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Abstract: The extraction of travel-time curve of seismic phase is very important for the subsequent
inference of the structural properties of underground media in seismology. In recent years, with the
increase in the amount of data, manual processing is facing significant challenges, and automatic
signal processing has gradually become the mainstream. According to the similarity of array signals
and considering the elimination of outliers, we propose an improved multi-channel cross-correlation
method using the L1 norm measure to obtain preliminary results, which builds on a new controllable
measurement mode. Then, the post-correction step is carried out in combination with the signal gain
property of beamforming technique. Based on these two methods, this paper proposes a new scheme
of automatic arrival time picking. We apply the scheme to actual data to verify the effects of the two
methods step by step. The entire scheme achieves fine results: direct water waves, seismic waves
refracted by the crust and seismic waves reflected by the upper mantle are automatically detected. In
addition, compared with the two traditional methods, the scheme proposed in this paper has a better
overall effect and a reasonable computation cost.

Keywords: automatic arrival time picking; cross-correlation; beamforming; exploration seismology

1. Introduction

Seismic phase identification and arrival picking are of great significance. It is the basis
for subsequent earthquake warning and location [1,2], underground tomography [3,4],
etc. With the application of array signal processing technology in the seismic field, array
seismology came into being [5]. It enables us to study weak seismic phases under strong
background noise that cannot be detected in a single seismogram, extract travel-time curves
with higher spatial sampling rate, and obtain more precise tomography results in many local
areas. In addition, with the continuous construction of stations around the world and the
emergence of new seismic exploration technology based on distributed acoustic sensing [6],
massive seismic data processing can no longer be achieved only by manual picking. The
demand for an automatic, efficient, and effective method of determining seismic phases
is increasing in the field of observational seismology. In fact, array signal processing has
applications in many other fields, such as speech recognition [7], underwater acoustic
signal processing [8], sensor calibration for augmented reality [9], etc. Arrival picking is
often referred to as time delay estimation in the array signal processing community. The
solutions to time delay estimation in different fields are likely to be mutually applied.

Since the concept of automatic picking was proposed, most algorithms have been
developed for specific datasets or specific problems, such as early warning, real-time
positioning, tomography, etc. However, only a few algorithms have been widely used in
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the field of observational seismology. In these methods, there are mainly three automatic
picking principles. The first one is negative feedback logic [10], the seismic signal is declared
based on the deviation between the detected signal and the ambient noise. Before the arrival
of seismic wave, the station state is 0; upon arrival, the state changes to 1. Therefore, it
is often necessary to define a characteristic function to determine the state change point
corresponding to the arrival of seismic wave. Common methods include energy transient
method [11–13], autoregression method [14–16], and high-order statistics method [17,18].
The second one is based on the principle of array similarity. In order to improve the picking
accuracy, multi-stations or array methods of relative arrival time difference estimation
rather than absolute arrival time estimation are proposed. These methods require high
waveform coherence and high signal-to-noise ratio of adjacent stations, such as in the case
of a low-pass filtered teleseismic waveform. Common methods include multi-channel cross-
correlation [19–22] and adaptive stacking method [23,24]. They quantitatively describe
the difference between signals in different ways: cross-correlation is measured by the
product of two signals, whereas adaptive stacking is measured by the difference value.
The core of adaptive stacking is the idea of iteration. The third is the recently popular
machine learning methods [25], which are mainly divided into supervised learning and
unsupervised learning. Supervised learning, especially deep learning, is well applied to
labelled earthquake seismic datasets. The weights of the neural network are learned from
the training set, and satisfactory results are obtained on the test set. For details of algorithm
implementation, see SeisBench library [26,27], which integrates six mainstream algorithms.
Unsupervised learning works well with unlabelled data, and it is mainly determined by
the internal feature similarity of the data. Common methods include clustering [28–31] and
dimension reduction [32].

In this study, we propose a hybrid method to automatically detect weak seismic signals
based on the similarity of array waveforms in strong noise and interference environments.
First, we improved the traditional multi-channel cross-correlation method for the initial
automatic picking of seismic signals. Then, considering strong noise and interference
conditions, we considered combining beamforming technology to improve the SNR of the
template for post-correction. Finally, we tested the effectiveness of the method step by step
on the real data. The travel-time curve of direct water wave Pw was completely extracted,
and the tracking of the first break phase could reach 40 km, including seismic wave Pg
refracted by the crust and seismic wave PmP reflected by the upper mantle.

2. Fundamental and Method Description
2.1. Waveform Cross-Correlation Principle

By quantitatively describing the difference between signals, we can find a seismic
sequence, that is most similar to a known seismic signal sequence, on a long seismic trace.
This can be extended to the extraction of travel-time curve of a certain seismic phase on 2D
seismic section (coordinate system composed of time and distance parameters). Therefore,
we can mark the arrivals of the same seismic signal on different sensors by selecting a
high-quality waveform template on a sensor. Common ways to describe the difference
value between signals include calculating the difference value between signals and the
product form between signals, while waveform cross-correlation essentially describes the
difference between signals in the product form.

We define a seismic time-series containing N consecutive samples as wN,∆t(t0), where
t0 is the time of the first sample, ∆t is the sampling interval:

wN,∆t(t0) = [w(t0), w(t0 + ∆t), · · · , w(t0 + (N − 1) · ∆t)]T . (1)

Then, the inner product between vN,∆t(tv) and wN,∆t(tw) is defined by
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〈v(tv), w(tw)〉N,∆t = 〈vN,∆t(tv), wN,∆t(tw)〉

=
N−1

∑
i=0

v(tv + i∆t)w(tw + i∆t), (2)

and the fully normalized cross-correlation coefficient by

C[v(tv), w(tw)]N,∆t =
〈v(tv), w(tw)〉N,∆t√

〈v(tv), v(tv)〉N,∆t ·
√
〈w(tw), w(tw)〉N,∆t

. (3)

The maximum value of the coefficient C is 1, which means that the two time-series
are identical. However, due to different environments of sensor deployment and relative
difference of source-receiver paths, the similarity of the same signals on different sensors
will degrade, i.e., the coefficient C is usually less than 1. The peak value of correlation
coefficient may not be very high, but the significance of its peak value relative to the adjacent
value is crucial, which is helpful for subsequent time picking. In short, once we select the
appropriate waveform template wN,∆t(tw), the target signal vN,∆t(tv) is usually determined
by the time corresponding to the maximum peak value of the correlation coefficients.

2.2. Arrival Picking with Improved Multi-Channel Cross-Correlation Technique

The signal detection based on cross-correlation method depends on the waveform
similarity between signals. In seismic signal acquisition, there are usually two types of
station (sensor) deployment: (1) Network consisting of a certain number of relatively
sparsely distributed stations (sensors); and (2) dense array of stations (sensors) with small
spacing. The stations in the network mainly rely on the single-channel algorithm, and many
algorithms based on this principle have been successful. However, the cross-correlation
matching algorithm is mainly applied to teleseism, and the time delay of some other near
sources at different stations is large, because their propagation paths are different. The
difference affected by underground medium is large, which may lead to low similarity
of waveform. However, for most of the seismic signals acquired by the array, in addition
to the single-channel algorithm, the multi-channel attribute of the array can also be used
to pick up the arrival time. Of course, array seismology plays an irreplaceable role in
small-scale tomographic structure imaging, such as obtaining more precise underground
velocity structure.

2.2.1. Traditional Multi-Channel Cross-Correlation Technique

Traditional multi-channel cross-correlation (MCCC) method has an excellent and
incisive understanding of array similarity. For N stations, we denote the cross-correlation
derived time delay of stations i and j as ∆tij. However, due to the existence of noise and
interference, discontinuity rijk will exist, that can be described by the following equation:

rijk = ∆tij + ∆tjk − ∆tik, 0 ≤ i, j, k ≤ N. (4)

An rijk greater than the acceptable error value means unreliable time picking. We can
consider establishing the following C2

N equations for more robust time delay estimation:

ti − tj = ∆tij, i = 1, 2, · · · , N − 1, j = i + 1, i + 2, · · · , N. (5)

An additional constraint equation is considered to establish a non-singular over-
determined linear system of equations:

N

∑
i=1

ti = 0. (6)
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The elimination of time picking inconsistency can be attributed to solving an over-
determined linear system of equations. Take N = 4 as an example, its matrix form is:

A′t = ∆′, (7)

where

A′ =



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1
1 1 1 1


, t =


t1
t2
t3
t4

, ∆′ =



∆t12
∆t13
∆t14
∆t23
∆t24
∆t34
0


.

To change t into the same relative delay quantity as ∆′, we obtain a new matrix repre-
sentation:

Aτ = ∆, (8)

where

A =



1 0 0
0 1 0
0 0 1
−1 1 0
−1 0 1
0 −1 1

, τ =

 τ12
τ13
τ14

, ∆ =



∆t12
∆t13
∆t14
∆t23
∆t24
∆t34

.

Equation (8) has the weighted least square solution in the form of:

τ =
(

ATWA
)−1

ATW∆, (9)

where W is a weight matrix. If W = I, τ becomes an unweighted solution. There are
mainly two weighting schemes: (1) the correlation value corresponding to the measured
time delay; and (2) a weighting function that uses the deviation value rij of unweighted
estimates. Finally, the estimation of the timing uncertainty at each trace is defined as the
standard deviation of the deviation:

σr
i =

√√√√ 1
N − 2

·
N

∑
j=1,j 6=i

r2
ji. (10)

2.2.2. Improved Multi-Channel Cross-Correlation Technique

We can solve Equation (8) from the perspective of optimization. The least square
solution of MCCC corresponds to

min ‖W · (Aτ − ∆)‖2 (11)

Actually, the least square solution, namely, the L2-norm residual minimization, is
not robust to large outliers [33]. A better option to consider is the L1-norm minimization
of residuals:

min ‖W · (Aτ − ∆)‖1 (12)

This is because the L2-norm residual minimization averages the estimated arrival
times of (N − 1) stations, and the L1-norm residual minimization takes the median of the
estimated arrival times of (N− 1) stations. As seen in Figure 1, quantitatively describing the
concentration center and dispersion degree of data based on the median can appropriately
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exclude outliers. In addition, we suggest using interquartile range instead of variance as
the uncertainty estimate.

Median
25th percentile 75th percentile

Minimum Maximum

Interquartile Range

Outliers
Outlier

BoxWhisker

Figure 1. Schematic presentation of Box and Whisker plot. The value of k in the figure is 1.5, if you
use the function matplotlib.pyplot.boxplot or pandas.DataFrame.boxplot in Python to generate it.

Then we can consider the measurement mode of ∆tij. Generally, we select the target
signal on the first trace, and then match the same signal on the subsequent trace to obtain
the base time of the first line, as shown in the measurement mode 1 in Figure 2. On this
basis, we further compute the elements on the second line until all elements in the upper
half of the matrix are derived. However, the delay search range of this mode is very large,
which is completely determined by the first line, and it is very easy to be disturbed from
other signals. Here, we propose a new measurement mode, as shown in the measurement
mode 2 in Figure 2. The base time we first compute is the elements in red box and we
associate it with q = 1. The value of q measures the size of the delay search range and the
redundancy of the array information we use. The smaller the q, the more effectively we
can suppress the interference of other interfering signals. Therefore, q = 1 guarantees the
reliability of the base time. Of course, the choice of q has a trade-off between using more
redundant information and suppressing other unwanted signals.

Measurement mode 1 Measurement mode 2

Figure 2. Two different measurement modes.

Based on the above considerations, we propose an improved MCCC, which can be
summarized as the standard form of convex optimization problems:

min
∥∥Wqm ·

(
Aqm τ − ∆qm

)∥∥
1

s.t. 0 � τ � (N − 1) · tm, (13)

where ∆qm is the column vector consisting of all the elements satisfying q ≤ qm(≤ N − 1)
in the measurement mode 2, Aqm is a new matrix consisting of the row vectors of A
corresponding to the elements in ∆qm , τ is the time delay estimator to be solved, Wqm is a
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diagonal matrix, whose diagonal elements are composed of the diagonal elements of W
corresponding to the elements in ∆qm .

2.3. Iterative Post-Correction Using Beamforming Technique

A very powerful technique in array signal processing is beamforming, as shown in
Figure 3. From the real monitored seismic data, coherent signals on different sensors in
the array are often surrounded by background noise and incoherent signals. In some
extreme cases, the amplitude of weak coherent signal is close to that of background noise.
In this case, it is not enough to use only the signal on a single sensor as a template, but
beamforming technique can use weak signals on multiple sensors to stack and generate
waveform with higher signal-to-noise ratio, which is more powerful for matching target
signals. Here, for the selection of weighted stack type, we recommend phase-weighted stack
(PWS) [34], whose core idea is to strengthen coherent stacks and suppress incoherent stacks
more strongly by virtue of the extremely sensitive coherence of signals in the instantaneous
phase. The formula can be described by:

PWS(t) =

∣∣∣∣∣ N

∑
k=1

exp[iΦk(t)]

∣∣∣∣∣
I

·
(

1
N

N

∑
j=1

wk(t)

)
(14)

where wk(t) is the amplitude value of the signal on trace k at time t, Φk(t) is the instanta-
neous phase of the signal on trace k at time t, I is the exponent value of power operation.

Vibration source

Wave front

Array of sensors

Time delay 1

Time delay 2

Time delay 

Time delay

Weighted 

stack

Output

Figure 3. Schematic diagram of the beamforming technique. By compensating the arrival time
difference of the same signal on different sensors, and then weighting and summing all the signals, a
more significant signal can be obtained.

After obtaining the base time utilizing improved MCCC method, we can use the
beamforming technique to generate a beam, then cross-correlate each trace with the beam
within a small pre-defined range, and adjust the arrival time of target signal on each sensor
by the lag corresponding to peak value of correlation coefficient. Next, we stack each trace
to form a updated beam and repeat the above cross-correlation correction procedure to
obtain a new beam. The iteration process can be stopped until a convergence condition is
satisfied. Therefore, the flowchart of automatic picking scheme based on array similarity is
finally shown in Figure 4.
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4. Flowchart of the Hybrid Method Proposed in this Paper 

Solve convex optimization problem:

Calculate         and        corresponding 

to         .

Start

Input array data including N traces

Set parameter values: sliding window size, 

sliding step size, reference waveform 

template,        ,       .      

Calculate the measurement delay                     

based on measurement mode 2

Good 

Result I?

Good 

Result I?

Extract the base delay    .

No

Set the number of clusters to be divided, M.

The intra-cluster time correction was 

carried out,         , update the delay value,            

and output M beams.

The inter-cluster time of M beams is 

corrected,        , and update the delay value.

Good 

Result II?

No

End. Output      and 

quality evaluation.Yes

Yes

Figure 4. Flowchart of the hybrid method proposed in this paper.

3. Results

We mainly use a real marine seismic exploration dataset to conduct a step-by-step test
on the proposed method. The data used in the tests come from the wide-angle seismic
experiment in the central basin of the South China Sea [35]. The wide-angle seismic profile
(OBS2014-ZN) is east–west along the latitude of 14.5◦ N. The project was completed in
July 2014, using 12 OBS at intervals of 10 km. The total length of blasting inspection is
210 km, which is 50 km longer than the two terminal stations. The seismic source provided
by Shiyan-2 marine scientific research vessel was an air gun array of 4 × 24.5 L, which was
fired every 120 s. The average shooting interval was approximately 280 m. GPS was used
to determine the location and time during OBS deployment and recovery, ship navigation
and air shooting. The sampling rate of the four-component OBS data is 250 Hz. It must be
pointed out that we only used the data recorded by the hydrophone component of OBS09,
where only the 135 seismic traces were chosen. The seismic profile composed of 135 traces
is shown in Figure 5, where 2–20 Hz band-pass filtering is used.

In order to increase the understanding of the law of wave propagation contained in
the data, we can use a two-dimensional transversely uniform initial velocity model in
Table 1 to obtain the theoretical travel-time curve, as shown in Figure 6. From Figure 6b,
we can recognize that the three seismic phases are direct water wave Pw, seismic wave Pg
refracted by the crust and seismic wave PmP reflected by the upper mantle. There is also
a noticeable phenomenon in Figure 6a that the first break phase varies with the epicenter
distance. When the distance is very small, Pw arrives first; as the distance increases, Pg
exceeds Pw; finally, PmP slightly exceeds Pg. Thus, phase crossovers occur twice.

Table 1. Initial two-dimensional velocity model for travel time forward modeling.

Layer Type Depth Vtop Vbottom

Seawater layer 0 ∼ 4 km 1.5 km/s 1.5 km/s
Sedimentary layer 4 ∼ 6 km 1.8 km/s 3.8 km/s
Upper crustal layer 6 ∼ 8 km 4.8 km/s 6.4 km/s
Lower crustal layer 8 ∼ 13 km 6.4 km/s 7.0 km/s
Upper mantle layer 13 ∼ 20 km 8.0 km/s 8.2 km/s
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Figure 5. Seismic section, including 135 traces. All traces are normalized separately to their respective
absolute maximum.
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Figure 6. Calculation of theoretical travel time curve. (a) Travel time curves of three main phases,
with epicentral distance ranging from 1 to 50 km (1◦ ≈ 111.32 km). (b) The theoretical propagation
paths of the three main seismic phases in (a) received by the sensor at 10 km. The star represents the
source of the explosion, and the inverted triangle represents the receiver.
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3.1. Real Data Test I: Improved Multi-Channel Cross-Correlation Technique

First of all, we pick the arrival time of the direct water wave Pw. The signal-to-noise
ratio of Pw is relatively high. With the increase in epicenter distance, the amplitude
attenuation of the direct water wave is relatively small, and the spectrum distribution
is relatively stable. Then, 2 Hz high pass filtering is applied to the raw data. Figure 7
demonstrates the actual results of MCCC and improved MCCC for Pw tracing, where we
use the measured information corresponding to 1 ≤ q ≤ 20. It is obvious that improved
MCCC is superior to MCCC on Pw tracing. The timing uncertainty of MCCC and improved
MCCC are given in Figure 8. After careful observation, it is found that improved MCCC is
a better method, and interquartile range is more suitable for uncertainty estimation. The
interquartile range on each trace is within a sampling interval (0.004 s).
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Figure 7. Seismic phase Pw alignment corrected by moveouts: (a) base time delay Lag1 obtained by
measurement mode 2; (b) Lag2 estimated by MCCC; and (c) Lag3 estimated by improved MCCC
(qm = 20).

Next, we turn to weak first arrival picking. It should be pointed out that, due to the
attenuation of the amplitude of the first break, the amplitude of the first break is similar to
that of the surrounding signal at a long distance. The measured information other than
q = 1 cannot be used, because they will not bring about time correction, but will make
the base travel time curve strongly oscillate. For a relatively reliable base time, we set
qm = 1. Here we make a hypothesis, that is, select the time delay corresponding to the first
cross-correlation coefficient peak value to determine the first arrival signal. The velocity
of seismic wave is generally more than 3 km/s, and even more than 8 km/s in the upper
mantle. The offset between adjacent traces here is about 300 m, so it can be calculated that
the time delay of the first arrival in the adjacent traces is less than 0.1 s, which is less than
the half period of the first arrival phase (about 0.2 ∼ 0.3 s). Therefore, this assumption
is reasonable. We can set a small search range, e.g., 0.15 s. This can not only contain the
first break, but also prevent cycle-skipping. For robust first arrival picking, we limit the
pass-band of band-pass filtering to 2 ∼ 10 Hz to improve the similarity between waveforms.
The picked first break time (Base time) is marked in Figure 9a. Globally, base times are
located near the first breaks, and most of them are accurate. In fact, if the detected signal
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on one trace is poor, it will affect all subsequent picks. However, we found that the local
consistency performance is well maintained. For example, at the offset ranging from −25
to −28 km, the base times fall on the wave crest, while nearby picks fall on the vibration
starting point. The more obvious alignment results can be seen in Figure 10a.
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Figure 8. Assessment of results obtained by MCCC and improved MCCC: (a) mean and variance, and
(b) median and interquartile range based on residual1s (Lag2− Lag1) and residual2s (Lag3− Lag1).

3.2. Real Data Test II: Hybrid Method Considering Beamforming Technique
3.2.1. The Hybrid Method Proposed in the Paper

The base time, obtained from the real data test I, can be used continuously in combina-
tion with the beamforming technique for post-correction. First, we choose I = 1.5 as the
specific type of all stacks. It has relatively fine signal enhancement effect. The waveform
obtained by phase-weighted stacking according to base time is shown in Figure 10a. We
select the signal template on the stack trace, and set the time range of the left and right
relative translation of the template to −0.15 ∼ 0.15 s, and then perform cross-correlation
correction operation for each trace in turn, a new stack waveform can be computed by
the updated time delay. Four iterations were implemented. The results after these four
iterations are shown in Figure 9. The overall results are quite good. From Figure 9a, it
can be found that the results after iteration are significantly improved in the range of
−25 ∼ −28 km, and the picked arrivals are obviously corrected from the wave crest to the
starting point. Figure 9b demonstrates the difference of results after different iterations.
The results after each iteration are very similar, which means that the correction results are
basically convergent after one iteration. The stability of post-correction on the basis of base
time is extremely high. In order to have an intuitive understanding of the accuracy of the
picked arrivals before and after the iteration, we flatten the picked travel time curve to show
the seismograms, which intercepts the data from 2 s before arrivals to 3 s after arrivals,
as shown in Figure 10. The increase in the maximum amplitude of stacked waveforms
in Figure 10c,d proves that better first break alignment is achieved after iteration, so the
waveform coherence in the array is further improved.
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Figure 9. The results of first-arrival seismic phase identification using a hybrid method. (a) Auto-
picked travel time points marked on 2D seismic section. (b) Magnified display of the differences
between the results after four iterations and the base result.

Figure 6a explains that the first break includes two stages, the first stage is Pg and
the second stage is PmP. According to Figure 9a, we roughly determine that the first break
within 18 km is Pg and that beyond 23 km is PmP. We compare the results of the two
stages before and after iteration, as shown in Figure 11. The results show that good and
significant stacked waveforms can be obtained based on the arrivals within array derived
by the hybrid method, and it can also be effective in the case of strong background noise
surrounding the first break signal. Apart from this, we can calculate the similarity matrix
between signals to evaluate the quality of the picked signals. However, considering the
low-SNR feature of the signals, we stack five adjacent traces to obtain a beam with a higher
SNR. Therefore, 135 traces can form 27 beams from near to far according to the epicenter
distance. It should be noted that the similarity of inter-beam Sinter(m, n) is used here as the
quality assessment measure, as defined by Equation (15). For these beams, the calculated
similarity based evaluation results are shown in Figure 12. It can be seen from Figure 12a
that the signals before iteration are mainly divided into two clusters: orange branches
(1 ∼ 11, 18) and green branches (14, 15, 19 ∼ 25). Figure 12b shows that the overall array
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dissimilarity decreases after post-correction, and the main cluster number is also reduced
to 1, that is, the set composed of yellow branches.

Sinter(m, n) =
∑5

j=1 [wi,m(ti,m + j · ∆t) + wi,n(ti,n + j · ∆t)]2

2 ·∑5
j=1

[
w2

i,m(ti,m + j · ∆t) + w2
i,n(ti,n + j · ∆t)

] . (15)
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Figure 10. First-arrival seismic phase alignment corrected by moveouts: (a) base time; (b) the time
obtained by post-correction after one iteration. (c,d) are the phase weighted stacking results of all
seismograms in (a,b), respectively.
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Figure 11. The stacked waveforms of all seismograms within different stages before and after iteration.
(a) The first stage corresponds to the traces 213 ∼ 270; (b) the second stage corresponds to the traces
135 ∼ 196. The black solid line is the segment of each seismogram (the starting point is 2 s before
arrival and the ending point is 3 s after arrival), and the red solid line is the stacked waveform of
all seismograms.
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Figure 12. The similarity matrices and resulting dendrograms calculated from 27 stacked beams:
(a) drawn before iteration and (b) drawn after iteration. The dissimilarity threshold is set to 0.16, and
the branches with different colors represent different hierarchical clusters.

3.2.2. Comparison with Traditional Single-Channel Algorithms

The single-channel algorithm is simple and effective, and has achieved great success
in the single-station automatic detection algorithm. We can also apply the negative decision
logic (NDL) algorithm to operate on each seismogram that constitutes a two-dimensional
section. Here, we directly utilize the PhasePApy library [36]. Two types of NDL algorithms
are selected, including multi-band long and short time window (STA/LTA) method and AR-
AIC method. Considering the detection principle of the NDL algorithm, we use 2 ∼ 30 Hz
for band-pass filtering to ensure that the characteristic (energy) of seismic wave changes
significantly before and after arrival. The results obtained by the NDL algorithms are
shown in Figure 13. Obviously, STA/LTA method has a poor effect on picking weak first
breaks. It conforms to common sense that STA/LTA method works well at high SNR,
but usually fails at low SNR. Actually, AR-AIC method is a more advanced NDL method,
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especially in microseismic detection. The results also show that it has a surprising effect
as a single-channel algorithm that a majority of first breaks are accurately extracted. In
addition, we show the running times of the three methods in Table 2, to compare the
computational cost. In contrast, the method proposed in this paper can effectively control
the computational cost while ensuring good performance.

Table 2. Comparison of the computational cost for the three different methods.

Method Multi-Band
STA/LTA AR-AIC The Proposed

Method

Time 1.8 s 13.5 s 16.4 s
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t [
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Comparsion of Several Different Methods
Picker-NDL2
Picker-NDL1
The proposed method

Figure 13. Comparison of the results of the proposed method and the typical NDL algorithms.
Picker-NDL1 and Picker-NDL2 denote multi-band STA/LTA and AR-AIC method, respectively. The
arrivals denoted by the proposed method are the same as arrivals Lag5 in Figure 9a. All seismograms
displayed are filtered by 2 ∼ 30 Hz bandpass.
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4. Conclusions and Discussions

We propose a new arrival picking scheme for seismic phase, which combines improved
multi-channel cross-correlation and beamforming technique. This is especially suitable
for the ensemble of seismograms detected under the small-scale array spacing structure.
We have tested our method step by step on 135 real seismic traces. The results show
that despite the existence of strong noise and interference, the scheme still obtains good
results, and the longest distance of first break picking can reach 40 km, which is almost
close to the limit of manual identification. We also found an interesting phenomenon from
Figure 13, that is, there is a phase cross-over at about −25 ∼ −26 km. The type of the first
break phase will change from Pg to PmP. This verifies the arrival law of the first break
wave derived from the theoretical velocity model in Figure 6a. Finally, We compare the
method proposed in this paper with two common automatic single-channel first break
picking algorithms (multi-band STA/LTA and AR-AIC method), and the results show that
the method proposed in this paper has the best global results, and its calculation cost is
relatively reasonable and comparable with AR-AIC method.

We have noticed that the deep learning method has achieved great success in earth-
quake seismology because of the huge amount of artificially analyzed seismic data. The
data-driven method may not be easy to directly migrate to exploration seismic data in
smaller areas. Because the training set lacks seismic data from this region, it will reduce
the generalization of deep learning. However, the method proposed in this paper can
provide well-labeled seismic data for the depth neural network. In the future, we can try
to apply deep learning method to the result of this work, which has a good prospect of
intelligent application.

The proposed method in this paper has great potential to be applied to many other
scientific and engineering problems involving time delay estimation in the field of array
signal processing, such as radar ranging, wireless location, and sonar direction finding.

Author Contributions: Conceptualization, H.W. and W.X.; methodology, H.W. and H.R.; valida-
tion, H.W.; formal analysis, H.W., W.X. and H.R.; investigation, H.W.; supervision, W.X. and H.R.;
writing—original draft preparation, H.W.; writing—review and editing, H.R. and W.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Project of Sanya Yazhou Bay Science and Technology
City, Grant No: SCKJ-JYRC-2022-46.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Respective programs and data for reproducibility will be available soon
in https://github.com/HaofengWu20/An-Hybrid-Method-Based-on-Array-Similarity-Sensors-20
22- (accessed on 13 December 2022).

Acknowledgments: The authors would like to thank Jianwei Zhang of the Ocean College of ZJU for
helpful divisions on academic writing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, M.; Wen, L. An effective method for small event detection: Match and locate (M&L). Geophys. J. Int. 2015, 200, 1523–1537.
2. Zhang, M.; Ellsworth, W.L.; Beroza, G.C. Rapid earthquake association and location. Seismol. Res. Lett. 2019, 90, 2276–2284.

[CrossRef]
3. Zelt, C.A.; Smith, R.B. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int. 1992, 108, 16–34. [CrossRef]
4. Xin, H.; Zhang, H.; Kang, M.; He, R.; Gao, L.; Gao, J. High-resolution lithospheric velocity structure of continental China by

double-difference seismic travel-time tomography. Seismol. Res. Lett. 2019, 90, 229–241. [CrossRef]
5. Rost, S.; Thomas, C. Array seismology: Methods and applications. Rev. Geophys. 2002, 40, 2-1–2-27. [CrossRef]
6. Piana Agostinetti, N.; Villa, A.; Saccorotti, G. Distributed acoustic sensing as a tool for subsurface mapping and seismic event

monitoring: A proof of concept. Solid Earth 2022, 13, 449–468. [CrossRef]

https://github.com/HaofengWu20/An-Hybrid-Method-Based-on-Array-Similarity-Sensors-2022-
https://github.com/HaofengWu20/An-Hybrid-Method-Based-on-Array-Similarity-Sensors-2022-
http://doi.org/10.1785/0220190052
http://dx.doi.org/10.1111/j.1365-246X.1992.tb00836.x
http://dx.doi.org/10.1785/0220180209
http://dx.doi.org/10.1029/2000RG000100
http://dx.doi.org/10.5194/se-13-449-2022


Sensors 2022, 22, 9924 17 of 18

7. Seltzer, M.L. Microphone Array Processing for Robust Speech Recognition. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh,
PA, USA, 2003.

8. Zhou, H.; Huang, S.H.; Li, W. Parametric acoustic array and its application in underwater acoustic engineering. Sensors 2020,
20, 2148. [CrossRef]

9. Livatino, S.; Banno, F.; Muscato, G. 3-D integration of robot vision and laser data with semiautomatic calibration in augmented
reality stereoscopic visual interface. IEEE Trans. Industr. Inform. 2011, 8, 69–77. [CrossRef]

10. Sukhovich, A.; Irisson, J.O.; Simons, F.J.; Ogé, A.; Hello, Y.; Deschamps, A.; Nolet, G. Automatic discrimination of underwater
acoustic signals generated by teleseismic P-waves: A probabilistic approach. Geophys. Res. Lett. 2011, 38, L18605. [CrossRef]

11. Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532.
[CrossRef]

12. Lomax, A.; Satriano, C.; Vassallo, M. Automatic picker developments and optimization: FilterPicker—A robust, broadband picker
for real-time seismic monitoring and earthquake early warning. Seismol. Res. Lett. 2012, 83, 531–540. [CrossRef]

13. Bargees, A.; Al-Shuhail, A.A. First Arrival Picking of Zero-Phase Seismic Data by Hilbert Envelope Empirical Half Window
(HEEH) Method. Sensors 2022, 22, 7580. [CrossRef] [PubMed]

14. Akaike, H. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average
processes. Ann. Inst. Stat. Math. 1974, 26, 363–387. [CrossRef]

15. Zhang, H.; Thurber, C.; Rowe, C. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-
component recordings. Bull. Seismol. Soc. Am. 2003, 93, 1904–1912. [CrossRef]

16. Peng, K.; Guo, H.; Shang, X. EEMD and Multiscale PCA-Based Signal Denoising Method and Its Application to Seismic P-Phase
Arrival Picking. Sensors 2021, 21, 5271. [CrossRef]

17. Saragiotis, C.D.; Hadjileontiadis, L.J.; Panas, S.M. PAI-S/K: A robust automatic seismic P phase arrival identification scheme.
IEEE Trans. Geosci. Remote Sens. 2002, 40, 1395–1404. [CrossRef]

18. Baillard, C.; Crawford, W.C.; Ballu, V.; Hibert, C.; Mangeney, A. An automatic kurtosis-based P-and S-phase picker designed for
local seismic networks. Bull. Seismol. Soc. Am. 2014, 104, 394–409. [CrossRef]

19. VanDecar, J.C.; Crosson, R.S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and
least squares. Bull. Seismol. Soc. Am. 1990, 80, 150–169.

20. Deichmann, N.; Garcia-Fernandez, M. Rupture geometry from high-precision relative hypocentre locations of microearthquake
clusters. Geophys. J. Int. 1992, 110, 501–517. [CrossRef]

21. Leng, J.; Yu, Z.; Mao, Z.; He, C. Optimization and Quality Assessment of Arrival Time Picking for Downhole Microseismic Events.
Sensors 2022, 22, 4065. [CrossRef]

22. De Meersman, K.; Kendall, J.M.; Van der Baan, M. The 1998 Valhall microseismic data set: An integrated study of relocated
sources, seismic multiplets, and S-wave splitting. Geophysics 2009, 74, B183–B195. [CrossRef]

23. Rawlinson, N.; Kennett, B.L. Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophys.
J. Int. 2004, 157, 332–340. [CrossRef]

24. Lou, X.; Van Der Lee, S.; Lloyd, S. AIMBAT: A python/matplotlib tool for measuring teleseismic arrival times. Seismol. Res. Lett.
2013, 84, 85–93. [CrossRef]

25. Kong, Q.; Trugman, D.T.; Ross, Z.E.; Bianco, M.J.; Meade, B.J.; Gerstoft, P. Machine learning in seismology: Turning data into
insights. Seismol. Res. Lett. 2019, 90, 3–14. [CrossRef]

26. Münchmeyer, J.; Woollam, J.; Rietbrock, A.; Tilmann, F.; Lange, D.; Bornstein, T.; Soto, H.; Haslinger, F.; Jozinović, D.; Michelini,
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