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Abstract: The most effective automatic speech recognition (ASR) approaches are based on artificial
neural networks (ANN). ANNs need to be trained with an adequate amount of matched conditioned
data. Therefore, performing training adaptation of an ASR model using augmented data of matched
condition as the real environment gives better results for real data. Real-world speech recordings
can vary in different acoustic aspects depending on the recording channels and environment such
as the Long Term Evolution (LTE) channel of mobile telephones, where data are transmitted with
voice over LTE (VoLTE) technology, wireless pin mics in a classroom condition, etc. Acquiring data
with such variation is costly. Therefore, we propose training ASR models with simulated augmented
data and fine-tune them for domain adaptation using deep neural network (DNN)-based simulated
data along with re-recorded data. DNN-based feature transformation creates realistic speech features
from recordings of clean conditions. In this research, a comparative investigation is performed for
different recording channel adaptation methods for real-world speech recognition. The proposed
method yields 27.0% character error rate reduction (CERR) for the DNN–hidden Markov model
(DNN-HMM) hybrid ASR approach and 36.4% CERR for the end-to-end ASR approach for the target
domain of the LTE channel of telephone speech.

Keywords: ASR; real environment; data augmentation; DNN; feature transformation; recording
alignment; VoLTE; classroom recording

1. Introduction

The study of automatic speech recognition (ASR) is a vast area of artificial intelligence
(AI). ASR is important for AI as much as hearing capability for humans. ASR enables
the machines and software to understand the representations of sound computationally.
The representations can be fragments of a second of speech data, also known as a frame,
a word, or a sequence of words. Depending on the purpose, the ASR can be equipped to
perform tasks such as converting speech to text, a well-known application which enables
us to keep record of meetings and conversations, automatic caption generation for people
with hearing impairment and so on.

In one of the long-standing ASR approaches, ASR models consist of two vital com-
ponents. One is the language model, which deals with the linguistic aspects of speech,
and the other is the acoustic model to process acoustic aspects of speech. Conventionally,
acoustic models are trained using large-scale clean data recorded in ideal condition—a
noise-free environment with a high-quality close-talking microphone and so on. These
acoustic models perform well for recognizing clean speech data. However, they do not
perform as effectively for data that are recorded in conditions with variability. The quality
of data affects the performance of ASR system. The recording condition of data can range
from simple environments such as a classroom equipped with a regular wireless pin mic to
complex environment such as telephone channel recording, which can involve countless
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types of handsets, transmission networks and background noise at the location of the caller
and receiver. Therefore, it is necessary to improve the performance of acoustic models for
real environment speech data in terms of cost-effectiveness and convenience.

There is previous research on how to improve the acoustic model’s performance for
real data. According to it, one method to achieve improvement is to perform domain
adaptation. To perform domain adaptation for real-world data, data augmentation is
often used. Previous research on this subject shows data augmentation by adding various
recorded noises at the desired SNR level, performing speed perturbation on clean data,
or using room impulse responses (RIR) to simulate the desired room acoustics. These
augmented data contribute to producing improved performance of ASR systems for the
target domain, as stated in [1–4]. Moreover, there are DNN-based data augmentation
methods which extract acoustic information to represent acoustic environments instead of
creating simulated data, which are explained in [5].

The general theory is that acoustic models need to be trained with relevant data to
achieve the best performance. Real-world recording media are bound to vary in terms
of recording conditions, transmission channels, etc. Therefore, it is important to prepare
enough data for each condition with proper transcription for training an acoustic model ap-
propriate for the environments accordingly, as described in [6–9]. Acquiring and preparing
such data can be expensive and time consuming.

In cases of matched domain data scarcity, domain adaptation is a well-accepted solu-
tion. In [10], the data scarcity problem is addressed. The speech recognition performance
for low-resource data of dysarthric speech is improved by training a statistical-based Gaus-
sian mixture model (GMM) using high-resource meeting speech data. Then, a maximum a
posteriori (MAP) training adaptation approach is used for fine-tuning the ASR using small-
scale dysarthric speech data. Another research addressing label scarcity in target domain is
described in [11]. This research states the effectiveness of DNN-based data augmentation,
where more data are generated for the target domain from the transcribed clean data using
a variational autoencoder (VAE). The present research takes inspiration from the research
stated above to perform domain adaptation by involving a fine-tuning approach using
data augmented by a simple DNN-based model, which is much more cost-effective than a
rather complex LSTM-based VAE. We propose a novel method of data augmentation that
helps to imitate the real environment by using a feed-forward regression model. Similar
approaches have been taken to perform denoising or dereverberation as preprocessing
in [12], in reverse. To the best of our knowledge, most of the research are performed to
increase the size of the training data for ASR as much as possible. However, using larger
data also increases computational cost. Therefore, in this research, small amounts of data
are taken into consideration to train the regressing model to learn on pairs of clean re-
recorded data of very small size (the smallest with a duration of 0.2 h). Experimental results
show that it successfully transforms clean input data to real-environment output data by
feature transformation. Since it learns to transform features directly from real-environment
data, the computation cost is also minimal. The augmented data that we prepare in this
way are then used to perform training adaptation of acoustic models by the fine-tuning
method. To acquire the best result, the original re-recorded speech is also used along with
the transformed features.

Moreover, data acquisition by re-recording is also an important part of this research.
In the case of supervised training of acoustic models, proper segmentation and transcrip-
tions are needed. Acquiring the desired quality data in real environments is difficult.
Even if spontaneous data are acquired, preparing segments and texts accordingly is more
difficult. To overcome this difficulty, re-recording of speech from an official data corpus
with proper transcription is proposed. In this way, data of the desired real environment,
such as telephone channels, classroom data, etc., can be created. In this research, sponta-
neous monologue speech recordings, played through a loudspeaker at the caller’s end, are
recorded through telephone channels. Another variation is classroom data. Monologue
speeches are also re-recorded in similar fashion with necessary adjustments for classroom
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environment with a normal low-quality wireless pin mic. The datasets are used in the
experiments with the proposed models.

The main contributions of the present work are as follows:

• A domain adaptation approach independent of the ASR model is proposed by prepar-
ing speech data which contain target domain characteristics. Experiments are con-
ducted on two of the state-of-the-art approaches, and the effectiveness of the proposed
method on both of them is proved.

• To prepare speech data with target domain characteristics at low cost, the following
approaches are adopted:

1. Use an already existing corpus.
2. Re-recording the corpus data by playing them in a real environment for only a

limited short period of time.
3. Performing post-processing on them to adapt them for ASR model training.

• It is proved that by involving a simple regression model for transforming, it is possible
to obtain data with target domain characteristics from clean data if only a small
amount of target domain data (duration of less than 1 h) is acquired to improve the
performance of ASR to a great extent.

This paper explains research about fine-tuning-based domain adaptation for a robust
automatic speech recognition system. In Section 2, the ASR models used for domain adap-
tation in this research, data acquisition techniques of real environments, the problems we
face with the data and the proposed method of solving those problems are explained. In the
latter half of Section 2, the task setting for this research along with the proposed DNN-based
data augmentation method and overall data augmentation approaches, are explained. In
Section 3, the experimental setups including preparation and usage of datasets and neural
network (NN) models used in this research are described. Section 4 focuses on explaining
results and discussion. Finally, the research is concluded in Section 5.

2. Materials and Methods
2.1. ASR Models for Domain Adaptation

The task of automatic speech recognition (ASR) infers word sequences for given
input speech. Traditionally, an ASR system consists of various modules, such as acoustic
model, language model, decoder, etc. In this research, we investigate domain adaptation
in two different ASR frameworks: a DNN-HMM hybrid ASR framework and an end-to-
end ASR framework. A DNN-HMM hybrid ASR system consists of an acoustic model
PAM(X|W) and an explicit language model PL(W), which are used for searching the most
likely Ŵ which maximizes the probability of speech X being a phoneme, character or
word sequence P(W|X) with the help of the language model. The DNN-HMM acoustic
model is described in Section 2.1.1. The other approach of ASR explored in this research is
a hybrid connectionist temporal classification (CTC)/attention end-to-end (E2E) model,
which usually directly predicts character sequence probability PE2E(W|X) without the
help of an explicit language model, unlike the DNN-HMM hybrid model [13–17]. The
end-to-end model consisting of encoder–decoder is described in Section 2.1.2.

2.1.1. DNN-HMM-Based Speech Recognition

As acoustic model, context-dependent phone-unit (triphone) HMMs are used to
estimate PAM(W|X), where W is phoneme, character or word sequence when speech
feature X is given. The DNN-HMM hybrid ASR framework comprises the DNN-HMM
acoustic model to predict P(s|xt), where s is the posterior probability of HMM state when
speech feature xt is given at each time frame t, as presented in Equations (1) and (2) [7].
To train the DNNs, the state labels of the HMM corresponding to each time of the input
signal are used as the teacher signal. This allows us to learn a nonlinear function that
estimates the probability P(s|xt) of each phone-state s with respect to the input features.
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The output of the DNN can then be transformed into the likelihood value of the phone-state
class by Bayes’ theorem.

P(xt|s) =
P(s|xt)P(xt)

P(s)
, (1)

∝
P(s|xt)

P(s)
, (2)

Here, P(xt) is omitted since it does not affect the optimization. P(s) is obtained from the
frequency of occurrence of the correct target label for the training data. Speech recognition
using DNN-HMM is performed by replacing the calculation of the output distribution of
HMM by transformation in the form of P(xt|s).

As the DNN acoustic model of the DNN-HMM, we used a time-delay neural network
(TDNN) [18]. A time-delay neural network is a feed-forward neural network that effec-
tively models long-range temporal dependencies [19] in data. It exploits a modular and
incremental design to create larger networks from subcomponents [20]. Traditional archi-
tectures compute the hidden activations at all time steps, which makes it computationally
expensive. The architecture used in this research uses a subsampling technique, which
allows the hidden activations to be computed at only a few time steps at each level [18],
making it computation-friendly. Since in a DNN-HMM ASR framework, the DNN classifier
is trained with the target label given as HMM state sequence ŝt, which is estimated by
using the GMM-HMM acoustic model trained by using a large-scale clean dataset and its
transcription, it is important for the training data to be aligned with the target as much
as possible. Moreover, to obtain the best results, we extract forced alignments using clean
data for the corresponding re-recorded data as the input. Therefore, the training may suffer
from the internal temporal misalignment described in later sections.

2.1.2. End-to-End (E2E)-Based Speech Recognition

Nowadays, due to the advancement in the field of computation, even computationally
expensive methods are also being adopted to perform at low cost. One of these methods
is the end-to-end speech recognition method, which encompasses multiple recognition
modules into a single but rather complex and deep neural network. This framework
allows the entire speech recognition model to be optimized at once. It takes acoustic
features as input and outputs phoneme sequences or character or word sequences, and it
does not need any explicit pronunciation dictionary or acoustic model. Recurrent neural
network (RNN)-based models are mostly used for end-to-end speech recognition. There
are two most popular approaches of training the RNN-based end-to-end model at present.
One is connectionist temporal classification (CTC) loss-based training of the encoder–
decoder model, and the other is the training of the encoder–decoder model using an
attention mechanism. The method of training the encoder–decoder using the CTC objective
PCTC(C|X) and an attention objective P∗Att(C|X) together is called a hybrid approach. Both
of the objectives maximizes the probability of target character sequence C for speech
feature sequence X. However, P∗Att(C|X) takes previous target label sequence into account.
A hybrid approach is expressed using the following formulae [16]:

LCTC = −logPCTC(C|X), (3)

H = Encoder(X), (4)

P∗Att(C|X) = Decoder(H), (5)

LAtt = −logP∗Att(C|X), (6)

L = αLCTC + (1− α)LAtt, (7)

where X is the input acoustic feature sequence, and H is the intermediate feature sequence
obtained by transforming the acoustic feature into a higher-order feature representation.
LCTC is the loss of CTC which is the negative logarithmic value of the objective function
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logPCTC(C|X) and LAtt is the loss of the decoder using source–target attention, which is the
negative logarithmic value of the objective function logP∗Att(C|X). L is the loss of the whole
model, which is the weighted sum of the loss of CTC and the loss of the decoder with the
constant α.

By using the CTC loss function, it is possible to produce an output sequence directly
from the input sequence without using the HMM. In the encoder–decoder mechanism,
the encoder takes input speech feature frames and generates a fixed-length vector in an
LSTM (long short-term memory) RNN at a certain frame interval. In the decoder, the output
is generated via LSTM from the vector generated by the encoder. In any given time frame,
the hidden state in the decoder is computed using the previous hidden layer state of the
previous RNN decoder. The shortcoming of the encoder–decoder mechanism is that it
can not perform well for long time series data, as it is impossible to fit all the information
to a fixed-length vector. Therefore, the attention mechanism is introduced, which helps
determine the hidden layer of the decoder by referring directly to the state of the encoder
at each time frame, and the state most relevant to the current time frame is selected.

Since both the CTC and the attention mechanism have their advantages and short-
comings, a hybrid approach has been developed involving both CTC and attention [16].
The final output of the hybrid CTC/attention model is the sum of the output vectors of
CTC and attention. The loss function during training is defined as the weighted linear sum
of the loss functions of CTC and attention.

Using CTC provides the privilege of fast convergence, and the attention mechanism
allows it to have the similar effect of context-dependent training by using past history.
Therefore, hybrid CTC/attention is a very popular way of implementing the speech recog-
nition system. An E2E ASR model does not require explicit HMM (phone) state alignment
as does DNN-HMM ASR. Therefore, it is less likely to be affected by the external alignment
extraction problem. However, the target character sequence of the training data is prepared
by using the transcription information provided by the corpus. Therefore, though not in
phoneme level as DNN-HMM, in the case of our experiments, the E2E model may suffer
from the temporal misalignment issue to some extent in the fine-tuning phase when we use
re-recorded speech as a real-world example if the segments have temporal misalignment
at starting and ending. Therefore, correcting any temporal deviation at the starting and
ending of the re-recorded speech can improve the performance of the end-to-end model
significantly, unlike other approaches.

2.2. Re-Recorded Data Acquisition
2.2.1. Re-Recording of Clean Data in Real Environment

Training an acoustic model to adapt to a particular environment requires acquiring
data from the environment as much as possible. This problem may seem to be solved by
recording data at convenience. However, this simple solution does not work, since it also
requires the training data to be precisely segmented and transcribed for conventional super-
vised learning-based acoustic models. Segmenting and transcribing manually is extremely
time-consuming and costly. The semi-automatic way of performing such preprocessing—
applying voice activity detector (VAD) for segmentation and decoding the speech using an
already trained acoustic model—may help to some extent, but it lacks reliability and needs
additional attention from humans. Therefore, we try to solve the problem by re-recording
clean data provided by a trusted speech corpus in various real environments, such as
classrooms and telephone channels, as shown in Table 1. In this way, it is possible to acquire
paired data to perform various experiments by training acoustic models using different
transmission channels’ conditions. We take inspiration for re-recording an existing dataset
from the NTIMIT [21] and CTIMIT [22] corpora. They also re-recorded from the original
TIMIT acoustic-phonetic speech corpus [23] to utilize the existing transcription for speech
recognition task. They are the telephone channel and cellular channel recordings of the
TIMIT dataset in the early 1990s. While recording, they also stumble upon unknown noise
or artifacts, which are not easy to explain. Therefore, they take some filtering approaches
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as preprocessing to mitigate the effect. They also pay attention to acquire perfectly aligned
utterances with the original recording. In our case, we follow the strategy to acquire data of
Japanese language. Even though this method of re-recording is less expensive than record-
ing and transcribing newly recorded data, they still need considerable attention. The lack
of synchronization between playing and the recording devices can cause the data to have
a misalignment problem. Therefore, the misalignment problem needs to be fixed. There
are measures to handle distortions [24] in data. We developed a Euclidean-distance-based
alignment correction method. Temporal misalignment of re-recorded data and the method
to correct it are described in Sections 2.3 and 2.3.1.

In this paper, we discuss telephone channel recordings as well as wireless pin mic
recordings in a classroom environment. A concatenated long recording of 2 h 19 min
consisting of ten monologue speech recordings from the Corpus of Spontaneous Japanese
(CSJ) [25], eval1 test dataset is played through a speaker and recorded through different
telephone channels as real-world test data. We prepared 26 recordings of about 6 h from the
CSJ training set using the mobile LTE channel only for training purposes. The classroom
data are recorded using a wireless pin mic by playing 10 monologue speech recordings from
CSJ eval3 of about 1 h 40 min. Different playing and recording channels are summarized
in Table 1. Landline denotes intercom landline telephone. Mobile 3G and mobile LTE
denote recordings using 3rd generation (3G) and 4th generation (4G) LTE cellular networks,
respectively. SoftBank carrier is used to record mobile channel data.

Table 1. Recording devices and transmission channels for re-recorded speech

Re-Recorded
Dataset

Recording
Device (mic)

Channel

Caller Receiver

Landline Landline Landline Landline

Mobile 3G Mobile SoftBank 3G SoftBank 3G
Mobile LTE SoftBank LTE Landline

Classroom
( wireless pin mic)

High-quality pin mic 2.4 GHz digital wireless
Low-quality pin mic 800 MHz analog wireless

2.2.2. Spectral Analysis on Re-Recorded Speech

Figure 1 shows the long-term spectra of re-recorded data through telephone and
wireless microphone channels, respectively, as opposed to their original clean counterpart.
We notice that the recording data through the mobile LTE channel have higher sensitivity
at a lower frequency band than other recording channels. In this research, we focus on
improving recognition performance for the LTE channel (called mobile LTE hereinafter)
and low-quality wireless pin mic (called pin mic hereinafter), the two most troublesome
types of speech to deal with, since they produce the largest character error rate among all
the re-recorded categories of data investigated in this research.

2.3. Problems Regarding Re-Recorded Speech: Temporal Misalignment

The task of re-recording an audio is performed by playing the audio through a player
device and recording the audio simultaneously using a recorder device. In the case of
telephone recordings, transmission steps are involved between playing and recording.
The start of the recording and playing time often lacks synchronization. Even though it may
be possible to start playing and recording at the same time in an ideal situation, there may
be different reasons to cause timing mismatch between the pair of events. If the playing
device and recording device lack clock synchronization, an incremental delay between
estimated start and actual start with time is observed. When using cellular network (mobile
phone) channels for transmission in Japan, a delay of up to about 400 ms and also jitter can
be experienced depending on the transmission network.
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Figure 1. Spectral analysis of original and re-recorded speech. (a) Original and re-recorded speech
using telephone channels (CSJ eval1 dataset), (b) Original and re-recorded speech using wireless pin
mic channels (CSJ eval3 dataset).

We performed a preliminary analysis on re-recorded wireless pin mic data of a lec-
ture hall. An incremental delay of 20 ms in about every 10 min is noticed in Figure 2.
An accumulated delay of 150 ms can be noticed at the start of the 10th lecture. However,
the temporal misalignment for telephone recording (CSJ-eval1) is not as simple. Figure 2
shows variable temporal misalignment throughout the re-recording period of 2 h 19 min
with the interval of duration of each lecture. We can see a few frames delay at the actual
start of the first lecture than the hypothetical start in Figure 2. As this figure shows, time
deviations sometimes exceed 200 ms, and similar time deviations were observed in terms of
IPU segment units (units separated by silence greater than 200 ms in CSJ [25,26]). Therefore,
we propose a correction method in the following sections.
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Figure 2. Misalignment analysis of re-recorded speech for mobile LTE and wireless pin mic channels.

2.3.1. Proposed Misalignment Correction Method Based on Segment-Level Matching with
Euclidean Distance

To correct the misalignment, first, a rough starting point t
′
start of the re-recorded speech

is estimated. Then, a segment-level matching between the pair of segments xt . . . xt+N−1
and yt′ . . . yt′+N−1 is performed. The optimal starting point t̂ is estimated by finding the
frame for which the average Euclidean distance is minimum,

t̂ = arg min
t′∈{|t′−t|≤Dmax}

(
1
N

N−1

∑
n=0

d(xt+n, yt′+n)

)
. (8)

A frame consists of speech data of 10 ms.
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Though there are different ways of measuring distortion between speech signals [24],
we use the Euclidean distance between MFCC features as distortion measurement. We
calculate Euclidean distance between the feature vector of original speech at the tth frame
and the feature vector of re-recorded speech at the t

′th frame using Equation (9).

d(xt, yt′ ) =
√

∑
n
(xt,n − yt′ ,n)

2, (9)

where n denotes the number of feature dimensions. We assume that t
′

falls in the range
t− Dmax, . . . , t, . . . , t + Dmax. Dmax is the number of frames to search before and after each
point of time.

We used a sine wave signal in front of each lecture to indicate starting of individual
lectures at the time of concatenating them as a preparation of re-recording to ensure
stable quality for the speeches as much as possible. Using the sine wave as guiding point,
the starting point of a lecture is first guessed manually. Then, the correct starting point
is estimated automatically using the misalignment correction method described above.
Then, individual lectures are separated from the long re-recorded speech (segment length
to compute Euclidean distance is N = 200 frames). In Figure 3, we show the misalignment
correction at the starting point in visualized form for re-recorded speech.

Original 
speech

corrected 
misalignment

Misaligned 
speech

Figure 3. Misalignment correction with proposed Euclidean-distance-based method.

2.3.2. Filtering of Re-Recorded Speech

We show in the Figure 4 that there are also internal misalignment in the case of mobile
LTE data other than misalignment at the starting points only. This problem was realized
after correcting the initial temporal misalignment at the starting point using the Euclidean-
distance-based method described in Section 2.3.1. However, since we propose that we train
a regression model to learn feature transformation from clean data to real environment
data frame by frame, the paired data of the clean-target environment need to be prepared
as much as accurately possible. Therefore, we filter out the segments from the re-recorded
data, those that do not match the corresponding original speech due to suffering from delay
or jitter.

We first add a 200 ms margin in the beginning and the end of each IPU segments [25,26]
of clean data and re-recorded data with estimated starting and ending time of IPU, then
perform the forced alignment using the DNN-HMM acoustic model. After acquiring forced
alignments from both clean and re-recorded data, we remove silences and short pauses
from the alignments. This gives us a pair of speech segments to compare length-wise using
their phoneme notations and temporal information. In our experiment, first, we derive the
segments which have exactly matching lengths for the pair. However, this leaves us with a
very small amount of data, about 53 min of data consisting of 291 utterances to be exact,
after being filtered out from CSJ training subset (4109 utterances of about 6 h). Therefore,
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to increase the amount of data, we loosen the strictness of the filtering by allowing 2, 3, 4
and 5 frames (frame = 10 ms) at both ends of the segments to find more matches in turn.
In this way, we acquire 694 utterances of 2.1 h in total, which is about 34% of the original
recorded data.

Original

LTE

Original

LTE

(a)

(b)

Figure 4. (a) Aligned segments of original and mobile LTE re-recorded speech, (b) Misaligned
segments inside recording those need to be filtered out to train the regression model.

2.4. Domain Adaptation Using Re-Recorded Speech and DNN-Based Data Augmentation
2.4.1. Task Setting

The neural networks are ideally trained using a large-scale clean database, and they
perform very well for clean data of matched condition. However, they do not perform
up to expectation when they are applied on real-world data for recognition. Therefore,
we propose a method of fine-tuning the baseline model initially trained with a large-scale
database with data augmented with the DNN-based augmentation method and otherwise.
As the block diagram depicts in Figure 5, we use a small subset from the large-scale database
to acquire the re-recorded data. The re-recorded data are then used to train the feature
transformer described in Section 2.4.2. Different sets of data are used in the training phase
of the feature transformer model and generation phase. We use the transformed features
along with clean, re-recorded and simulated data of a fixed set of speakers. We use a
variable number of utterances to control the amount of data for fine-tuning the baseline
ASR. The fine-tuned ASR model is depicted as the adapted ASR model in Figure 5. It allows
better recognition on real-world data.

Large-scale
Clean data

Train

Baseline ASR
Model

Small subset

Transmission channel

Re-recorded data

Feature 
Transformer
DNN Model

Transformed
data

Adapted ASR
Model

Clean &
noisy

Adaptation phase

Figure 5. DNN-based data augmentation and adaptation of ASR model.
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2.4.2. DNN-Based Data Augmentation using Feed-Forward Network Architecture

In this research, we train a DNN to perform a nonlinear transformation for features
from clean data to simulate real-world recording-like characteristics. This model is denoted
as “feature transformer” hereinafter. The feature-transformer takes a d-dimensional clean
feature vector at frame t with a context of c frames before and after the central frame
Xt = xt − c, . . . , xt, . . . , xt + c and outputs yt after performing feature transformation.

yt = fL(. . . fl(. . . f2( f1(Xt)))), (10)

where fl is the nonlinear transformation function in layer l and yt is a d-dimensional feature
vector. The training of this DNN model is performed by optimizing the mean square error
(MSE) objective function to predict feature vectors of corresponding re-recorded speech.

2.4.3. Data Augmentation Approaches

We take various data augmentation approaches to create the most suitable dataset
for training the robust baseline, so that it produces the lowest character error rate (CER%)
for the test data with real-world acoustic aspects. To create the datasets for training the
ASR model, we take general approaches adopted for data augmentation and noise-robust
training, as noted in Table 2. First, we apply µ-law encoding to the clean data to simulate
landline quality telephone channel distortion. We show that the data with µ-law encoding
give better results than not using them for the target domain in Section 3.1.1. Therefore, we
use µ-law encoding for all of the baselines. We create another dataset to train Base-Aug3CN-
ASR in Table 2, which contains speed- and volume-perturbed clean data with noisy data
that contain G.712 filtering. This dataset was created to improve baseline performance
of the landline telephone speech. Because of the increased size of clean data, it not only
improves performance for landline but also for clean test set. We create another dataset
that does not contain any clean data to train the Base-Aug3N-ASR baseline models showed
in Table 2. We create this dataset considering the noisy characteristics of the re-recorded
test data.

To improve the performance by fine-tuning, we needed to start from an elevated plat-
form. Therefore, keeping real-world scenarios in mind, we perform simulation-based data
augmentation. Speed perturbation is used not only to increase the amount of data, but it
also gives us two different pitches for each speaker, which somewhat simulates the effect
of increasing number of speakers. Therefore, we obtain a three times larger and diverse
dataset with the same content, giving us the privilege to use the same transcription for the
supervised training of ASR models. Adding volume perturbation allows us to simulate
different vocal levels or quality of device. By adding noise, we make the baselines robust to
the common noises, which can be experienced in common indoor and outdoor scenarios.

Table 2. Dataset for training baselines. Notations: S1 = speed perturbation (0.9, 1, 1.1), volume
perturbation (0.7–1.5). The notation of “ASR” is replaced in the following section depending on the
type of model used (ASR = TDNN or E2E). Size denotes the amount (×233h) of data. The notations
“X” denotes “applied” and “-” denotes “not applicable”.

Model

Clean Noisy
Total Size
(×233 h)µ-Law

Encoding Speed Pert. Vol Pert. Size
µ-Law

Encoding Speed Pert. Vol Pert. Size

Base-NoAug-ASR X - - 1 - - - 0 1

Base-Aug3CN-ASR X S1 X 3 X - - 1 4

Base-Aug3N-ASR - - - 0 X X X 3 3
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We first experiment on various combinations of data augmentation conditions for
the fine-tuning dataset, considering the composition of the baseline datasets. We find
the combination of simulation conditions to fine-tune Base-Aug3N-ASR (other baselines
did not produced desired result), which produces the best result for most of the cases by
carrying out experiments. Therefore, we propose simulation and conditions of datasets
for the training adaptation-based experiments. Note that the core clean data for fine-
tuning datasets used in our domain adaptation experiments are very small compared
with the baseline model. Therefore, using more variations of clean data balances it when
re-recorded data and transformed features are used together. We also conducted fine-
tuning experiments with speed- and volume-perturbed re-recorded data to see the effect of
increased re-recorded data on domain adaptation. In Table 3, since the first six ASR models
are intended for fine-tuning for the telephone channel, we use µ-law encoding and filtering
with the noisy data. However, FT-P-ASR and FT-PT-ASR are intended for wireless pin mic
domain adaptation. Therefore, we do not apply µ-law encoding or any filtering on the
fine-tuning datasets.

Table 3. Dataset for fine-tuning of Base-Aug3N-ASR. Notations: FT= fine-tuning, L = adapted
by LTE re-recordings, P = adapted by pin mic re-recordings, S1 = speed perturbation (0.9, 1, 1.1),
S2 = speed perturbation (0.8, 0.9, 1, 1.1, 1.2), V = volume perturbation (0.7–1.5), F = G.712 filter,
T = transformed features. The notation of “ASR” is replaced in the following section depending on
the type of model used (ASR=TDNN or E2E). Size denotes the number of seed-sized datasets used
for fine-tuning. “Seed” denotes the amount of core clean data. Seed (L) = {0.2, 0.5, 1, 1.5} h; seed
(P) = ≈ 1.2 h. The notations “X” denotes “applied” and “-” denotes “not applicable”.

Model
Clean

(µ-Law, S1, V)
Noisy

(µ-Law, F)
Re-Recorded

(µ-Law) Trans. Total
Size

(×Seed)Size Size SP. Vol. Size T Size

FT-L-ASR 3 1 - - 1 - 0 5

FT-LT-ASR 3 1 - - 1 X 1 6

FT-Aug3L-ASR 3 1 S1 X 3 - 0 7

FT-Aug3LT-ASR 3 1 S1 X 3 X 1 8

FT-Aug5L-ASR 3 1 S2 X 5 - 0 9

FT-Aug5LT-ASR 3 1 S2 X 5 X 1 10

FT-P-ASR (no µ-law & F) 3 1 - - 1 - 0 5

FT-PT-ASR (no µ-law & F) 3 1 - - 1 X 1 6

3. Experimental Setup
3.1. Datasets

In this section, we gradually describe the datasets and their preparation for training the
baselines and fine-tuning them. First, we prepare datasets to train three baseline models for
both DNN-HMM ASR and E2E ASR. Then, the data prepared for fine-tuning are described.
The proposed fine-tuning dataset contains an element called transformed features (Trans. in
Table 3).The transformed features are extracted using the proposed feature transformer model.
The dataset for training the feature transformer model is explained in Section 3.1.3. The experi-
ments are performed using subsets of the Corpus of Spontaneous Japanese (CSJ) [25,26] with a
sampling rate of 8 kHz.

3.1.1. Datasets for Training Baselines

We prepare datasets with only clean and multi-conditional data for training three
baselines for DNN-HMM ASR (Base-NoAug-TDNN, Base-Aug3CN-TDNN and Base-
Aug3N-TDNN) and E2E ASR (Base-NoAug-E2E, Base-Aug3CN-E2E and Base-Aug3N-
E2E). The dataset used to train Base-NoAug-TDNN and Base-NoAug-E2E consists of
948 academic lectures of CSJ of duration of 233 h, which is the seed (core clean data) for
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all the baseline training datasets. Training dataset for Base-Aug3CN-ASR contains a total
933 h of data, consisting of three-parts clean data with speed (0.9, 1, 1.1) and volume (factor:
0.7–1.5) perturbation and one-part noisy data created with additive noises chosen from
a subset of the noise database “JEIDA-NOISE” [27]. The noise types used are exhibition
booth, crowd, computer room (medium), computer room (workstations), air conditioner
(large), exhaust fan and air duct. The noises are selected and added randomly with a
random SNRs over the range of 5 to 20 dB with a 5 dB interval.The G.712 filter [28] is used
to distort the noisy data for telephone channels. Therefore, the dataset used to train Base-
Aug3CN-TDNN and Base-Aug3CN-E2E contains four times the clean dataset of duration
933 h. The multi-conditional dataset of 700 h, used to train the Base-Aug3N-TDNN and
Base-Aug3N-E2E models, contains three-parts noisy data, prepared by applying speed and
volume perturbation, noise and filtering. Therefore, this dataset does not contain any clean
data. All of the above datasets are encoded using 8-bit µ-law encoding. We decided to apply
µ-law encoding on every dataset by comparing the performances of Base-NoAug-TDNN
and Base-NoAug-E2E trained by the dataset with and without µ-law. They are compared
in Table 4.

Table 4. Telephone speech: character error rate (CER%) of TDNN and E2E ASR models trained by
data with or without µ-law encoding.The notation “X” denotes “applied” and “×” denotes “did
not apply”. The Expressions in bold font denotes the baselines models those are trained with µ-law
encoding. The bold numbers represent the smallest word error rate comparing results between
baselines with or without µ-law encoding for each category of ASR (TDNN or E2E).

Model
µ-Law

Encoding

Test Dataset (CSJ eval1)

Clean
Re-Recorded

Landline Mobile
3G

Mobile
LTE

Base-NoAug-TDNN × 9.5 11.1 24.4 31.5

Base-NoAug-TDNN X 9.4 11.0 23.6 30.6

Base-NoAug-E2E × 6.2 6.8 15.3 20.6

Base-NoAug-E2E X 6.3 7.0 14.4 19.5

Base-NoAug-ASR trained with TDNN by using clean data of 233 h with µ-law encod-
ing performs better for every kind of test dataset, despite aiming for only mobile variations.
We infer that it performs better for clean and landline as well because of the difference
in models caused by random initialization. Since we obtained better results for mobile
variations by the E2E model trained with data containing µ-law encoding, as expected, we
decided to apply µ-law encoding on all of the datasets to perform further experiments.

3.1.2. Dataset for Fine-Tuning

We have 26 re-recorded lectures for LTE domain experiments in total for training
purposes using the training subset of CSJ corpus. We use 9 recordings from them to
perform fine-tuning for LTE domain. The fine-tuning dataset contains three parts of clean
data with speed and volume perturbation, one-part noise and filtering, one-part re-recorded
speech and another same combination with one-part transformed features of the same
clean content for the matching domain. We change the amount of seed data from 0.2 to
1.5 h for the experiments and compare the results for validating the proposed technique.
The term “seed” here denotes the core clean data that are used for data augmentation.

For the wireless pin mic data in the classroom scenario, we only use the 10 clean
recordings of the Eval3 test dataset of CSJ and re-record them in the said condition. Since
we only acquire 10 recordings of 10 speakers, a total of 1.32 h, we use 9 of the recordings
(≈1.2 h on average) for fine-tuning, leaving 1 recording to perform testing. We repeat this
process 10 times to do 10-fold cross-validation for all of the the speakers. We do not apply
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µ-law encoding or G.712 filtering representing telephone channels on simulated data of
fine-tuning dataset for the wireless pin mic.

3.1.3. Dataset for Training Feature Transformer Model

We train the feature transformer, as depicted in Figure 6, using the 17 recordings,
excluding 9 recordings that are used to generate transformed features for fine-tuning. We
use only 553 utterances at most for training the feature transformer model, which we obtain
by filtering out temporally mismatched utterances from 17 pairs of clean-re-recorded data.
We prepare 5 sets of training pairs with durations of 0.2, 0.5, 1.0 and 1.5 h (equivalent to the
size of seed mentioned in Section 3.1.2) from the set by picking a subset of utterances from
17 speakers. We train these models for validating our proposed method. For comparing
the performance in general, we use the largest seed of 1.5 h.

DNN-based 
Feature Transformer

Model

Clean data
(L: 17 lectures)
(P: 9 lectures )

re-recorded data
(L: 17 lectures)
(P: 9 lectures )

Training phase of Feature Transformer

Clean data
(L: 9 lectures)
(P: 1 lecture)

Transformed data
(L: 9 lectures)
(P: 1 lecture)

Paired data

Generation phase

※※

※ Only sampled data are used to control the amount of seed data

Figure 6. Training of DNN-based feature transformer model.

In the case of training the feature transformer for wireless pin mic, we use the nine
pairs of recordings leaving one for generating transformed feature. We train 10 feature
transformer models for 10-fold cross-validation.

3.2. Evaluation Tasks

Evaluation is performed on 10 recordings of eval1, which is a clean dataset, called
“Clean” along with re-recorded variations of eval1, called “Landline”, “Mobile 3G” and
“Mobile LTE” for experiments related to telephone domain adaptation. The evaluation of
the wireless pin mic channel’s speech recognition in a classroom environment is performed
using variations of eval3 dataset of CSJ, called “Clean” and “wireless pin mic”.

3.3. Explanation of Models
3.3.1. DNN-Based Feature Transformer Model

We train the feed-forward type of DNN as the feature transformer which learns
nonlinear transformation for the input data to take it closer to the target data. We use
DNN with different configuration for LTE and pin mic transformation. We decide the
configuration after performing hyperparameter tuning. Both of the models are trained using
log-Mel filter bank (F-bank) features of 40 dimensions and pitch features of 3 dimensions,
totaling 43 dimesions of input features. We also use first derivative ∆ and second derivative
∆∆ of the acoustic features as dynamic features. Per speaker cepstral mean variance
normalization (CMVN) is performed to reduce the effect of differences in input. For the
LTE feature transformer model, ±5 frames are used as context frames. Therefore, the input
layer consists of 1419 nodes. Three hidden layers with 1024 hidden units in each are used.
For the pin mic feature transformer model,±8 frames are used as context frames. The input
layer consists of 2193 nodes. Two hidden layers with 1024 hidden units in each are used.
Both of the models give us 43 dimensions of transformed features as output.
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3.3.2. DNN-HMM ASR Model

We use a TDNN as the acoustic model of the ASR as one of the candidates. The base-
lines are trained using 43 dimensions of F-bank pitch features. Per speaker CMVN is
performed on the input features. This neural network consists of seven hidden layers with
the following input context with subsampling: [−5, 5], {−1, 2}, {−3, 3}, {−3, 3}, {−7, 2} and
{0}. The output layer consists of 9225 units. A trigram language model is used when decod-
ing. The baselines are then fine-tuned using a smaller amount of simulated and re-recorded
data, as well as including feature-transformation-based augmented features with them.
To perform experiments regarding the feature transformation model and TDNN-based
speech recognition, we use the Kaldi toolkit for speech recognition [29].

3.3.3. End-to-End ASR Model

Baseline hybrid CTC/attention-based end-to-end ASR models are trained using the
baseline datasets described previously. 43 dimensions of F-bank and pitch features are used
to train the transformer. Global CMVN is applied to the input features also, and the data
augmentation method SpecAugment [30] is used on the input features. The encoder part
of the model has 12 layers, each consisting of 2048 units. The decoder consists of 6 layers
with 2048 units in each of them. A subsampling unit consisting of 2 convolution layers is
in the encoder. It reduces the input length to one-fourth. There are four attention heads
with 256 dimensions. The wight of α for CTC loss is set to 0.3. The number of output
units is 2865, which corresponds to the number of different characters, including Japanese
characters. Experiments of end-to-end ASR are performed using ESPnet, the E2E speech
processing toolkit [31].

3.4. Evaluation Metrices

We use character error rate (CER%) for evaluating the performance of ASR models.
CER is denoted by the following equation.

CER =
I + S + D

N
× 100 =

I + S + D
C + S + D

× 100 (11)

Here, I is the number of insertions, S is the number of substitutions and D is the number
of deletions. C is the number of correct characters, and N is the number of characters in
the reference.

We also use character error rate reduction (CERR%), which indicates the improvement
when comparing CERs of multiple methods, CER1 and CER2. When CER2 improves from
CER1, the CERR (%) of CER2 is calculated using the following equation.

CERR =
CER1− CER2

CER1
× 100 (12)

4. Results and Discussion
4.1. Results of Domain Adaptation for LTE and Pin Mic Channel When the Largest Amount of
Data Are Used

In this section, we compare the baselines and proposed method of fine-tuning with
transformed features for the target domain. The starting points we consider are the Base-
NoAug-TDNN and BaseA-E2E for DNN-HMM ASR and end-to-end ASR, respectively. We
gradually improve the performance by improving the baselines by adding various elements
of real environments by simulation. In the following results, the feature transformer model
that is used is trained with the largest available data for training (1.5 h of 17 recordings).
We mainly propose this method for the DNN-HMM-based system. To also observe the
method’s performance, we apply the proposed fine-tuning techniques on the end-to-end
model as well. To prove its validity, we perform validation experiments and explain them
in the following section with various amounts of data.
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In Figure 7, the improvements are shown with the converging character error rate
for LTE channel adaptation of TDNN and E2E ASR. We only choose to show the best
results for each of the ASR models in the figure. FT-L-TDNN and FT-LT-TDNN in the
Figure 7a represent fine-tuning of Base-Aug3N-TDNN with speed- and volume-perturbed
clean data along with noisy data accompanying re-recorded speech only, and with adding
transformed features to the preceding combination of data, respectively. On the other hand,
FT-Aug5L-E2E and FT-Aug5LT-E2E in Figure 7b represent fine-tuning of the Base-Aug3N-
E2E model with the same orientation as the TDNN version; the only difference is that in
the case of end-to-end ASR, a better result can be observed when larger real-environment
data are introduced. Therefore, experiments are performed for threefold and fivefold speed
and volume perturbation of re-recorded LTE channel data to find that end-to-end models
perform the best when the re-recorded data size is the largest, and the transformed features
are the most effective at that time.

0 5 10 15 20 25 30 35 40

FT-LT-TDNN

FT-L-TDNN

Base-Aug3N-TDNN

Base-Aug3CN-TDNN

Base-NoAug-TDNN

CER(%)

(a)

0 5 10 15 20 25

FT-Aug5LT-E2E

FT-Aug5L-E2E

Base-Aug3N-E2E

Base-Aug3CN-E2E

Base-NoAug-E2E

CER(%)

(b)
Figure 7. Performance of data augmentation on telephone channel speech. (a) TDNN: domain
adaptation for LTE, (b) E2E: domain adaptation for LTE.

In Table 5, we show the performance in detail. The character error rate reduction
(27.0%) for the mobile LTE channel is the best for the proposed fine-tuning method with
DNN-based data augmentation, prepared with our proposed method of data augmentation
for domain adaptation of DNN-HMM ASR. Table 6 shows that end-to-end model-based
speech recognition performs better with the adaptation proposed that uses a larger set of
augmented re-recorded data. Therefore, character error rate reduction of 36.4% is obtained
for FT-Aug5LT-E2E, which is the best improvement found in this research.

Table 5. Telephone speech: character error rate (CER%) of different TDNN ASR models and character
error reduction (CERR%) from Base-NoAug-TDNN. The notation “-” denotes “not applicable”. The
expressions with bold font represent the models trained with proposed fine-tuning method. The bold
numbers represent the best result for each test dataset.

Model

Data Size for
Training/

Adaptation (Seed)
(h)

Test Dataset (CSJ eval1)

Clean Re-Recorded

Landline Mobile 3G Mobile LTE

CER CERR CER CERR CER CERR CER CERR

Base-NoAug-TDNN 233 (233) 9.4 - 11.0 - 23.6 - 30.4 -

Base-Aug3CN-TDNN 933 (233) 8.8 6.2 9.7 11.5 18.5 21.6 25.9 27.8

Base-Aug3N-TDNN 700 (233) 9.6 −1.8 9.9 10.2 17.1 27.8 27.6 9.4

FT-L-TDNN 7.5 (1.5) - - - - - - 33.6 −10.2

FT-LT-TDNN 9 (1.5) - - - - - - 22.2 27.0

FT-Aug3L-TDNN 10.5 (1.5) - - - - - - 30.8 −1.1

FT-Aug3LT-TDNN 12 (1.5) - - - - - - 28.1 7.6

FT-Aug5L-TDNN 13.5 (1.5) - - - - - - 30.9 −1.5

FT-Aug5LT-TDNN 15 (1.5) - - - - - - 28.2 7.5
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Table 6. Telephone speech: character error rate (CER%) of different E2E ASR models and character
error reduction (CERR%) from Base-NoAug-E2E. The notation “-” denotes “not applicable”. The
expressions with bold font represent the models trained with proposed fine-tuning method. The bold
numbers represent the best result for each test dataset.

Model

Data Size for
Training/

Adaptation (Seed)
(h)

Test Dataset (CSJ eval1)

Clean Re-Recorded

Landline Mobile 3G Mobile LTE

CER CERR CER CERR CER CERR CER CERR

Base-NoAug-E2E 233 (233) 6.3 - 7.0 - 14.4 - 19.5 -

Base-Aug3CN-E2E 933 (233) 5.8 6.2 6.2 11.5 11.7 18.8 16.1 15.1

Base-Aug3N-E2E 700 (233) 6.5 −3.2 6.7 −4.5 11.5 20.1 17.1 12.3

FT-L-E2E 7.5 (1.5) - - - - - - 13.7 29.7

FT-LT-E2E 9 (1.5) - - - - - - 13.9 28.7

FT-Aug3L-E2E 10.5 (1.5) - - - - - - 13.0 33.3

FT-Aug3LT-E2E 12 (1.5) - - - - - - 12.8 34.4

FT-Aug5L-E2E 13.5 (1.5) - - - - - - 12.5 35.9

FT-Aug5LT-E2E 15 (1.5) - - - - - - 12.4 36.4

Though this research focuses on the purpose of improving recognition performance of
real-environment data, we found improvement on the recognition of clean data also when
the amount of clean data is used the most. For Base-Aug3CN-ASRs, the CERR is 6.2% for
both DNN-HMM ASR and E2E ASR. Though the relative improvement for mobile 3G is
better for DNN-HMM ASR, it is the same for both of the methods in the case of landlines.
The E2E-based methods start at lower CER to begin with. Though we did not perform
training adaptation for landline and mobile 3G, we obtain improvement by considering
different real-world conditions, such as distortions and noises, while preparing a better
baseline. The improvement strategy reflects on the CER for those channels.

In the case of wireless pin mic recordings in a classroom environment, we observed in-
teresting behavior when performing fine-tuning using the proposed feature transformation-
based method of data augmentation. The method is first developed to improve telephone
channels and is then applied to the classroom recordings to note its generalization ability.
The feature transformation model is trained using fewer data than the feature transformer
used for the telephone channel. Moreover, we need to keep in mind that the nature of the
test dataset is completely different than that of the eval1 dataset. As expected, it does not
work up to expectation. We can see the convergence and divergence in Figure 8. However,
we find impressive improvement with CERR of 29.7% for when we use re-recorded data
with the simulated data for training adaptation in the case of DNN-HMM ASR in Table 7.
For the E2E-based approach, though we fail to achieve the expected result from the pro-
posed method, the best performance is achieved for the Base-Aug3N-E2E, where the data
do not contain any clean data.

The results indicate that the adaptation dataset contents fall into the mismatched
domain along with the data size issue. Moreover, our investigation shows the variability in
the recording quality of data in terms of volume and so on compared with telephone speech.
Therefore, consistent feature transformation could not be achieved. Though the CER is the
largest to begin with, for a clean test dataset, the best CER is achieved consistently with all
the other experiments for Base-Aug3CN-TDNN and Base-Aug3CN-E2E in Tables 7 and 8,
respectively. Because of the restriction in the usability of data, we do not perform validation
experiments for classroom wireless pin mic tasks.
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Figure 8. Performance of data augmentation on wireless pin mic speech in a classroom environment.
(a) TDNN: domain adaptation for pin mic, (b) E2E: domain adaptation for pin mic

Table 7. Wireless pin mic speech: character error rate (CER%) of different TDNN ASR models
and character error reduction (CERR%) from Base-NoAug-TDNN. The notation “-” denotes “not
applicable”. The expressions with bold font represent the models trained with proposed fine-tuning
method. The bold numbers represent the best result for each test dataset.

Model

Data Size for
Training/

Adaptation (Seed)
(h)

Test Dataset (CSJ eval3)

Clean Re-Recorded

Wireless pin mic

CER CERR CER CERR

Base-NoAug-TDNN 233 (233) 10.6 - 30.8 -

Base-Aug3CN-TDNN 933 (233) 10.1 6.2 22.1 2.8

Base-Aug3N-TDNN 700 (233) 11.2 -9.4 22.5 26.7

FT-P-TDNN 6 (1.2) - - 21.6 29.7

FT-PT-TDNN ≈7 (1.2) - - 21.7 29.4

Table 8. Wireless pin mic speech: character error rate (CER%) of different E2E ASR models and
character error reduction (CERR%) from Base-NoAug-E2E. The notation “-” denotes “not applicable”.
The expressions with bold font represent the models trained with proposed fine-tuning method. The
bold numbers represent the best result for each test dataset.

Model

Data Size for
Training/

Adaptation (Seed)
(h)

Test Dataset (CSJ eval3)

Clean Re-Recorded

Wireless pin mic

CER CERR CER CERR

Base-NoAug-E2E 233 (233) 10.8 - 23.8 -

Base-Aug3CN-E2E 933 (233) 10.0 7.4 19.1 19.7

Base-Aug3N-E2E 700 (233) 11.4 -5.3 17.4 26.9

FT-P-E2E 6 (1.2) - - 18.7 21.4

FT-PT-E2E ≈7 (1.2) - - 20.5 13.9

4.2. Effect of Variability in Recording Quality

In Figure 9, we show the spectral analysis of pin mic re-recordings opposed to their
original counterparts. In the figure, we show the spectrum of the recordings divided in two
groups according to the sessions they were recorded in. The first session is depicted by red
lines and the second session is depicted by blue lines. This analysis shows us the problem
of significant difference in level (dB) of re-recorded speech between two recording sessions.
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Figure 9. Spectral analysis of wireless original clean data and re-recordings through pin mic channels
after down sampling.

Some re-recordings, for example, the re-recordings of Speaker A, have an amplitude
of reasonable audibility. On the other hand, the re-recording set for Speaker B has an
amplitude which is hardly audible as opposed to its clean counterpart. In the dataset of
10 speakers, re-recordings of 6 speakers have rather good audibility but are noisy. The rest
of the four speakers suffer from audibility problems. Therefore, when we adapt for Speaker
A, Speaker B and other poorly audible recordings affect the overall performance, and it
continues for 10-fold cross-validation. We suspect that since recording time and settings
are different between the group of Speaker A and the group of Speaker B, variability
occurred. In the future, we plan to conduct research addressing this problem by applying
data augmentation with session-dependent feature transformation models.

In addition to the explanation above, we would like to state that though directly
incomparable due to the differences in model configuration, we obtain a better result for
eval1 clean (CER 8.4% for Task1 in [16]) by changing CTC weight α from 0.1 to 0.3 comparing
to the state-of-the-art method. Though we use smaller training data (233 h comparing
with 581 h), the SpecAugment data augmentation technique helps to give it a jump start.
Moreover, the data augmentation method adopted for baseline 2 provides variations in
different aspects for the same data and helps to produce 5.8% CER for eval1 clean.

4.3. Validation Experiments for mobile LTE Channel with Limited Re-Recorded Data

We perform additional experiments to find out the minimum optimal amount of data
that need to be prepared for training adaptation, as well as to validate the proposed method,
proving its consistency. We acquire the seed amounts of clean data of 0.2, 0.5 and 1.0, and the
most is 1.5 h (same condition as Tables 5 and 6). We perform the detailed experiment only
on telephone speech for the DNN-HMM model. The proposed datasets of FT-L-ASR,
FT-LT-ASR, FT-Aug3L-ASR, FT-Aug3LT-ASR, FT-Aug5L-ASR and FT-Aug5LT-ASR are
compared in Figure 10. Experiments are performed to observe the effect of re-recorded
data only on the fine-tuning by increasing the amount of LTE channel re-recorded data in
“FT-Aug3L-TDNN” and “FT-Aug3LT-TDNN” by adding speed (0.9, 1 and 1.1) and volume
(factor: 0.7–1.5) perturbation to the LTE data. We increase the amount of LTE data even
more in “FT-Aug5L-TDNN” and “FT-Aug5LT-TDNN” by adding more speed perturbation
(0.8, 0.9, 1, 1.1 and 1.2). Additionally, for each of the combinations, the amount of data used
to train the feature transformer model also matches with the size of the seed.
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In Figure 10, the effect of re-recorded data itself for fine-tuning is proved. Though adding
more re-recorded data helps reduce the distance between fine-tuned TDNN with augmented
LTE re-recordings and fine-tuned TDNN with augmented LTE re-recordings along with
transformed features (pink–blue, green–purple and orange–red curve pairs in Figure 10a),
it does not necessarily improve the whole performance, rather, it represses the models from
converging to the smallest character error rate possible. We do not have more data to observe
if they are going to decrease drastically or gradually. However, we clearly see the effectiveness
of fine-tuning with transformed features in each case. Moreover, in Figure 10b, the models
show interesting behavior while the dataset is the smallest and the largest for every model in
our task. We notice gradual decrement of the FT-LT-E2E after the point 0.5. We increase the
amount of re-recorded data by applying speed and volume perturbation on it, too. In this
way, we can observe the effectiveness of the proposed feature transformation method (FT-
Aug3LT-E2E and FT-Aug5LT-E2E) with the support of larger simulated re-recorded data.
Moreover, with data augmentation for re-recorded speech, the model converges faster even
with a smaller seed. The character error rate reduced to 26.1% for the DNN-HMM-based
approach (FT-LT-TDNN) and to 34.9% for the end-to-end-based approach (FT-Aug5LT-E2E)
by using a seed of 30 min only.
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Figure 10. Performance of data augmentation for LTE telephone speech by reducing data size.
(a) TDNN: domain adaptation for mobile LTE, (b) E2E: domain adaptation for mobile LTE.

5. Conclusions

We conclude this research by summarizing the proposals and the tasks achieved. The
main focus of this research was to find a solution for data scarcity in a real-world scenario.
We took telephone channel speech and wireless pin mic speech into account. Since it is
costly to record data randomly and transcribe them correctly, we propose taking existing
data with proper transcription into account and re-record them in the desired environment.
The re-recorded data are used to perform feature transformation to create more natural real-
environment speech features at a low cost. Our proposed approach of using transformed
features with a simple regression model, along with augmented datasets and re-recording
itself, improves the overall performance for the mobile LTE channel. Moreover, our detailed
investigation shows significant CERR of 26.1% for the DNN-HMM-based approach (FT-LT-
TDNN) and 34.9% for the end-to-end-based approach (FT-Aug5LT-E2E) by using a core
amount of data of 30 min only. We also show how to handle the misalignment or distortions
in re-recorded data by taking simple geometrical approach as a preprocessing technique.

Though we achieve expected performance for the proposed method in the case of
mobile LTE channel data, more research is needed to achieve better performance at the same
scale in the case of the wireless pin mic channel, since it contains variability in recording
quality over different sessions.

Therefore, in the future, we plan to take a session-dependent approach for data
with recording quality issues, as well as a self-supervised approach of extracting feature
expressions, and change to a feature transformation model to achieve more sophisticated
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construction of the ANN, such as recurrent neural network (RNN) based sequence-level
feature mapping in contrast with the feed-forward neural network approach adopted in this
research to prevent temporal dependency and so on for more generalized improvements
on various multi-conditional real environments.
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