail of model pruning is shown
in Figure 2 and Algorithm 1 is described as follows.

Algorithm 1: Model Pruning

Input: RMS values OT , trained models λv,v=12: [group1, group2, group3, group4],
window length Len, window increment Inc

Output: Prediction hand actions
1 start = 1;
2 for i = Len:Inc:Length(OT) do
3 for j = 1:v do
4 [maximum likelihood, path] = modified_viterbi(model(j),OT(start:i));
5 end
6 if key state in path then
7 model pruning: find the best-fitting model group
8 if index(maximum likelihood) in 1:3 then
9 model = group1;

10 else if index(maximum likelihood) in 4:6 then
11 model = group2;
12 else if index(maximum likelihood) in 7:9 then
13 model = group3;
14 else
15 model = group4;
16 end
17 v = 3;
18 print(prediction hand actions);
19 start = index(path(key state));
20 else
21 start = i + 1;
22 end
23 end
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Figure 2. Model pruning with sliding windows on continuous four-hand actions. Every box repre-
sents a dynamic sliding window without overlapping. The whole model was divided into 4 groups,
while blue sliding windows used the whole model for prediction. Green and purple sliding windows
used GROUP2 and GROUP4 for prediction, respectively. The red dotted line represents the starting
point of the new hand gesture, which can be used for updating the new starting point of the sliding
window in model pruning.

3. Materials and Experimental Methods
3.1. Experiment Setup

The datasets from previous works [20,41,42] only include the sEMG of discrete hand
gestures, which are not applicable to continuous hand action prediction. Our study cre-
ated a new dataset which was composed of the sEMG of continuous two-hand actions
and continuous four-hand actions. The new dataset could be used for continuous hand
action prediction.

Eight right-handed subjects (aged 24 to 30) participated in the experiment. Four
distinct hand gestures were chosen to form twelve types of continuous two-hand actions,
and each type of continuous two-hand action was formed by the continuous action of two
different hand gestures. Figure 3 shows all twelve continuous two-hand actions, and four
hand gestures are listed as follows: (1) making a fist, (2) fingers spread, (3) wrist extension,
and (4) wrist flexion.

The GForcePro+ armband system was used to record sEMG signals. Every continuous
two-hand action was performed 100 times per person. Every continuous two-hand action
lasted about 5 s, of which the front and rear gestures each lasted 2.5 s. In order to reduce
the negative impact on muscle fatigue, participants were given a 5 s rest between every two
repetitions. Besides, participants had to relax for 5 min after completing one continuous
two-hand action with twenty repetitions. The recorded sEMG signals were collected at a
frequency of 1000 Hz and analyzed using MATLAB 2020b. The configuration of the dataset
is shown in Table 1.



Sensors 2022, 22, 9949 8 of 15

Figure 3. Illustration of continuous two-hand actions; four groups are determined by different
starting hand gestures.

Table 1. Configuration of the dataset.

Acquisition Device GForcePro+ Sampling Frequency 1000 Hz

Number of channels 8 Number of subjects 8

Age range of subjects 24–30 Health state Intact subjects

Type Continuous 2 Continuous 4
hand actions hand actions

Hand actions 12 4

Repetition times 20 10

Sampling time 5 s 10 sof a repetition

Repetition interval 5 s 10 s

Number of repetitions 5 3

Action interval 5 min 5 min

3.2. Data Preprocessing

Collected sEMG signals were preprocessed using a bandpass filter (20 Hz–150 Hz) to
remove unusable noise and a notch filter to remove 50 Hz power disturbances. An energy-
based active segmentation algorithm was used to segment sEMG signals for accurate data
acquisition [16]. On the filtered sEMG signals of continuous two-hand actions, we applied
overlapping sliding windows to extract RMS values. To fully use the latent information
in sEMG signals and reduce the processing time of long sEMG segment length, we set a
100 ms window length with a 50 ms window increment for sliding windows.
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3.3. Training and Prediction Setup

In the experiment, a six-state fully connected left-to-right structure HMM was used.
According to the setting of continuous two-hand actions, six states were divided into two
parts, while each of them contained three states: transitive state (rising), steady state, and
transitive state (declining). Since all the hand actions started from state one, the initial state
probability of state one was set to 1, and those of other states were uniformly set to 0. We
adopted a single-component GMM to represent the substate of HMMs, as Yang et al. [16]
indicated that it was less time-consuming, and it could obtain a high recognition accuracy
during modeling. For 12 continuous two-hand actions, every continuous two-hand action
was modeled using 100 samples per person, and a total of 1200 samples were used to
construct the whole model. Every model adopted 80% samples as training data and 20%
as validation data. To avoid overfitting, the training and validation data were randomly
selected and modeled ten times. The final prediction result was the mean of the ten
prediction results.

In order to validate the feasibility of the setting on the key state transition, the data
before states 4 and 5 were split for prediction. A sliding window with a length of 20 frames
and an increment of 20 frames was used. As part of continuous multi-gesture actions,
continuous four-hand actions were selected as being representative for prediction. Since
continuous four-hand actions had plenty of combinations, we chose four different types for
the experiment. For continuous four-hand actions, we still used RMS values as the input of
the models. It was noted that the acquisition time needed to be limited to 10 s. We collected
30 samples for each type of continuous four-hand actions to predict.

The proposed method was used to predict continuous hand actions in advance; the
special partitioning and modeling of continuous states made it better than other methods.
To show the robustness of our method, we used conventional LSTM and GRU models,
which have been widely utilized in discrete gesture prediction for comparison. In order
to ensure the uniformity of the comparison, we also used the sliding window strategy on
LSTM and GRU to simulate the prediction process. A sliding window with a length of
20 frames and an increment of 20 frames was used.

4. Results and Discussion
4.1. Estimation of Continuous Two-Hand Actions
4.1.1. Validation on the Setting of Key State Transition

Figure 4 demonstrates the prediction accuracy. We found that the prediction accuracy
of state four and state five were all higher than 95%, which indicated that utilizing state four
and state five as the key state transitions could predict hand actions correctly. Although the
prediction accuracy of state five as the key state transition was higher than state four, the
occurrence of state four was earlier than that of state five. It was more efficient to use state
four as the key state transition to make the advanced prediction.

4.1.2. Validation on the Marginalization of Sliding Windows

We investigated the effect of different sliding window settings on the prediction results.
Figure 5 illustrates the prediction accuracy of four different sliding window settings. It
could be observed that all four different settings achieved over 92% recognition accuracy,
which indicated that different settings of the sliding window had little effect on the results
and proved that the marginalization of sliding windows could help us build long-term
memory between sliding windows, which guaranteed the prediction accuracy. Furthermore,
it allowed us to choose the appropriate sliding window setting based on demand instead
of a fixed setting. We also analyzed the reasons for the different prediction results of four
settings. In our study, we gave the prediction results as soon as the key state transition was
found. Influenced by the size of the sliding window, the predicted time point of finding the
key state transition was different, resulting in the difference between the four settings. We
also assumed that selecting a reasonable size of the sliding window based on the length of
RMS values would reduce the time-consuming for prediction.
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Figure 4. Prediction accuracy for two different settings of key state transition.

Figure 5. Prediction accuracy for four different settings of the sliding window. A represents a length
of 10 frames with an increment of 10 frames; B represents a length of 20 frames with an increment of
20 frames; C represents a length of 25 frames with an increment of 25 frames; D represents a length of
30 frames with an increment of 30 frames.

4.1.3. Comparison with Other Methods

The normalized confusion matrix of our method is shown in Figure 6. In order to lift
the limitation of LSTM and GRU [38] on the input dimension, we fixed the input starting
point and used a sliding window to expand the data successively, in which the insufficient
data were filled with zeros. The results are depicted in Figure 7.

Table 2 shows the average prediction accuracy and the processing time for all subjects.
As seen in Table 2, our proposed method achieved a better prediction accuracy and was less
time-consuming than other methods. LSTM and GRU had a good prediction performance
but unacceptable processing time. Although the same sliding-window strategy was used
in LSTM and GRU, the real-time performance of these methods was poor. The main reason
was that no matter whether the sliding window was updated, the input dimension was
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always limited to the maximum. Compared with these methods, our method only utilized
the updated data from the sliding window as input for the prediction, which guaranteed
less processing time.

Figure 6. Hybrid test confusion matrix of all subjects with our method. N/G represents nongesture.

Figure 7. Prediction accuracy compared with LSTM and GRU.

Table 2. Average prediction accuracy and processing time of different methods for all subjects.

Metric Method
Subjects S1 S2 S3 S4 S5 S6 S7 S8

Prediction accuracy (%)
LSTM 97.9 95.8 94 91.6 95.0 93.1 93.9 91.9

GRU 97.3 97.8 94.3 92.1 94.9 90.7 93.9 89.6

OURS 99.7 98.6 98.9 96.4 99.3 95.4 99.5 96.6

Processing time (ms)
LSTM 303 300 300 323 310 307 315 313

GRU 293 290 297 320 301 295 305 297

OURS 71 69 68 72 69 73 71 72
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4.2. Estimation of Continuous Four-Hand Actions

Continuous four-hand action prediction was tested to evaluate the performance of
model pruning. The prediction results could also validate the feasibility of continuous
multigesture action prediction. Since there were many combinations of continuous four-
hand actions, we selected four types of them which are listed as follows: (1): making a
fist–fingers spread–wrist flexion–making a fist; (2): wrist flexion–wrist extension–making
a fist–fingers spread; (3): fingers spread–making a fist–wrist flexion–wrist extension; (4):
wrist extension–fingers spread–making a fist–wrist flexion.

Table 3 shows the comparison between model pruning and no model pruning. The
average prediction accuracy when using model pruning was over 92.9%, while that without
model pruning was only over 20%. The processing time with no model pruning was too
poor to satisfy the real-time performance requirement, while model pruning could tremen-
dously reduce the processing time. The prediction results of subjects are also illustrated
in Table 4. These results indicated that our proposed model pruning method achieved a
significant prediction accuracy and better real-time performance. Since our trained models
were modeled by continuous two-hand actions and depended on the accumulation of
relevant state probabilities, they could only be used to predict continuous two-hand actions.
Surprisingly, when the RMS values exceeded the period, the accumulation of state prob-
abilities was irrelevant to the subsequent hand gesture and would affect the subsequent
prediction process, which resulted in a terrible performance without model pruning. These
findings suggested that model pruning was necessary and should be utilized in the range
of the period. We updated the starting point of state probability accumulation and selected
the best-fitting models to predict the subsequent gesture, which could also reduce the
processing time of the model prediction.

Table 3. Comparison between model pruning and no model pruning.

Metric Method
Hand Actions (1) (2) (3) (4)

Prediction accuracy (%)
Model pruning 95.8 92.9 94.6 95

No model pruning 31.7 22.5 20 21.3

Processing time (ms)
Model pruning 96 95 97 94

No model pruning 272 281 269 277

Table 4. Average prediction accuracy and processing time of continuous four-hand actions.

Metric Hand Actions
Subjects S1 S2 S3 S4 S5 S6 S7 S8

Prediction accuracy (%)

(1) 96.7 96.7 96.7 83.3 96.7 100 100 96.7

(2) 100 96.7 93.3 86.7 100 90 86.7 90

(3) 100 86.7 96.7 90 100 96.7 93.3 93.3

(4) 100 96.7 90 80 100 100 100 93.3

Processing time (ms)

(1) 94 89 93 92 91 95 93 95

(2) 94 92 94 92 90 94 93 94

(3) 96 94 94 95 93 94 92 95

(4) 93 91 97 94 92 97 94 96

The prediction accuracy of continuous four-hand actions indicated that model pruning
could apply to our work. Notably, as a part of continuous multigesture action prediction,
the excellent prediction accuracy of continuous four-hand actions further confirmed the
feasibility of continuous multigesture action prediction with our method.
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4.3. Limitations

Currently, our study focuses on predicting the combinations of four distinctive hand
gestures. The prediction task of the combinations of fine-hand actions has not been carried
out yet. Moreover, subject-independent problems still exist in our method, and every
subject must be modeled separately in the experiment. Our future work will concentrate
on predicting continuous fine-hand actions and providing a robust universal model which
can solve subject-independent problems.

5. Conclusions

In this paper, we proposed a continuous hand action prediction method based on the
continuity of hand actions. In order to predict the subsequent hand gesture in advance,
our method set the key state transition as the prediction condition. The GMM-HMMs
model was utilized to model the states of continuous two-hand actions, and state four was
set as the key state transition. The marginalization of sliding windows was used to build
long-term memory for windows, and a dynamic sliding window was used to simulate the
prediction process. Compared with LSTM and GRU models, our method achieved a higher
prediction accuracy and a lower processing time for continuous two-hand actions. In the
extended task of continuous multigesture action prediction, the GMM-HMMs models built
by continuous two-hand actions could not predict continuous hand actions with more than
two hand gestures. We proposed a model-pruning method which selected the best-fitting
models and updated the starting point of state probability accumulation to overcome the
limitation. The prediction results also confirmed the feasibility of the method on continuous
multigesture action prediction.
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