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Abstract: With the rapid development of artificial intelligent technology, the deep learning method is
widely applied to predict human driving intentions due to its relative accuracy of prediction, which
is one of critical links for security guarantee in the distributed, mixed driving scenario. In order to
sense the intention of human-driven vehicles and reduce the self-driving collision avoidance rate,
an improved intention prediction method for human-driving vehicles based on unsupervised, deep
inverse reinforcement learning is proposed. Firstly, a contrast discriminator module was proposed
to extract richer features. Then, the residual module was created to overcome the drawbacks of
gradient disappearance and network degradation with the increase in network layers. Furthermore,
the dropout layer was generated to prevent the over-fitting phenomenon in the whole training
process of the GRU network, so as to improve the generalization ability of the network model. Finally,
abundant experiments were conducted on datasets to evaluate our proposed method. The pass rate
of self-driving vehicles with conservative driver probabilities of p = 0.25, p = 0.4, and p = 0.6 improved
by a maximum of 8%, 10%, and 3%, compared with the classical method LSTM and VAE + RNN. It
indicates that the prediction results of our proposed method fit more with the basic structure of the
given traffic scenario in a long-term prediction range, which verifies the effectiveness of our proposed
method.

Keywords: self-driving vehicles; latent states; variational autoencoder; deep reinforcement learning

1. Introduction

With the development of artificial intelligence and electric vehicles, in the process
of converting from a manual driving transportation system to an autonomous driving
transportation system, there will inevitably be a stage of mixed driving with different
levels of intelligent carriers. The essence of mixed traffic flow is the coexistence of various
driving behaviors, without standards to speak of, but the lack of uniformity will lead
to difficulties in decision-making. Since human behavior is the most difficult to predict,
autonomous vehicles usually adopt conservative driving strategies in mixed traffic flow
scenarios, resulting in them constantly being overtaken by manual driving vehicles in
the congested traffic flow, and the efficiency of passage is difficult to guarantee [1,2].
How to perceive the intentions of manual driving vehicles more intelligently and further
improve the transportation efficiency of autonomous driving vehicles under the condition
of ensuring safety has become a challenging task.

Taking the uncontrolled T-intersection scenario as an example, in the absence of
critical guidance facilities such as traffic lights, self-driving vehicles must interact with
other vehicles in the main lane if they want to merge safely and efficiently from the T-
intersection to the main lane [3]. Since each traffic participant has its own driving strategy
and driving style, autonomous vehicles need to perceive the hidden information of the
surrounding vehicles and plan their own reasonable behavior trajectory accordingly [4,5].
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If the latent traits of a human driver are known, that is, whether the driver is aggressive or
conservative, the self-driving vehicles adopt different driving strategies correspondingly,
so as to obtain a better balance of safety and efficiency. Therefore, it is crucial to accurately
judge the driving traits of human-driven vehicles.

The latent traits of human-driven cars are divided into intent estimation and trait
estimation [6]. Intent estimation typically uses methods such as probabilistic graphical
models and non-parametric belief trackers to predict the future actions of other drivers,
thereby providing information for the next trajectory planning for self-driving cars. Song W
et al. [7] proposed the use of the continuous hidden Markov model to predict both the high-
level motion intentions (e.g., turn right, turn left) and the low-level interaction intentions
(e.g., the yield status of related vehicles). Dong C et al. [8] utilized the approach based on
the probabilistic graphical model (PGM) to efficiently estimate the intent of self-driving cars
and interact with them in ramp merging scenarios, even without communication between
vehicles. Bai H et al. [9] proposed an online planning method to estimate latent pedestrian
intentions using a partially observable Markov decision process (POMDP) for self-driving
vehicles to make the systematical and robust decisions in the presence of many pedestrians.

Trait estimation infers the driving characteristics of drivers, such as driving style, driv-
ing preference, fatigue status, and degree of distraction, etc. Supervised and unsupervised
learning are usually utilized to classify driving characteristics. Morton et al. [10] learned
the latent traits of driver characteristics and input the traits and current environmental
states into the policy network to produce multi-modal behaviors. However, the input of
the strategy network represents the short-term state of the current vehicle, which does
not adequately represent the long-term nature of these strategies. Ma et al. [11] utilized
supervised learning to classify the traits of human-driven vehicles for autonomous vehicle
navigation at intersections, but trait labels are expensive to obtain and do not typically exist
in most real driving datasets. Second, the driving policies are trained with ground truth
trait labels rather than predictive features. When feature classifiers and policy networks
are combined, generating errors in testing and cascading leads to severe performance
degradation. Another class of characteristic driving feature learning methods is variational
auto-encoding (VAE) and its variants [12,13]. Moreover, conditional VAE (CVAE) is widely
used in trajectory predictions of the pedestrian and vehicle trajectory prediction because
discrete potential states represent different behavioral patterns, such as braking and turning.
Salzmann T et al. [14] proposed a generative multi-intelligent trails prediction method
that generated a probability distribution for the agent’s motion planning and decision-
making. Ivanovic B et al. [15] proposed CVAE to predict human behavior, which generates
multi-modal probability distributions on future human trails based on past human–robot
interactions and the future actions of candidate robots. Feng X et al. [16] proposed a model
that estimates potential driver characteristics and generates a CVAE for multi-modal trail
prediction. These behavior patterns change frequently, and the driving characteristics
of each driver are persistent. Bowman et al. [17] introduced a recurrent neural network-
based VAE model to simulate the latent properties of sentences and explicitly modeled
the overall properties of sentences. Liu et al. [18] was inspired by learning the traits of
drivers from trails, encoding the trails of drivers as driving features of drivers using a
proposed RNN-based VAE. However, the VAE network has a limited ability to characterize
the approximate posterior distribution, resulting in low quality of the generative latent
variables. These drawbacks largely limit the ability of the latent variables in VAE to express
serial information, which is unique to the vehicle trails.

In recent years, contrast learning has been widely applied to learn feature information
from continuous data such as video and pedestrian trajectories [19]. Wang X et al. [20]
proposed a Siamese triplet network with rank loss function to train the visual representation
method of the convolutional neural network (CNN). Liu Y et al. [21] introduced a social
contrastive loss that regularizes the extracted motion representation by discerning the
ground truth positive events from synthetic negative ones. Zhe Xie et al. [22] introduced
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contrast learning into the VAE model and utilized contrast loss to improve the ability of the
VAE model to represent features and learn the unique features of different users.

Inspired by contrast learning, this paper improves the VAE + RNN model and intro-
duces contrast loss and the residual network to form the contrastive-ResNet-VAE model
(C-ResNet-VAE) so that autonomous vehicles can better avoid people when driving through
the uncontrolled intersections. The optimized contrast loss not only enhances the model’s
ability to separate different features but also improves the model’s ability to learn the
potential features of different drivers from the trajectory. Our main contributions are as
follows:

(1) In order to improve the ability to learn the potential features of different drivers
from the trajectory, contrast learning was proposed into the model, which used the
minimization of contrast loss to learn the exclusive features of different drivers in the
driver trajectory and enhanced the ability of the model to separate different features.

(2) We introduced residual modules in the GRU model to capture detailed feature in-
formation with strong representational power. These stacked residual units greatly
improved the training efficiency, ensuring that the network in the latter layer cap-
tured more feature information than the previous layer, reducing information loss.
Moreover, the dropout layer was introduced to prevent the over-fitting phenomenon
in the whole training process of the gated recurrent unit (GRU) network to improve
the generalization ability of the network model.

2. Preliminaries

Kingma et al. [12] proposed VAE as a deep generative model in 2013. The VAE model
contains two parts: the encoder and decoder. The encoder makes variational inferences
with the input and generates an approximate posterior probability distribution of hidden
variables. The role of the decoder is to recover the hidden variables to an approximate
probability distribution of the input. The overall framework of the VAE model is shown in
Figure 1.
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x is the real sample, z is the hidden variable, and x̂ denotes the output of the decoder.
Moreover, ϕ represents the parameters in the encoder, and θ represents the parameters in
the decoder. Furthermore, µ and σ2 represent the mean and variance of the approximate
posterior probability distribution of z. Specifically,x is an observable random vector of
the high-dimensional space, and z is an unobservable random vector of relatively low-
dimensional space. The high-dimensional represents the observable x-space in the VAE
model. The low-dimensional representation decoder reduces the dimensionality of the
hidden variable z. The VAE model sample generation is divided into two processes: the
encoder infers the approximate distribution process qϕ(z|x) of the hidden variables, and
then the decoder restores the hidden variables z to a process Pθ(x|z)Pθ(z) similar to the
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probability distribution of the input sample. qϕ(z
∣∣x) denotes the approximate posterior

probability distribution of z.
Due to the fact that the encoder is unable to obtain the prior probability distribution

of the hidden variable z, the VAE model introduces a learning model qϕ(z
∣∣x) instead

of the true posterior distribution of the hidden variable z; it assumes qϕ(z
∣∣x) obeys the

ordinary normal distribution. Meanwhile, for calculation convenience, assume that the
implicit variable prior distribution Pθ(z) follows the standard normal distribution. The
optimization goal of the encoder is to get qϕ(z

∣∣x) as close as possible to pθ(x|z) . pθ(x|z)
denotes the approximate posterior probability distribution of x.

The VAE model adopts the Kullback–Leibler (KL) divergence [23] to evaluate the
similarities between them. Thus, the encoder optimization objective is expressed as:

argminDKL(qϕ(z
∣∣x) ‖ pθ(x

∣∣z)) = log(Pθ(X))− L(θ, ϕ; X) (1)

where L(θ, ϕ; X) is the variational lower bound function of the VAE model, log(Pθ(X))
is the constant of the encoder, and Pθ(z) denotes the hidden variable prior probability
distribution.

The VAE model adopts the encoder to learn the posterior distributed parameter mean
µ and variance σ2 of the latent variables from the input sample, and then performs sam-
pling to obtain the latent variables from the distribution. Since the sampling operations are
irreducible, the reparameterization technique was proposed in literature [24]. Specifically,
the process of sampling from a normal distribution z ∼ N(µ, σ2) is replaced with ε acquisi-
tion from a standard normal distribution, and the parameter transformation z = µ + ε× σ
is utilized to obtain the latent variables. ε denotes standard normal distribution. After
reparameterization transformation, the sampling process is accessible, and the model is
able to be trained.

3. Proposed Methods

We mostly researched two-way two lanes at an uncontrollable T-Intersection, shown
in Figure 2. The vehicle in the lower lane turned left, whereas, the vehicle in the higher lane
turned right. An autonomous vehicle turned to the higher lane in a safe way to turn right.
More specifically, the blue vehicle was conservative; the red vehicle was aggressive; and
the yellow vehicle was autonomous. The conservative vehicle gave way to the autonomous
vehicle, but the aggressive vehicle ignored the autonomous vehicle and continued forward.
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Liu et al. adopted VAE + RNN to infer drivers’ potential features from the trail of
vehicles. However, the VAE network is restricted to deducing the abilities of potential fea-
tures. We introduced contrastive learning and residual modules based on the VAE + RNN
network. Meanwhile, we leveraged C-ResNet-VAE + RNN networks to extract the potential
states of various drivers from original driving trails and clusters in an unsupervised way.
Figure 3 shows the whole framework of the network. Both datasets and unsorted potential
states were simultaneously inputted to the contrastive learning classifier, and contrastive
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losses were calculated. The contrastive learning classifier optimized encoded parameters in
a back propagation way. Then, potential features with the learned features of drivers and
all the states of the vehicles to a navigation strategy were submitted. The strategy network
contained the GRU network with an attentive module, trained by model-free reinforcement
learning. According to inferred features, autonomous vehicles adjusted strategies when
interacting with a variety of drivers to perform efficiently.
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3.1. The Network of Potential Features with an Unsupervised Cluster Module

In order to obtain the potential features of every driver from the trails of drivers,
having the C-ResNet-VAE + GRU network extract the styles of driving was proposed.
The C-ResNet-VAE network is composed of an encoder, contrastive learning classification,
and decoder. The encoder squeezes the collected trail x and forms the distribution of the
potential variable z. The decoder rebuilds the trails from potential features. The potential
variable z is unsorted to get the potential states z̃. We inputted both the positive and
negative samples, (x, z) and (x, z̃), respectively, to the classifier. Moreover, we calculated
contrastive losses and optimized encoded parameters in a back propagation way. The
potential features with an unsupervised cluster module are shown in Figure 4.
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3.1.1. Contrast Learning

The data of drivers’ trails contains generous similar samples, so the VAE module poorly
analyzes the drivers’ particular features. If it fails to distinguish the different features of
every driver, it will influence the results of autonomous driving in a decision network, and
the decoder will rebuild the original inputs from the VAE module. If the exclusive target
of the module is to reconstruct sequences, something necessary and remarkable, such as
drivers’ personal information, will be neglected. Here, we aimed to use contrastive learning
to train the VAE module, which enhances the representational ability of potential variables.

We compared the contrastive losses, which the potential variable learns in different
drivers by using the contrastive classifier Gω , and gained the effective and crucial features
of xu. We defined a set of coordinates (xu, zu) as positively matching; that is to say, the trail
xu generated the corresponding potential encoded variable zu.

The formulation of contrastive losses is as follows:

Lω,φ(xu, zu)= −
Tu

∑
t=1

[Ezu∼Qφ(zu |xu) log(σ(Gω(xu, zu)
(t)))] + Ez̃u′∼Qφ(z̃u |xu′ )

log(σ(1− Gω(xu′ , z̃u)
(t))) (2)

where u defines the set of all driver trajectories, E denotes the evidence lower bound,
t denotes the timestep, and Tu denotes the number of items in the driver trajectories.

When the contrastive loss is minimum, i.e., Lω,φ(xu, zu), the classifier Gω distinguishes
positive matching with negative matching efficiently. The potential variables that decoders
infer will explicitly collect more significant individual information.

3.1.2. Feature Extraction Based on Residual

We improved the network based on VAE + GRU and presented a feature extraction
network based on residual structure to capture detailed feature information with strong
representation ability. Generally speaking, researchers mostly increase the number of
network layers to improve the richness of feature information; with more layers or a
wider network, the abstract level of feature information will gradually increase. From
the initial acquired edge, information gradually becomes more representational semantic
information. However, the number of network layers are not deepened infinitely. In the
process of deepening the network layers, the model will have a foremost outcome. If the
number of network layers continues to increase, the loss will increase accordingly. He
et al. [25] presented the ResNet model with the basic idea that residual mapping is easy to
optimize, so the ResNet model skips over the convolutional layers and forms the residual
unit by using rapid connections. These stacked residual units greatly improve the training
efficiency, ensuring that the next layer obtains more feature information than the previous
layer and solves the degradation problem caused by the deepening of the network in a
large part. The residual unit consists of two main branches. The first branch is identity
mapping and the other is residual learning. If the input value of the residual unit is x, the
feature mark obtained by residual learning is F(x), and the output value is H(x), then this
unit is expressed as:

H(x) = x + F(x) (3)

The structure of residual unit is shown in Figure 5.
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3.2. Intensive Learning Decision-Making Module Network

As shown in Figure 6, the decision-making module is a GRU network with an attention
module. The vehicle status includes the potential characteristics of the driver, all observable
vehicle site coordinates, and the site and speed of the autonomous vehicle. Here is how it
works. First of all, the vehicle status is inputted to the attention module, which distributes
the attention weight to every surrounding vehicle. Then, the weight characteristics counted
by each vehicle and the site and speed of the autonomous vehicle are fed into the GRU
network. Finally, the hiding states in the GRU network are put into a full connected layer to
obtain the value function and the policy function. In this paper, we used a policy gradient
method of model-free intensive learning, which we called the proximal policy optimization
(PPO) algorithm, to learn the value function and policy function [26] and utilized the
approach in this literature [27] to achieve the PPO algorithm.
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Proximal Policy Optimization (PPO) Algorithm

This method alternates between the sample data by interacting with the environment
and using random gradient rise to optimize the “agent” objective function. Assume
rt(θ) =

πθ(at |st)
πθold(at |st)

, where at is the current action, and st is the current state.
The objective function of the PPO algorithm is:

L(θ) = Êt[
πθ(at|st)

πθold(at|st)
Ât] = Ê[rt(θ)Ât] (4)
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The Ât is an estimated value of the preponderance function of time step(t) of (st, at),
and Êt[ . . . ] represents the expected value for a batch of samples. The policy gradient
algorithm is more efficient in continuous action spaces [28].

4. Experiments and Results

Our simulation environment was at the uncontrolled T-intersections, and we assumed
that there were n cars moving toward opposite directions in a two-way street and that all
of the vehicles that were controlled by the Intelligent Driver Model (IDM) [29] never took
turns or changed lanes. The drivers with a conservative driving style varied their front
gaps from the preceding vehicles between 0.5 m and 0.7 m and had the desired speed of
2.4 m/s. The drivers with an aggressive driving style varied their front gaps between 0.3 m
and 0.5 m and had the desired speed of 3 m/s. The ego car started at the bottom of the
T-intersection and then took a right turn to merge into the upper lane without colliding with
other cars. If the ego car encountered the other cars, the conservative drivers would yield to
the ego car, while the aggressive drivers would ignore and collide with the ego car. The ego
car with a fixed right-turn path was controlled by a longitudinal proportional–derivative
(PD) controller, whose desired speed was set by the policy network.

Let the state of the ego vehicle successfully making a full right turn be Ssuccess and
the vehicle successfully making a full right-turn have a small reward on the speed, where
rspeed(s) = 0.05× ‖ vauto ‖2; vauto means the speed of self-driving vehicles. Meanwhile, let
the state of the ego vehicle colliding with other vehicles be S f ail and let the vehicle have a
constant penalty on the speed, where rstep = −0.0013. Otherwise, we set the length of the
cars as 5 cm and the width of the cars as 2 cm. This is to encourage the ego car to reach the
goal of making a full right turn as soon as possible. The reward function is defined as:

r(s, a) =


2.5,
−2,

rspeed(s) + rstep,

s ∈ Ssuccess
s ∈ S f ail
others

(5)

4.1. Datasets

The dataset used in this paper is a randomly generated trajectory dataset in Python
produced by Liu et al. Because using Python to generate the dataset not only allows one
to set the type of dataset needed, such as the number of entries allocated to radical and
conservative trajectories in the program, it also saves the cost of obtaining these datasets.
It contains approximately 700,000 driving trajectories from two types of drivers. We set
the train/test split ratio is 2:1. We trained the policy model with 466,667 random trajectory
data and tested with the other 233,333 trajectory data. We set the decaying learning rate to
5 × 10−4 and the weight of the KL divergence loss to β 5 × 10−8.

4.2. Unsupervised Clustering Representations of Latent Driver Traits

In this paper we proposed a network of C-ResNet-VAE + GRU and compared it with
the VAE + GRU network [18] and GRU network [11]. Both the study [18] and we utilized
a GRU as the encoder and GRU the as decoder, while [10] utilized GRU as the encoder
and the multilayer perceptron (MLP) as the decoder. In addition, in order to verify the
effectiveness of the residual module and reinforcement learning, we trained the ablation
experiments without the residual module and comparative loss.

We trained two methods for 500 epochs and then utilized a set of test trajectories
as inputs to act as encoders to measure if the latent trait effect was good or bad. The
unsupervised classifier results of both methods are shown in Figure 7.
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The red areas represent aggressive drivers, the blue areas represent conservative
drivers, and the middle, which is not fully separated out, usually contains very short
trajectories and trajectories with vague front clearance. The lines closer to the boundary
represent vehicle trajectories where the car has moved out of the range and we cannot see.
As shown in Figure 7a–c, the unsupervised classifier we proposed successfully classified
most of the result differences in driving styles. From Figure 7b, it can be seen that there are
still a large number of blue areas in the red region that have not been successfully separated
out, and from Figure 7c, it can be seen that there are significantly fewer blue areas in the
red region. It can be seen that the method in this paper can better separate the shorter
trajectories and the fuzzy front gap trajectories and is more capable of separating the two
different characteristics of conservative and aggressive driver styles. It has a better effect,
compared with the methods [10,18] proposed and has the ability to separate the traits of
aggressive and conservative driving styles. Study [10] utilized GRU as the encoder to
obtain the two latent vectors. We assumed that the vehicles only considered current states



Sensors 2022, 22, 9943 10 of 14

and actions and the encoder only considered the short-term information of the vehicle
acceleration, such as the latent traits of drivers.

Therefore, trajectories with different potential characteristics were mostly gathered
together and not classified successfully. Study [18] utilized the VAE + RNN network, where
VAE had limited approximate posterior distribution trait abilities. Hence, there were some
poor sample qualities generated. The C-ResNet-VAE network we proposed improved
the approximate posterior distribution trait abilities of the VAE network, obtained richer
information from vehicle trajectory, was simpler and better suited for the unsupervised
classifier, as well as distinguished the difference between different trajectories, so it had a
better performance.

From the results in Figure 7c–e, it can be seen that there are significantly more blue
blocks in the red area without the addition of the contrast discriminator module and
the residual module, and there are still many driving trajectories with different potential
features fused together. With the addition of the contrast discriminator module and the
residual module, the separation ability is enhanced, and the clustering effect is better. Thus,
the effectiveness of the method is verified.

4.3. Decision Results of Self-Driving Strategies

We used two baselines as comparative experiments:

(1) The supervised learning with labels proposed by Ma X et al. [11], which trained a
supervised trait predictor and a reinforcement learning policy with truth trait labels
separately and combined them at test time.

(2) The strategy of [10,18], and our model all utilize unsupervised methods to infer the
potential state of drivers to make reinforcement learning decisions.

In addition, we used a reinforcement learning policy directly trained with truth labels
as a baseline. We ran experiments with different proportions of two types of drivers and
tested four models with 500 random cases. The percentage of auto-vehicles successfully
taking a right turn to merge into the upper lane, colliding with surrounding vehicles and
completing overtime, were calculated, respectively, where overtime refers to a situation
where the car failed to make a right turn within the allotted time and did not crash. The
results are shown in Tables 1–3.

Table 1. Objective evaluation decision results of self-driving strategies with aggressive drivers
p = 0.25.

Models Success (%) Timeout (%) Collision (%)

True Labels 85 1 14
GNN 66 18 16
LSTM 70 16 14

VAE + RNN 73 15 12
Ours 78 10 12

Table 2. Objective evaluation decision results of self-driving strategies with aggressive drivers p = 0.4.

Models Success (%) Timeout (%) Collision (%)

True Labels 91 4 5
GNN 73 22 5
LSTM 74 20 6

VAE + RNN 80 12 8
Ours 84 11 5
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Table 3. Objective evaluation decision results of self-driving strategies with aggressive drivers p = 0.6.

Models Success (%) Timeout (%) Collision (%)

True Labels 97 1 2
GNN 87 10 3
LSTM 95 3 2

VAE + RNN 96 2 2
Ours 98 0 2

p is the probability for each surrounding driver to be conservative. The task difficulty
decreased as p increased. From the experimental results, the collision rate of the proposed
potential state feature extraction method was lower than the other three methods, and
the successful completion of the task accounted for a higher proportion, which is closer
to decision-making under the real label training. The main reason was that our method
effectively extracted the trait differences of the surrounding drivers, which made better use
of the reinforcement learning for the decision-making of the ego vehicle. Our policy was
able to utilize the existing trait representation and focused more on the decision-making of
the ego vehicle, which led to better navigation performance. The model in [10] had a low
success rate when p value became smaller. The reason is that the latent representation did
not distinguish between different traits and only provided very limited useful information
to learners. For Ma et al. [11], both strategies had good performance when tested separately.
However, when the two modules were combined together, intermediate and cascading
errors significantly lowered the success rates. Since the policy was trained with true traits, it
failed easily whenever the trait classifier made a small mistake. The model in Liu S et al. [18]
had limited representation ability, low separation ability for some fuzzy trajectories (very
short trajectories and the trajectories with fuzzy front gaps), and could not learn unique
traits of different drivers well. The simulation process of the self-driving car successfully
making a full right-turn on the upper lane at the uncontrolled T-intersection is shown in
Figure 8. The cars in the two lanes went in opposite directions; the conservative cars are in
green, and the aggressive cars are in red.
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Figure 8. Process of the self-driving car making a full right-turn on the upper lane. (a) self-driving
car successfully makes a full right-turn on the upper lane at time t. (b) Self-driving car collide at time
t + 1. (c) Self-driving car overtime at time t + n.

At time t, it can be seen from Figure 8a that when the self-driving car met an aggressive
red vehicle, it gave way to it. When it met a green conservative vehicle, it passed it, and
finally, the self-driving car successfully merged into the car lane and completed the right
turn.

At time t + 1, it can be seen from Figure 8b that the autonomous vehicle successfully
identified the red aggressive vehicle when passing the drop-off lane and passed the green
conservative vehicle when it encountered it. The unsuccessful recognition of the red
aggressive vehicle at the entry lane resulted in a collision.

At time t + n, it can be seen from Figure 8c that the autonomous vehicle recognized the
red aggressive vehicle when passing the drop-off lane and passed the green conservative
vehicle when it encountered it; however, failed to make a judgment when it was about to
enter the drop-off lane and failed to take action, resulting in a timeout. Timeout n was set
to 50 s.

5. Conclusions

In this paper, the C-ResNet-VAE network was proposed to improve the existing
deficiency of the VAE + RNN model and learn the potential characteristics of drivers
from vehicle trajectories. Then, the potential characteristics and vehicle status were used
to learn the trajectory prediction of autonomous vehicles at uncontrolled T-intersections.
The introduction of contrast loss better learned the exclusive characteristics of the drivers
from the vehicle trajectory and ensured the personalized and distinctive characteristics
of the drivers; the residual network was added to the latent variable of feature extraction
to improve the ability of feature extraction and prevent the gradient from disappearing.
Experiments showed that the proposed method better separated the potential characteristics
of drivers with different styles, received more exclusive characteristics of drivers from the
trajectory, and improved the collision probability at uncontrolled intersections. However,
the fuzzy driving trajectory was not successfully distinguished, and lane change and
turning were not studied, which is the direction of our future research.
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