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Abstract: Personal mobility vehicles (PMVs) are compact and lightweight compared to automobiles;
hence, human dynamic behavior affects a vehicle’s postural stability. In this study, the dynamic
behaviors of drivers of inverted pendulum vehicles (IPV) under manual and automatic driving
were investigated. One particular feature of applying automatic driving to IPV is constant posture
stabilization control. In this study, the drivers’ center of gravity (COG)/center of foot pressure
position (COP) and joint moments during turning were investigated experimentally. It was found
that the drivers’ COG shifted backward during turning and deceleration. For COP, it was found
that drivers maintained balance by moving their inner foot more inward and their outer foot more
outward during turning. These results are significant for understanding the steps taken to withstand
centrifugal forces during turning. The joint moments of the foot were more significant in automatic
turning than in manual turning to prevent falling owing to centrifugal force. These findings can
facilitate the development of an automatic control method that shifts the COG of a driver, as in
manual turning.

Keywords: personal mobility vehicle; inverted pendulum vehicle; automatic driving; dynamics of a
driver; joint moment

1. Introduction

Recently, research on automated driving technology for automobiles has rapidly
developed [1,2]. Studies are also underway in anticipation of a mobile society in which
automatic driving vehicles will be widely used and vehicles will communicate with each
other [3–5]. Research on automatic driving includes studies on scene classification [6]
and driver monitoring [7]; studies focusing on humans include motion sickness [8–10].
However, automatic driving, focusing on humans riding in an inverted pendulum vehicle
(IPV) as a compact standing personal mobility vehicle (PMV), has rarely been studied.
Unlike automobiles, human dynamic behavior critically affects the dynamic stability of
PMV systems. The objective and motivation of this research were not focused on system
security, but sought to improve dynamic stability, and to safely apply automated driving
to PMVs, which are personal transportation vehicles [11–13]. An IPV is a representative
PMV [14]. In an IPV, the driver rides on a step between two wheels and moves by shifting
the driver’s center of gravity [15,16]. The vehicle turns and can be used in a small space by
changing the rotational speed of the right and left wheels. However, when an IPV is used in
a crowded space, there is a risk of collision with pedestrians or obstacles, particularly when
the driver’s attention is diverted. Automatic driving is expected to ensure the safety of
drivers and pedestrians in situations in which the driver’s perception is problematic. One
of the problems in applying automatic driving to an IPV is that the vehicle requires constant
stabilization control. During automatic driving, stabilization control may be substantially
affected depending on the input value to the wheels, resulting in the risk of disturbing the
driver’s posture. Furthermore, since the vehicle is compact and lightweight, the mass of the
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driver relative to that of the vehicle is large, and the behavior of the driver has a significant
impact on the entire system. Therefore, it is important to understand the mechanism of
driver behavior during automatic operation to apply it to an IPV safely. We demonstrated
the effect of automatic braking on an IPV [17]. In this study, we experimentally investigated
differences in driver behavior between manual and automatic turning. Showing this
difference is the contribution of this study, because knowing the difference allows us to
examine the guidelines for automatic driving.

The outline of this paper is as follows. In Section 2, we present the experimental
vehicle and automatic turning system. In Section 3, we present the experiment carried
out to derive COG and COP of the drivers. We analyze the results. Based on the analysis,
additional experiments are carried out in Section 4 to derive the joint moments in order to
further understand the details of human motion. In Section 5, the conclusions of this study
and future issues are presented.

2. Experimental Vehicle and the Automatic Turning System

An IPV (FIT Co., Ltd., Gifu, Japan) was used as the experimental vehicle, as shown in
Figure 1. Table 1 lists the specifications of the analysis.
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Table 1. Specifications of the experimental vehicle.

Definition Value

Maximum velocity 10 km/h
Cruising range 10–15 km

Mass 30 kg
Length ×Width 45 cm × 52.5 cm

Limitation of mass 20–80 kg
Output of motor 450 × 2 W

An IPV mainly consists of a step, a handle, and two wheels. The wheels were parallel
to each other on the left and right sides of the vehicle and were mounted on a step platform,
each with a motor.

TR = TL = K1θvehicle + K2ωvehicle (1)

Equation (1) is the control equation describing a vehicle moving straight ahead [18].
The step was equipped with a gyro sensor, which fed back the tilt angle θvehicle and angular
velocity ωvehicle of the step, and applied torques TR and TL equally to the right and left
wheels to enable stabilization control and straight driving. Note that K1 and K2 represent
the feedback gains defined in Table 2, and TR, TL, θvehicle, and ωvehicle follow the definitions
shown in Figure 2.

TR = K1θvehicle + K2ωvehicle + K3θhandle, (2)
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TL = K1θvehicle + K2ωvehicle − K3θhandle (3)

Table 2. Feedback gains for the experiments.

K1 K2 K3

Feedback gains 32 6.6 1.0
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Figure 2. Sign definitions of 𝑇𝑅, 𝑇𝐿, 𝜃𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝜔𝑣𝑒ℎ𝑖𝑐𝑙𝑒, and 𝜃ℎ𝑎𝑛𝑑𝑙𝑒. 

Table 2. Feedback gains for the experiments. 

 𝑲𝟏 𝑲𝟐 𝑲𝟑 

Feedback gains 32 6.6 1.0 

Figure 2. Sign definitions of TR, TL, θvehicle, ωvehicle, and θhandle.

Equations (2) and (3) represent the control equations for manual turning. The two
wheels had a steering angle of zero, and the vehicle could turn by varying the output of
the motors attached to each wheel from left to right. The handle was located at the front
center of the vehicle, attached to the step, and a rotation angle sensor was attached to the
connection. When the handle was steered, in addition to the straight driving operation,
the step tilt angle θvehicle, angular velocity ωvehicle, and handle angle θhandle were fed back,
and the control torque TR was input to the right wheel and TL to the left wheel, thereby
stabilizing the control and enabling manual turning. Note that K1, K2, and K3 represent
the feedback gains defined in Table 2, and TR, TL, θvehicle, ωvehicle, and θhandle follow the
definitions shown in Figure 2.

TR = K1θvehicle + K2ωvehicle + α (4)

TL = K1θvehicle + K2ωvehicle − α (5)

Equations (4) and (5) are the control equations for the automatic turning. These equa-
tions were obtained by replacing the third term on the right side of Equations (2) and (3),
K3θhandle, with a constant α, which is independent of the handle angle θhandle and is arbi-
trarily determined in this study based on the experimental conditions. When the vehicle
was operated in a straight line, the step tilt angle θvehicle and angular velocity ωvehicle were
fed back, and the control torque TR was input to the right wheel and TL to the left wheel,
enabling stabilization control and automatic turning. In other words, because θhandle is not
fed back, even if the driver operates the handle, the steering intention is not transmitted to
the vehicle, and the vehicle turns without the handle tilting in the turning direction. Note
that K1, K2, and K3 represent the feedback gains defined in Table 2, and TR, TL, θvehicle, and
ωvehicle follow the definitions shown in Figure 2. K1, K2, and K3 were arbitrarily determined
in this study such that the IPV could maintain postural stability.

3. Derivation Experiment for COG/COP

Manual and automatic turning experiments were performed using the vehicle de-
scribed in Section 2. The center of gravity (COG) of the driver plays an important role in
the stability of the system, including the stability of the vehicle and the driver. Therefore,
an experimental methodology was designed to derive the COG of the driver. In addition to
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COG, the center of foot pressure position (COP) should also be determined because the
stepping of the left and right legs is crucial for turning.

3.1. Experimental Methods and Conditions

Three healthy young men (aged 24–25 years, with an average height of 173.8 cm
and an average weight of 68.6 kg) participated in the experiment. Before the experiment,
the drivers practiced driving the experimental vehicle manually for 30 min to become
sufficiently familiar with riding and steering the vehicle to minimize the differences in
driving skills between the subjects.

The experiment was conducted under two conditions: manual turning by the driver,
and automatic turning. The former condition was achieved by tilting the handle to the
maximum in a specified direction. The latter condition was achieved by activating the
automatic turning system with a random direction and timing, including a condition in
which the vehicle did not turn, making it difficult for the driver to predict the turning
direction. This increases the reproducibility of the automatic operation. The turning time
was set to 1.5 s. For each condition, the vehicle speed was set as either low or high. The
results were 3.3 ± 0.3 km/h for low speed and 4.9 ± 0.3 km/h for high speed. For each
condition, the turning sensitivity was varied in two steps: The turning sensitivity was
achieved by changing the value of θhandle in Equations (2) and (3). Three sets of experimental
data were obtained for each of the eight experimental conditions. Data that could not be
analyzed due to a large amount of missing data were excluded from the analysis.

The time history of the turning experiment is shown in Figure 3. This is the case for
automatic turning, where the vehicle velocity is low and turning sensitivity is high. For each
section, (a) (−1 s–0 s) is before turning, (b) (0 s) is at the beginning of turning, (c) (0 s–1.5 s)
occurs during turning, and (d) (1.5 s) occurs at the end of turning. For reference, the data
are shown in Figure 4 in correspondence with the acquired analysis data described below.
The evaluation was conducted by measuring the displacements of the driver’s COG and
COP during turning relative to the stationary state for each condition.
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3.2. Measurement System

In this experiment, the position of each part of the human body was measured using
12 cameras in the 3D motion analysis system Flex3 (OptiTrack) (Figure 5a). The 3D motion
analysis system can be used to analyze detailed human movements [19]. The sampling rate
was set to 100 Hz. Markers were attached to the driver at 39 points based on a Plug-in Gait
full-body model. The position data output from the 3D motion analysis system was based
on a fixed coordinate system on the ground; therefore, it was converted to a fixed coordinate
system on the vehicle. Hence, the position and yaw angle of the vehicle were measured by
attaching markers to the vehicle at four points, and the coordinates were converted. The
positions of the markers on the vehicle are shown in Figure 1. The fixed vehicle coordinate
system was a right-handed Cartesian coordinate system with the x-axis in the traveling
direction of the vehicle, y-axis in the lateral direction, and z-axis in the direction that formed
a right-handed system with the x- and y-axes. The COP, on the contrary, was measured
using the floor reaction force sensor M3D-EL-FP-U-C2005 (Tech-Gihan Co., Ltd., Kyoto,
Japan) (Figure 5b), which can be attached to a human foot to measure the reaction force of
one foot at a time.
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3.3. Analysis Methods
3.3.1. COG

In this experiment, we used the center of gravity (COG) and center of pressure (COP),
which is the position of the reaction force applied to both feet, as indices to evaluate the
behavior of the driver.

rCOG =
∑ miri

∑ mi
(6)

rCOG, which is the position of COG, was calculated from the mass mi of each body
part and the position ri of the center of mass using Equation (6). The mass and center of
mass of each body part were derived using the body part coefficients presented in [20].

3.3.2. Centrifugal Force

Centrifugal force contributes to a driver’s postural stability. In this study, the centrifu-
gal force applied to the vehicle was used to evaluate the behavior of the driver, because
only the value determined by the vehicle was used in the discussion, eliminating the
human parameter (body weight). The method proposed by the authors for calculating the
centrifugal force applied to a vehicle is as follows. The equation is derived from the fact
that multiplying the radius by the angular velocity yields the circumferential velocity.

vR = (r + d)ω (7)

vL = (r− d)ω (8)

We assumed that the vehicle turned left, as shown in Figure 6. If the angular velocity
is ω, turning radius is r, and distance between the two wheels is 2d during the turn, the
velocities vR and vL of the left and right wheels can be expressed as in Equations (7) and (8).

ω =
(vR − vL)

2d
(9)
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Solving Equations (7) and (8) for ω yields Equation (9).

v =
(vR + vL)

2
(10)
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The vehicle velocity v is described in Equation (10).

Fcent = mrω2 (11)

The centrifugal force Fcent acting on the driver is described by Equation (11), where ω
is the angular velocity, r is the turning radius, and m is the mass of the vehicle.

Fcent = m
(vR − vL)(vR + vL)

4d
(12)

Using the equation v = rω and Equation (11), Fcent can be expressed as in Equation (12):
the right turn can be written in the same manner by replacing vR and vL in the previous equation.

3.3.3. Strength of Correlation

The strength of the correlation was evaluated according to a previous study [21]. Table 3
presents the correlation coefficients and classification of the strength of the correlations.

Table 3. Classification of correlation strength.

Correlation Coefficient r Correlation Strength

0.7 ≤ |r| High
0.4 ≤ |r| < 0.7 Moderate
0.2 ≤ |r| < 0.4 Low
|r| < 0.2 Slight

3.4. Experimental Results

First, we examined whether the COG (x-axis) displacement of the driver before and
after turning differed between manual and automatic driving conditions. The average
values of COG (x-axis) displacement before and after turning are shown in Figure 7. In
Figure 7, the inward direction of the turn is the positive y-axis (the blue graph is the result
of manual turning, and the red graph is the result of automatic turning). The results show
that the mean displacement of the COG (x-axis) during manual operation was 0.069 m
(SE = 0.006) before turning and 0.017 m (SE = 0.007) after turning. Welch’s t-test [22] showed
a significant difference (**) in COG (x-axis) displacement before and after turning during
manual operations (t (43) = 5.368, p < 0.01). The mean COG (x-axis) displacement during
automatic driving was 0.046 m (SE = 0.005) before turning and −0.001 m (SE = 0.008) after
turning. Welch’s t-test showed a significant difference (**) in the COG (x-axis) displacement
before and after turning during automatic driving (t (44) = 5.060, p < 0.01). In other words,
the COG moved backward more significantly during turning than before turning, resulting
in a deceleration.

Next, we examined whether the driver’s COG (y-axis) displacement differed between
manual and automatic driving both before and after turning. The average values of COG
(x-axis) displacement before and after turning are shown in Figure 8. In Figure 8, the
inward direction of the turn is the positive y-axis (the blue graph is the result of manual
turning, and the red graph is the result of automatic turning). The results show that
the mean displacement of the COG (y-axis) before turning was 0.001 m (SE = 0.004) for
manual driving and −0.001 m (SE = 0.003) for automatic driving. Welch’s t-test showed no
significant difference (n.s.) in COG (y-axis) displacement among the driving modes before
turning (t (44) = 0.472, n.s.). The mean COG (y-axis) displacement after turning was 0.028 m
(SE = 0.005) for manual driving and −0.015 m (SE = 0.005) for automatic driving. Welch’s
t-test showed a significant difference (**) in COG (y-axis) displacement between the driving
modes after turning (t (48) = 5.719, p < 0.01). That is, the center of gravity shifted inward
during manual turning and it significantly shifted outward during automatic turning. This
may be due to the centrifugal force applied to the driver during automatic turning.
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To examine the effect of centrifugal force on the lateral attitude stability of the driver
during a turn, the relationship between the average value of centrifugal force and the
maximum value of COG (y-axis) displacement during turning for the manual and automatic
turning conditions was determined, as shown in Figures 9 and 10. The data indicated
with red dots in Figure 10 represent the fallen condition. The correlation coefficients for
each scatter plot were −0.004 and 0.378 for manual and automatic turning, respectively,
indicating a weak positive correlation between the centrifugal force and the maximum
COG (y-axis) displacement for automatic turning. The lack of correlation in manual turning
can be attributed to a larger COG (y-axis) displacement caused by turning the handle in the
roll direction inside the turn than the effect of the centrifugal force. This indicates that the
driver is easily affected by centrifugal force during automatic turning, and that there is a
risk of falling when the centrifugal force acting on the vehicle exceeds approximately 50 N.
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The mean value of the maximum displacement of the COG (y-axis) for each driving
style was calculated to examine the extent to which the driving mode (manual or automatic)
affects the lateral posture stability of the driver. The results were 0.089 m (SE = 0.009) and
0.043 m (SE = 0.003) for manual and automatic driving, respectively. A Welch’s t-test showed
that displacement was significantly greater for manual turning (t (29) = 4.742, p < 0.01).
This may be due to the fact that in manual turning, the entire body tilted significantly in
the roll direction when the handle was rotated in that direction.

Figure 11 shows the average COP (y-axis) values for both feet during turning, which
indicate the effects of the position of the feet on the lateral postural stability of the drivers.
In Figure 11, the positive y-axis represents the inward direction of the turn. The COP of the
inner leg during manual operation was 4.459 mm (SE = 0.995) and that of the outer leg was
−9.342 mm (SE = 1.270). In automatic driving, the values were 1.461 mm (SE = 1.002) for
the inward turning of the leg and −8.627 mm (SE = 1.150) for the outward turning of the
leg. A Welch’s t-test showed a significant difference (**) between the COP (y-axis) of the
foot on the inside of the turn and the COP (y-axis) of the foot on the outside of the turn,
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regardless of the driving style (manual driving, t (42) = 8.367, p < 0.01) (automatic driving, t
(51) = 6.490, p < 0.01). In other words, it was found that during turning, the foot inside the
turn moved more inward and the foot outside the turn moved more outward. This could
be attributed to the axle foot shifting inward during turning, with the other foot being used
to maintain balance.
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4. Derivation Experiment for Joint Moments

In the previous section, the dynamic behavior of the driver was characterized in
terms of the COG and COP. In fact, there are other ways to characterize the dynamic
behavior of human. For example, the method to construct a human model and evaluate
the internal load of humans through simulation [23,24], the method to reproduce dynamic
behavior by using anthropomorphic bipedal robot [25], and the method to evaluate muscle
strength by estimating joint moments [26]. Of all the methods, we focused on the method
evaluating joint moment. When humans attempt to maintain balance, they stabilize their
overall posture by moving their muscles and applying appropriate moments to their
joints throughout their body. These moments are called joint moments. Methodologically,
estimating the joint moment reveals where a human generates a force. The following
section discusses the results of additional experiments focused on drivers’ joint moments.
We can understand how drivers move their legs during manual and automatic turns by
estimating the joint moments.

4.1. Additional Experimental Methods and Conditions

Additional experiments were conducted on five healthy young men (average height,
172.4 cm; average weight, 56.24 kg). These participants were completely different from
those who participated in the experiment described in Section 3.1. Before the experiment
was conducted, the drivers practiced driving the experimental vehicle manually for 30 min
to become fully accustomed to riding and steering the vehicle, and to minimize differences
in driving skills among the participants.

The experimental conditions consisted of two driving methods (manual and auto-
matic), three turning directions (left turn, right turn, and straight ahead), two turning
speeds (low speed (2 km/h) and high speed (6 km/h)), two turning radius (0.5 and 1.5 m)
for the low speed, and two turning radius (1.5 and 3.0 m) for high speed. Two measure-
ments were performed for each condition, resulting in a total of 40 measurements per
participant. The experiment was conducted by driving a vehicle on a specified course
at a specified speed under manual turning conditions. In the automatic turning condi-
tion, the vehicle was driven on an arbitrary course with the automatic turning system
activated while driving straight ahead at a specified speed. All experimental conditions
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were randomized to make it difficult for the driver to predict the direction of the turn in the
automatic driving condition, thereby improving the reproducibility of automatic driving.
When the driver was requested to stop during the experiment, only the data prior to the
interruption were analyzed. In addition, data that could not be analyzed because of large
data deficits were excluded from the analysis.

Figure 12 shows the flow diagram of the experimental setup. The experimental data
were obtained by quantitatively measuring the driver’s behavior and recording data on a
personal computer (PC) and data logger.
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4.2. Joint Moment Estimation System

Inverse kinematics and dynamics analyses were conducted to estimate the joint mo-
ments. Equations (13) and (14), which represent the general equations of inverse dynamics
and consider the variables considered in this study, were used for the calculations. The
definitions of the main variables are listed in Abbreviations and a summary diagram is
presented in Figure 13.

m
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As shown, external forces on the driver’s hands and feet are required to estimate joint
moments. In addition to the experimental vehicle used in the turning experiment described
in Section 3, the handle reaction force meter (TEL-1KN-29, Tensar Co., Ltd., Blackburn, UK),
shown in Figure 14, was attached to the experimental vehicle to measure all external forces
applied to the driver. Inverse kinematic and inverse dynamic analyses were performed
using the DhaibaWorks software to estimate the joint moments at each joint of the driver.
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4.3. Analysis Method

Figure 15 shows the data processing flow used to determine joint moments. The
inverse kinematics analysis used to calculate joint moments required external forces based
on an absolute coordinate system. However, the values measured by the measurement
equipment were based on the coordinate system of the equipment. In this section, the
definitions of the main coordinate systems and the calculation method of the external force
are presented.
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4.3.1. Definition of Coordinate Systems

In the absolute coordinate system, the origin was fixed to the ground at the starting
point of the turn in manual operation, where the z-axis is the forward direction, the y-
axis is the vertical upward direction, and the x-axis is the horizontal direction, forming a
right-hand system with the y- and z-axes. Figure 16 shows the absolute coordinate system.
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Figure 16. Absolute coordinate system.

In the vehicle coordinate system, the origin was fixed to the step, where the YV-axis is
the horizontal direction in front of the vehicle when the driver was riding in the vehicle
and maintaining a stationary state, the ZV-, YV-, and ZV-axes are all the vertical upward
direction, and the XV-axis is the horizontal direction facing the vehicle sideways, which
was on the right-hand side of the system. Figure 17 shows the vehicle coordinate system.
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Figure 17. Vehicle coordinate system.

In the wearable floor reaction force sensor coordinate system, the origin was fixed to
the left and right wearable floor reaction force sensors, where the YW-axis is the forward
direction of the device when attached to the driver, the ZW-axis iz the vertical downward
direction of the device in a similar case, and the XW-axis is the lateral direction of the device,
which is the right-handed coordinate system with YW- and ZW-axes. Figure 18 shows the
coordinate system of the wearable floor reaction force sensor.

In the coordinate system of the handle reaction force sensor, the origin was fixed to
the left and right handle reaction force sensors, where the Xh-axis is the backward direction
of the vehicle when attached to the experimental vehicle, the Zh-axis is the vertical upward
direction of the vehicle in a similar case, and the Yh-axis is the lateral direction of the vehicle,
which is the right-handed coordinate system with the Xh- and Zh-axes. Figure 19 shows
the coordinate system of the handle reaction force sensor.
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4.3.2. Calculation of External Force Using the Measuring Devices

Two wearable floor reaction force sensors were attached to the left and right feet of
each driver, respectively. The right wearable floor reaction force sensor measured the X-,
Y-, and Z-component forces (i.e., Ff oot_R_X, Ff oot_R_Y, and Ff oot_R_Z, respectively) applied
to the main body of the device in the wearable floor reaction force sensor coordinate
system. Conversely, the left wearable floor reaction force sensor measured the X-, Y-, and Z-
component forces (i.e., Ff oot_L_X , Ff oot_L_Y, and Ff oot_L_Z, respectively) applied to the main
body of the device in the wearable floor reaction force sensor coordinate system. Therefore,
based on the wearable floor reaction force measurement coordinate system described in
the previous section, the X-, Y-, and Z-components of the right sole reaction force were
−Ff oot_R_X , −Ff oot_R_Y, and − Ff oot_R_Z, respectively, and the X-, Y-, and Z-components of
the left sole reaction force were −Ff oot_L_X , −Ff oot_L_Y, and− Ff oot_L_Z, respectively.

Two handle reaction force sensors were attached to the left and right handle bars. The
right-hand handle reaction force sensor measured the force Fhand_R applied to the device in
the front–back direction, whereas the left-hand handle reaction force sensor measured the
force Fhand_L applied to the device in the left–right direction. Therefore, the handle reaction
forces applied to the driver’s left and right hands were −Fhand_R, −Fhand_L, and 0 for the
X-, Y-, and Z-components, respectively.
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4.3.3. Human Dynamics Model

The heights and weights of the participants were measured beforehand and a human
dynamics model was developed based on this information. The human dynamics model
was constructed using DhaibaWorks [27], which was based on a database of 6700 Japanese
people at the Research Institute of Human Engineering for Quality Life, and was derived
from a principal component analysis of their body dimensions and overall shape. The
model consisted of 20 rigid bodies (pelvis, spine, sternum, neck, clavicles, humeri, ulnas,
hands, femurs, tibias, feet, and toes) connected by 20 joints. Each joint was rotated around
the three axes. Figure 20 shows the configuration of the human dynamics model, and
Tables 4 and 5 list the names of bones and joints. Additionally, 39 markers were placed on
the human dynamics model based on a Plug-in Gait full-body model.
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Figure 20. Composition of the human model.

Table 4. List of bone names.

Bone Index Bone Name Bone Index Bone Name

B1 PELVIS B11 L_ULNA
B2 SPINE B12 L_HAND
B3 STERNUM B13 R_FEMUR
B4 NECK B14 R_TIBIA
B5 R_CLAVICLE B15 R_FOOT
B6 R_HUMERUS B16 R_TOE
B7 R_ULNA B17 L_FEMUR
B8 R_HAND B18 L_TIBIA
B9 L_CLAVICLE B19 L_FOOT

B10 L_HUMERUS B20 L_TOE

4.3.4. Inverse Kinematics Analysis

The variables in Equations (13) and (14) could be calculated using the marker positions
attached to the driver, which were obtained from the joint moment estimation system and
the human dynamics model obtained from the analysis in Section 4.3.3. The DhaibaWorks
software was used for the computational process.
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Table 5. List of joint names.

Bone Index Bone Name Bone Index Bone Name

J1 Joint of PELVIS J11 Joint of L_ULNA
J2 Joint of SPINE J12 Joint of L_HAND
J3 Joint of STERNUM J13 Joint of R_FEMUR
J4 Joint of NECK J14 Joint of R_TIBIA
J5 Joint of R_CLAVICLE J15 Joint of R_FOOT
J6 Joint of R_HUMERUS J16 Joint of R_TOE
J7 Joint of R_ULNA J17 Joint of L_FEMUR
J8 Joint of R_HAND J18 Joint of L_TIBIA
J9 Joint of L_CLAVICLE J19 Joint of L_FOOT
J10 Joint of L_HUMERUS J20 Joint of L_TOE

4.3.5. Inverse Dynamics Analysis

The joint moments were estimated using Equations (13) and (14) in Section 4.2, external
forces acting on the driver obtained in Section 4.3.2, human dynamics model obtained
in Section 4.3.3, and human posture-dependent variables obtained in Section 4.3.4. The
calculations were performed using the DhaibaWorks software.

4.3.6. Calculation of Offset Values for Joint Moments

We calculated the change in the estimated joint moment applied to the driver under
each experimental condition by considering an offset with the estimated joint moment
when the driver maintained a stationary state, rather than using the joint moment estimates
obtained by the process described in Section 4.3.5.

4.4. Joint Moment Estimation Results

Figures 21 and 22 show examples of the simulation results of the ankle and knee joint
moments under the following conditions: velocity of 2 km/h, turning radius of 0.5 m, and
right turning direction. Figure 21 shows the results for manual turning, and Figure 22 for
automatic turning. The red line indicates the right leg data, and the blue line indicates the
left leg data.
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Figure 21. Ankle and knee joint moments during manual turning.

First, we examined the extent to which the load on the ankle varied depending on the
driving mode, separately for the legs inside and outside of the turn direction. Figure 23
shows the average values of the ankle joint moment (z-axis) during turning for each driving
style. The ankle joint moment (z-axis) refers to the joint moment applied around the z-axis
of the ankle in the human model, as shown in Figure 20. The direction of the moment
applied when the body was tilted inward was defined as positive. Blue indicates manual
turning and red indicates automatic turning. The results show that the moment applied
to the leg inside the turn direction was 1.775 Nm (SE = 0.047) during manual driving and
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2.387 Nm (SE = 0.037) during automatic driving. The values for the foot outside the turn
direction are 3.162 Nm (SE = 0.046) for manual driving and 3.718 Nm (SE = 0.038) for
automatic driving. The results of a paired-sample t-test show a significant difference (*) in
the mean values of joint moments between the ankles inside and outside the turn directions,
regardless of the driving style (manual driving, t (13653) = 32.416, p < 0.01) (automatic
driving, t (17138) = 32.118, p < 0.01).
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Figure 23. Average ankle joint moment around z-axis during turning.

Furthermore, the extent to which the load on the ankle varied depending on foot
position during turning was examined for each driving mode. The results of Welch’s
t-test show a significant difference (**) in the mean values of joint moments between
manual and automatic turning, regardless of foot position during turning (inward turning,
t (27337) = 10.231, p < 0.01) (outward turning, t (28331) = 9.330, p < 0.01).

We also examined the extent to which the load on the knee varied depending on the
driving mode, separately for the legs inside and outside of the turn direction. Figure 24
shows the average values of the driver’s knee joint moment (z-axis) during turning for each
driving mode. The knee joint moment (z-axis) refers to the joint moment applied around
the z-axis of the knee in the human model, as shown in Figure 20. The direction of the
moment applied when the body was tilted inward of the turn was considered positive.
Blue indicates manual turning and red indicates automatic turning. The results of Welch’s
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t-test indicate that the mean knee joint moment was significantly higher (**) in automatic
driving than in manual driving (leg inside of the turn direction, t (27228) = 8.033, p < 0.01)
(leg outside of the turn direction, t (27892) = 8.883, p < 0. 01).
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Furthermore, we examined the extent to which the load on the knee varied during
turning in driving mode. The results of a paired-sample t-test show that regardless of the
driving mode, the mean value of the joint moments was significantly greater (*) for the
knee outside of the turn direction than that inside of the turn direction (manual driving, t
(13653) = 59.002, p < 0.01) (automatic driving, t (17138) = 60.063, p < 0.01).

These results indicate that when the driver turns in an IPV, the load on the legs,
including the ankles and knees, is greater in automatic driving than in manual driving,
and greater on the leg outside of the turn direction than on that inside. This is because
the driver is more susceptible to centrifugal force during automatic turning than during
manual turning. Thus, to withstand the centrifugal force generated during turning, it is
easier for the driver to maintain balance by stepping harder on the outer leg than on the
inner leg.

5. Conclusions

The dynamic behaviors of the drivers of IPVs during manual and automatic turn-
ing were investigated. The drivers moved the COG backward during the turning and
deceleration of the vehicle. It was also found that under automatic turning conditions,
the driver’s COG shifted in the opposite direction to the turning direction because of the
centrifugal force acting on the driver. When the centrifugal force acting on the vehicle
exceeds approximately 50 N during automatic turning, there is a risk of falling. As for the
COP, it was found that balance during turning was maintained by moving the inner leg
inward and the outer leg outward.

The load on the leg was evaluated by estimating the joint moments of the ankles
and knees. The joint moments were larger in the outer leg than in the inner leg. The
outer leg is considered to contribute to the postural stability during turning. The ankle
and knee joint moments were significantly greater during automatic turning than during
manual turning. In automatic turning, the driver exerts large joint moments to withstand
unexpected centrifugal forces.

These findings indicate that to realize the automatic turning of an IPV, a control
system is required that widens the distance between the COPs of the left and right legs
during turning. Moreover, it should shift the COG inward and guide the vehicle into a
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posture that reduces the joint moments applied to both legs by reducing the effect of the
centrifugal forces.

This study has several limitations. The drivers in the derivation experiment for
COG/COP were three healthy young men, and those in the derivation experiment for the
joint moment were five healthy young men. Although the experimental results showed
significant differences, the number of subjects was small and limited to young individuals.
Therefore, increasing the number of participants in the experiment and broadening the age
range could be the focus of future research. Moreover, based on the findings of this study,
we propose an automatic control method or a new mechanism for moving the COG of a
driver, such as in manual turning, as a future research direction.
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Abbreviations

Symbols Correlation strength
p Origin in ∑j
Wp Position vector of p in ∑W
W ..

p Acceleration vector of p in ∑W
m Total mass of the link
c Center of gravity of the link
c Position vector of c in ∑j
Wc Position vector of c in ∑W
WR 3× 3 rotation matrix
W I p Inertia tensor at p in ∑W
g Gravitational acceleration vector
W ω Angular velocity vector at p in ∑W
W ˜

ω Skew-symmetric angular velocity vector at p in ∑W
W .

ω Angular acceleration vector at p in ∑W

W .̃
ω Skew-symmetric angular acceleration vector at p in ∑W

finternal Joint force acting on the link
tinternal Joint moment acting on the link
fexternal External force acting on the link
texternal External moment acting on the link
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