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Abstract: A variety of Chinese textual operational text data has been recorded during the operation
and maintenance of the high-speed railway catenary system. Such defect text records can facilitate
defect detection and defect severity analysis if mined efficiently and accurately. Therefore, in this
context, this paper focuses on a specific problem in defect text mining, which is to efficiently extract
defect-relevant information from catenary defect text records and automatically identify catenary
defect severity. The specific task is transformed into a machine learning problem for defect text
classification. First, we summarize the characteristics of catenary defect texts and construct a text
dataset. Second, we use BERT to learn defect texts and generate word embedding vectors with
contextual features, fed into the classification model. Third, we developed a deep text categorization
network (DTCN) to distinguish the catenary defect level, considering the contextualized semantic
features. Finally, the effectiveness of our proposed method (BERT-DTCN) is validated using a catenary
defect textual dataset collected from 2016 to 2018 in the China Railway Administration in Chengdu,
Lanzhou, and Hengshui. Moreover, BERT-DTCN outperforms several competitive methods in terms
of accuracy, precision, recall, and F1-score value.

Keywords: catenary system; deep learning; text mining; pre-trained language model; defect severity
classification

1. Introduction

A pantograph–catenary system for a high-speed railway bridges the traction power
supply system and electric locomotive, whose operating conditions are of great signifi-
cance for the safety and reliability performances of railway transport [1]. In particular, a
catenary system is a fixed installation that consists of multiple components (as shown in
Figure 1), such as the pillar, contact wire, catenary wire, feeder line, etc. Owning to the
complicated failure mechanisms and dynamic outdoor environments, the operational risks
of the catenary are prone to inevitably increase [2,3]. To timely mitigate the underlying
risk triggers, various monitoring techniques (e.g., an automatic detection and monitor-
ing system, also called the 6C system) and maintenance activities [4] are implemented to
discover and report all potential defects of a catenary system. At the same time, a large
number of catenary defect texts have been recorded and collected after manual judgment.
Such textual defect text records are closely associated with the characteristics of catenary
accidents and failure risks. If mined efficiently and accurately, they can provide powerful
and credible information bases for discovering valuable defect knowledge and efficient
defect severity identification, facilitating the subsequent defect disposal and adjustment
of relevant maintenance activities [5]. Therefore, it is crucial to mine defect text records
in-depth, extract critical textual semantic information, and finally identify defect severity
for a catenary system.
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Figure 1. Scene of a catenary system.

In pace with the rapid advancement of natural language processing (NLP) technology,
Chinese text mining has attracted extensive attention [6,7]. In railway systems, the associ-
ated text mining technologies have become emerging concerns and are gradually applied
in several classification tasks, such as extracting traffic-relevant information, fault type
classification, analyses of rail accidents, etc. Chen et al. used the long short-term memory-
convolutional neural network (LSTM-CNN) with bag-of-word features to judge whether
social media data are related to traffic [8]. Wang et al. applied a multichannel network
with a LSTM layer and a convolution layer (MC-LSTM-Conv) and keyword fuzzy match-
ing to detect traffic events from microblogs (i.e., traffic jams versus non-traffic jams) [9].
In [10], the support vector machine (SVM) is used to classify fault class with respect to
railway signaling maintenance. Brown et al. utilized ensemble methods to predict rail
accident severity [11]. To summarize, with regard to operation and maintenance defect text
record data of a catenary system, text mining techniques can be applied to provide more
insights into helping establish the associations between the defect event description and
defect severity degree, which can ultimately improve the efficiency and accuracy of defect
severity identification.

In this paper, we present an investigation to efficiently extract contextual semantic
information in-depth and automatically identify catenary defect severity levels based on
operation and maintenance text records. To this end, the approach integrates a combination
of bidirectional encoder representation from transformers (BERT) [12] and a deep text
categorization network (DTCN) with deepened Conv layers. It can abstract long-range
semantic features and more global data, which are more valuable to enable defect-level
classifications. Firstly, we collected catenary defect text records from 2016 to 2018 in the
China Railway Administration of Chengdu, Lanzhou, and Hengshui, and analyzed the
source, content, and characteristics of catenary defect texts. Afterward, Chinese word
vector representations were learned based on the deep pre-trained language model BERT
via the constructed catenary defect textual data set. On the basis of the generated word
embedding representations, the DTCN is proposed to identify catenary defect severity
(i.e., defect level category). Compared with state-of-the-art methods for text classification,
the proposed BERT-DTCN can capture long-range semantic features and utilize deep
semantics to distinguish the defect level. The effectiveness and superiority of our proposal
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are demonstrated by experimental results in terms of accuracy, precision, recall, and the
F1-score value.

The primary contributions of this paper are as follows:

• A deep semantic neural network named BERT-DTCN is proposed to effectively extract
long-range semantic features and automatically identify defect severity from catenary
text records.

• Different from existing domain text representation approaches that extract vector
representations with bag-of-words features, we applied BERT to learn word embed-
ding vectors and extract semantic features of domain vocabularies in defective texts.
An ablation study on the constructed catenary defect text dataset validates that the
generated word embedding vectors contribute to beneficial impacts on the devised
text categorization model.

• Based on the obtained defect word embeddings, we used the DTCN to distinguish
defect severity degree. Experimental results demonstrate that the proposed algorithm
(BERT-DTCN) achieves a superior performance in the binary classification problem
(level 1 defect or level 2 defect) over competitive text classification methods, which
can reduce the workload of manual discrimination and improve the accuracy and
efficiency of classification.

The remainder of the paper is organized as follows: Section 2 introduces the related
work on text presentation and classification. Section 3 overviews the proposed catenary
defect text classification approach in terms of the defect text database, word embedding
presentation learning, and classification model. Section 4 presents our experimental results
and analysis of the proposed model. The conclusions and suggestions for future work are
drawn in Section 5.

2. Related Work

This study integrates methods for the defect information analysis with operational
records of the catenary, word embedding representations, and catenary defect text classifica-
tion. Thus, this section mainly focuses on text representation and text classification techniques.

2.1. Text Classification Methods

The conventional process of text classification consists of text dataset acquisition,
text preprocessing, text representation, and text classification models. Text preprocessing
involves taking several measures to process textual data, including deleting stop words,
word segmentation, and so on. Text representation mainly refers to the representation of
converting words or sequences in a text into a form that can be recognized and handled
by a machine for subsequent text classification tasks. Text classification involves utilizing
the appropriate classifiers, including rule-based methods and machine learning or deep
learning models, to excavate the critical features and predict the text category. In general,
the development process of text classification methods can be categorized into three stages
(as shown in Figure 2).

Firstly, the text classification process is investigated by human-made linguistic rules [13,14],
constructing a set of rules connecting word patterns and class labels. Such human comprehensi-
ble rules can be convinced as time goes by. However, the whole constructing process consumes
time and manpower and requires abundant domain knowledge [15]. However, it is not feasible
to create a huge rule base for a specific domain task.

Secondly, several scholars have carried out relevant research on text mining based
on traditional machine learning techniques, including naive Bayes [16], decision tree [17],
SVM [18], etc., which depends on learning classification features from a pre-labeled dataset.
Although machine learning-based classification methods outperform rule-based classifica-
tion classifiers, they need to carefully extract classification features from text data, which
play significant roles in text classifiers [19]. As a result, several feature selection approaches,
such as latent Dirichlet allocation (LDA), term frequency-inverse document frequency
(TF-IDF), χ2 statistic, mutual information, etc., are widely applied to mine topics to reduce
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dimensions. For instance, Wang et al. introduced a latent Dirichlet allocation (LDA) with
prior knowledge to extract features [10]. Brown et al. utilized LDA to discover accident
characteristics and the contributors to rail accidents [11]. However, it is obvious that these
techniques do not consider the mutual position of words in text sequences and the relevant
results are misleading, especially in accident texts with high similarities.

Text 
classification 

models

Latent Dirichlet 

Allocation

Term frequency-inverse 

document frequency

χ² statistic

Feature 
selection

Text 
representation

Word2vec

(CBOW, Skip-Gram)

Glove

ELMO

GPT

BERT

One-hot

Bag of words

N-gram

Discrete representation 

model

Distributed 

representation model

Support vector 
machine

Naive Bayes

Decision tree

Machine 
learning model

……

……

Convolutional neural 

network

Recurrent neural 

network

Recurrent 

convolutional neural 

network 

Attention Model

Long short-term 

memory

Resnet

Deep learning model

……

Human-

made 

linguisti

c rules

Figure 2. Development process of text classification.

Thirdly, in pace with the emergence of deep neural networks in NLP, such deep
learning techniques have been gradually utilized in text classification tasks due to their
excellent performances. Various studies on text classification models, such as CNN [20],
recurrent neural network (RNN) [21], recurrent convolutional neural network (RCNN) [22],
attention mechanism-based bidirectional LSTM (Att-Bi-LSTM) [23], have achieved superior
results toward text categorization tasks in the areas of computers, medical treatments, and
electric power. Wang et al. established a CNN-LSTM-based text emotion recognition model
to shed light on the developing direction of the network’s public sentiment [24]. Dai et al.
used multi-sieving CNN to efficiently cope with the unbalanced microaneurysm detection
problem [25]. Guerrero et al. [26] proposed a customer filtering based on the classification–
regression and self-organizing map to analyze the information of inspectors’ commentaries.

2.2. Text Representation Models

The purpose of text presentation is to embed the words in a text into low-dimensional
vectors because existing machine learning methods cannot handle text data directly. The
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text representation techniques (as shown in Figure 2) can be classified into discrete repre-
sentation and distributed presentation. One-hot vector is one typical solution of discrete
representation. It encodes an index to each word within a text corpus, and then each word
can be represented by a binary vector, of which the dimension is equal to the size of this
vocabulary [27]. Similar to the one-hot vector, the bag of words representation means
that the vector representation of the document can be directly obtained by summing the
vectors of words. Meanwhile, n-gram encodes indexes to n adjacent words, considering
the order of words. However, such a discrete counting vector representation suffers from
the dimension curse and discards the semantic relationships between words.

In the past few years, word embedding representations have been focused on; they
attempt to learn low-dimensions and continuous vector representations. Word embedding
represents each word with a real-value vector and uses the similarity in the vector space
to represent the semantic similarity of text words, inspired by the training idea of deep
learning. SkipGram and CBOW are two common word embedding methods with lower
computational complexity, using a shallow neural network to perform context-based
prediction [28]. Moreover, the word2vec model can compute accurate, high-dimensional
word vectors from huge data sets. For instance, Li et al. [8] introduced the continuous bag-
of-word (CBOW) model into generating the word embeddings and used the LSTM-CNN
model to extract traffic information from 3 billion microblogs. However, such an approach
neglected the distances of words (i.e., global statistical information). Hence, GloVe [29]
was proposed to use the word co-occurrence and local context to learn word vectors,
combining the merits of the matrix factorization and prediction-based methods. However,
contextualized information is discarded in the word embedding presentation obtained by
Glove, leading to great challenges of polysemy and complex syntactic features. To this
end, pre-trained language models, such as embeddings from language model (ELMo) [30],
generative pre-training (GPT) [31], BERT [12], etc., were investigated and explored to
obtain deep contextualized word representations, integrating word embedding learning
into the neural language models. In particular, with the release of BERT, it outperforms the
above-mentioned models in the majority of NLP tasks, such as word embedding learning,
which can efficiently capture dependencies over longer distances and excavate the actual
bidirectional contextual information, improving the language understanding ability of
networks via large-scale unsupervised pre-training.

Therefore, in this paper, we adopt the pre-trained language model BERT to capture
long-term dependencies between text words and learning contextualized word embedding
representations based on the constructed catenary defect text dataset. Moreover, motivated
by the idea of ResNet [32] and the deepening of word-level convolutional neural networks
(CNNs) [33], we propose a deep CNN algorithm that can efficiently capture long-range
associations in text, which can extract richer semantics for domain-specific defect informa-
tion identification and achieve superior performance by deepening the network without
increasing computational costs by much.

3. Methodology

As illustrated in Figure 3, the methodological framework of BERT-DTCN is mainly
composed of three stages:

• Catenary defect text database: After obtaining the relevant catenary defect texts
accumulated in the data center of the China Railway Administration during its long-
time operation and maintenance, it is intended to conduct textual data prepossessing
and construct the text dataset.

• Word embedding presentations: The BERT model projects the Chinese texts related
to catenary defects into context-aware representations that can be handled and under-
stood by machines.

• Classification of texts to distinguish the defect level: The DTCN module is trained to
categorize the catenary defect texts by utilizing equal-width convolution and multiple
convolution-residual layers with the pooling layer with stride 2 for downsampling.
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Figure 3. Architecture of defect severity identification for a catenary system.

3.1. Problem Definition

The problem tackled in this paper is defined as follows. Considering a collection of N
defect text records that are labeled using Y = 2 classes (i.e., binary problem) in a supervised
manner, the catenary defect text database is denoted as S = {S1, S2, . . . , Si . . . , SN} and the
labels are represented by Y = {Y1, Y2}. The supervised labeling process can be denoted
as f : S → Y, where f is to convert the input text sequence S to binary vectors Y. The
collection of all labeled training defect texts is represented as Y = f (S) [34].

The procedure of our method can be denoted as f : S → Ŷ, which means that each
defect text sequence Si ∈ S creates a label Ŷi = f (Si), Ŷi ∈ Y.

3.2. Catenary Defect Text Database
3.2.1. Data Source and Text Content

Based on the 6C system and periodical patrolling, we collected the catenary defect text
records from the China Railway Administration of Chengdu, Lanzhou, and Hengshui. There
were nearly 45,000 defect text records available for three years (1 January 2016–31 December 2018)
in total.

Each record can be recognized as a piece of a catenary defect, which contains the
detecting time, location information, defect level, defect description, and so on, as shown
in Figure 4.
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Figure 4. The content of the catenary defect record.

3.2.2. Characteristic Analysis

Compared with conventional Chinese text, catenary defect text is characterized by the
following characteristics:

• Diversity. The operation and maintenance texts for the catenary system contain the
time, number, unit, defect component, and defect description.

• Correlation. The operation and maintenance texts are closely linked to the railway
transportation, which contains a large number of rail transit terminologies.

• Uncertainty. A great deal of defect descriptions in the catenary texts might be incom-
plete, noisy, fuzzy, or random.

• Polysemy. Several polysemous words in defect texts might have multiple meanings,
which need to be distinguished under different semantic meanings.

3.2.3. Data Processing

Given that catenary defect texts are mainly manually recorded by professional workers,
the time-consuming and labor-intensive work may make recorders prone to lose their
enthusiasm in long-term responses to repetitive works, leading to low-quality catenary
defect text records. Hence, we conducted textual data preprocessing by the extra manual
intervention. Several data cleaning methods, including incomplete data resolution, error
values, duplicate records, detection, and elimination, are applied to improve the quality for
the following catenary defect text classification task.

3.3. Word Embedding

To obtain the word embedding representations related to the catenary defect, the
pre-trained language model BERT is adopted to learn context-aware information in this
part. The structure of the BERT model is depicted in Figure 5, which consists of the input
layer, BERT encoder, and output layer. It projects the Chinese input text for the catenary
defect into context-aware representation [12]. Meanwhile, the generated word embedding
vectors of each sequence are no more than 512 tokens. As for an input catenary defect
text sequence with n token words s = {s1 , s2 , . . . , sn}, the contextualized word embedding
representations in the output layer can be denoted as x = {x1 , x2 , . . . , xn}, with x ∈ Rnv.
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Figure 5. Structure of the BERT model.

3.3.1. Input Layer

Given a token catenary defect text sequence s containing n words, s is represented as
s = {s1 , s2 , . . . , si , . . . , sn}, where si (1 ≤ i ≤ n) means the ith word in a Chinese text [35].
As for the input of the BERT model, special (CLS) and (SEP) tokens are added at the
beginning and end of sentences respectively. In particular, the (PAD) tokens are marked at
the end of the sentences to ensure their lengths are the same as the maximum sequence
lengths [12]. If a single sequence consists of two sentence pairs, the sentences will be
separated by the special token ((SEP)) and labeled with sentence A or sentence B, whose
feature values are 0 and 1, respectively. As for each token sequence, its input representation
is obtained by summing the corresponding token, segment, and position embedding. An
example of the visualization of this construction is shown in Figure 6.
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EA EA EA EA EA EA EA EA EA EB EB EB EB EB

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

In Chinese

In Chinese

Figure 6. An example of the BERT input representation.

3.3.2. BERT Encoder

The BERT used in this paper is composed of 12 transformer blocks, 768 hidden sizes,
and 12 self-attention heads [36]. The basic structure of the transformer encoder is illustrated
in Figure 7. The word-embedded representation of a single sequence is the token as the
input of the encoder, and the positional encoding is added. The self-attention layer enables
the encoder to capture the contextual information from the word when coding, which
can calculate the weighted value of each word and all words. Then, the feature vector of
each word is obtained, which contains the information of the whole sentence. Afterward,
multiple feature vectors obtained by the multi-headed mechanism are spliced together, the
dimensions of which are descended by a full connection layer. Finally, the contextualized
word embedding vectors were output through the feedforward network, two residual
connection layers, and a normalization layer.
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The self-attention layer performs the linear transformation on the input vector to
obtain a linear value, and then calculates the attention weight, as depicted in Figure 8. The
calculation of self-attention consists of three steps:

(1) Creating three vectors (i.e., a query vector, a key vector, and a value vector) from each
of the encoder’s input vectors and obtaining a weighted score by calculating the dot
products of the query with all Keys. It can be calculated as:

f (Q, Ki) = QKT
i (1)

(2) Dividing the scores by scaling factor
√

dk and then normalizing the scores through a
softmax operation. It can be represented as:

ai = softmax(
f (Q, Ki)√

dk
) =

exp( f (Q,Ki)√
dk

)

∑j exp( f (Q,Ki)√
dk

)
(2)

(3) Multiplying each value vector by the softmax scores and summing up the weighted
value vectors. It can be defined as:

Attention(Q, K, V) = ∑
i

aiVi (3)

where Q, K, V refer to the query, key, and value matrix, and
√

dk represents the scaling factor.
Thus, such word embedding presentations not only contain the meanings of the words

themselves, but also capture the relationships among words. Compared with the traditional
word embedding methods, BERT-based embedding can obtain the representation of text
with rich semantic information.
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Figure 7. Basic structure of the transformer encoder.
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Figure 8. The flowchart of the self-attention layer.

3.4. Deep Text Categorization Network

The DTCN involves taking the obtained word embedding representations as the input,
categorizing the catenary defect texts, and distinguishing the severity levels using defect
text records. Motivated by the idea of ResNet and deep pyramid CNN [33], we propose
a deep learning-based defect text categorization network called DTCN that adopts the
structures of deep CNNs, which can achieve the superior performance by deepening the
network without increasing computational costs by much. As discussed previously, its
structure is depicted in Figure 3, which consists of four components, namely, the embed-
ding layer, equal-width convolution layers, stacking of convolution blocks (equal-width
convolution layers and a shortcut) interleaved with max-pooling layers with stride 2 for
downsampling, and a fully connected layer.

3.4.1. Embedding Layer

We used a convolution layer to transform the learned word embedding into the feature
maps, the dimensions of which are the number of filters × (seq_length-2). It is essentially a
feature extractor that encodes semantic features in a given dimension (related to the number
of filters and lengths of text sequences), in which words with similar semantics also have
closer Euclidean or cosine distances. The convolution operation is to move a filter over the
text sequence matrix (input map) and compute the dot products. In DTCN, to learn more
sophisticated features, two filters are used to convolve the input word embedding vectors,
and all feature vectors are concatenated into a three-dimensional convolution feature map.

Let xi ∈ Rnv represent the v-dimensional word vector with respect to the ith word in a
sentence with n words. The input map of DTCN can be denoted as

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn (4)

where ⊕ refers to concatenation operator. xi:i+j represents the concatenation of words
xi:i+j = xi , xi+1 , · · · , xi+j . The filter w ∈ Rmv function involves computing a new feature in
the window of m words. Thus, a feature ci is produced from a window of words xi:i+m−1 by

ci = f (w · xi:i+m−1 + b) (5)

where b ∈ R is a bias and f is an activation function.
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The feature map is generated from each possible window of words in the sentence{
x1:m , x2:m+1 , · · · , xn−m+1:n

}
. It is represented as

c = [c1, c2, · · · , cn−m+1] (6)

where c ∈ Rn−m+1.

3.4.2. Downsampling with the Number of Feature Maps Fixed

The increasing number of feature maps cannot improve the accuracy, but only increase
the computation time substantially;l thus, the DTCN adopts equal-width convolution
to enrich the semantic representation by keeping the same number of channels. After
equal-width convolution layers, the convolution block (equal-width convolution layers
and max-pooling with size 3 and stride 2) (as shown in Figure 3) is performed with the
number of channels (also called filters) that are fixed. As a result, the length of the text
sequence vectors is halved, and then the computation time of each convolutional layer is
reduced by half. Moreover, the number of convolution blocks is automatically determined
by the length of the defect text sequence. Therefore, the total computation time is bounded
by the computation time of a convolution block. In addition, downsampling with stride
2 can efficiently double the coverage of the convolution kernel, which is computationally
efficient in representing long-range associations and more global information.

3.4.3. Shortcut Connections with Pre-Activation

Due to the saturated accuracy and rapid degradation with the network depth in-
creasing, there are great difficulties in training the deeper neural networks, such as higher
training errors with more layers, and vanishing/exploding gradients [32]. To better train
the deep networks, the DTCN model uses additive shortcut connections with identity map-
pings in [37]: z + f (z), where f represents skipped convolution layers with pre-activation.
In particular, pre-activation means that activation is done before weighing. Thus, the
convolution layers of the DTCN can be computed by Wσ(x) + b, where x refers to a small
region (overlapping with each other) of word embedding vectors at each location, σ(·)
is a component-wise nonlinear activation, and weights W and biases b are needed to be
trained. In DTCN, activation σ(·)is set to σ(x) = max(x, 0). In addition, linear weighting
Wσ(x) + b with pre-activation eases the training of deep networks [38,39].

In our training process, the training set includes two types of labels, i.e., “0” (severity
level 1) and “1” (severity level 2). The BERT-DTCN is an overall framework that is trained
automatically. The details of the training algorithm are shown in Algorithm 1. The BERT-
DTCN is trained by minimizing the cross-entropy loss function based on the defect text
dataset. The loss function of the classifier for the BERT-DTCN is denoted as follows:

Lossc = −
n

∑
1
[yilogŷi + (1− yi)log(1− ŷi)] (7)

where yi means the actual label of the input defect text sequence i; ŷi is the probability
vector corresponding to the output of the BERT-DTCN of the input defect text sequence i;
and n is the number of training samples,

Algorithm 1 Pseudocode for training the BERT-DTCN.

Require: Xs: training set for the BERT-DTCN, including the constructed defect text dataset
and labels; Nc: number of classifier-training iterations per mini-batch.

1: for the number of training iterations do
2: Sample mini-batch of m examples from the training set Xs;
3: for i = 1→ Nc do
4: Update the BERT-DTCN by minimizing the loss: Lossc
5: end for
6: end for
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4. Experiment Results and Analysis

To facilitate the performance evaluation of the BERT-DTCN, we investigated some
training protocols and comparisons with competing text classification approaches on the
catenary defect text dataset in this section.

We obtained nearly 45,000 catenary defect text records from 2016 to 2018 in the China
Railway Administration of Chengdu, Lanzhou, and Hengshui. After data cleaning and
filtering, we labeled 11,106 catenary defect text records that were applied in the catenary
defect severity identification, and the proportions of the training, verification, and test
defect text dataset were set to 0.7, 0.15, and 0.15, respectively. Table 1 lists the details of the
catenary defect text dataset that we used for the experiments.

We applied the BERT model to generate word embedding presentations for the subse-
quent defect information extraction and defect level discrimination. In our experiments,
we found that a majority of defect text records were concise and brief, and then the max-
imum length of word sequences was set to 32 (i.e., the padding size). The zeros after
each sequence were padded until the length reached 32. Thus, the number of convolution
blocks could be determined and was set to 4. Afterward, the general Chinese Bert language
model “bert-base-chinese” was used to learn word embeddings, and then the generated
word vector was a 768-dimensional vector, which was equal to the number of hidden
units. The obtained word embedding vectors of each sequence can be represented by a
32× 768 matrix, which could be fed into our classification model.

In addition, all programs were implemented under the PyTorch framework. The main
configuration of the computer was a 1080Ti graphics card, Intel Xeon E5 v3, with 32G of
memory [3].

Table 1. The details of the catenary defect text classification dataset.

Dataset
Name

Classes of
Defect Level

Training
Set

Verification
Set

Test
Set

Catenary
Defect Text 2 7611 1652 1653

4.1. Training Protocol

In this section, some training protocols of the BERT-DTCN are investigated. We focus
on two key parameters: the number of convolution layers in equal-width convolution layers
(called Ncl) and the number of output channels (filters) (called N f ) in the convolution. In
particular, because the equal-width convolution layers were applied in BERT-DTCN, the
number of input channels was equal to that of the output channels.

Ncl and N f : The Ncl determines the depth of neural networks, which allows each
lexeme to contain more and longer contextual information. The N f is closely associated
with the number of feature maps, which restricts the dimensions of the semantic space and
determines the size of the output probability map. We trained the BERT-DTCN with the
hyperparameter settings listed in Table 2 under various Ncl and N f , and the results are
given in Table 3.

We found that Ncl and N f contributed to some differences in the classification perfor-
mance and training time. It demonstrates that a network with a deeper structure and large
sizes of feature maps is not necessary to achieve better performance. The computation
burden increases with the increasing number of Ncl and N f ; however, the whole compu-
tation time is indistinguishable. This is because after the convolution block, max-pooling
with the number of feature maps fixed is performed, and then the computation time for
each convolution layer is halved. Thus, the total computation time is almost the same.
According to the results, we set the Ncl = 4 and the N f = 140 . Therefore, the detailed
structure parameters of the BERT-DTCN are set as listed in Table 4.
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Table 2. The Hyperparameter settings of BERT-DTCN.

Hyperparameter Setting Hyperparameter Setting

Learning rate 0.00005 Padding size 32
Optimizer Adam Embedding 768
Batch size 128 Epoch 20

Table 3. Accuracy and training time under different Ncl and N f .

Ncl N f Acc/% Training Time

Two equal-width
convolution layers

120 96.73 17 min 25 s
130 96.49 17 min 15 s
140 96.49 17 min 12 s
150 96.67 17 min 19 s
160 97.10 17 min 19 s

Three equal-width
convolution layers

120 96.61 17 min 13 s
130 97.04 17 min 46 s
140 97.34 17 min 26 s
150 97.22 17 min 54 s
160 97.22 18 min 31 s

Four equal-width
convolution layers

120 96.67 18 min 01 s
130 97.22 17 min 29 s
140 97.40 17 min 29 s
150 97.16 17 min 16 s
160 96.43 17 min 18 s

bold is with best classification performance.

Table 4. The detailed structure parameters of the BERT-DTCN.

Layer Input Size Kernel Size Stride Output Size Number

Input BERT — — — 32× 768× 1 1

Embedding layer Conv2 32× 768× 1 3× 768 1 30× 1× 140 1

Equal-width
convolution layers

Padding1_1 30× 1× 140 — — 32× 1× 140

1

Conv2_1 32× 1× 140 3× 1 1 30× 1× 140
Padding1_2 30× 1× 140 — — 32× 1× 140

Conv2_2 32× 1× 140 3× 1 1 30× 1× 140
Padding1_3 30× 1× 140 — — 32× 1× 140

Conv2_3 32× 1× 140 3× 1 1 30× 1× 140
Padding1_4 30× 1× 140 — — 32× 1× 140

Conv2_4 32× 1× 140 3× 1 1 30× 1× 140

Convolution block

Padding2 30× 1× 140 — — 31× 1× 140

4

Max-pooling 31× 1× 140 3× 1 2 15× 1× 140
Padding1_1 15× 1× 140 — — 17× 1× 140

Conv2_1 17× 1× 140 3× 1 1 15× 1× 140
Padding1_2 15× 1× 140 — — 17× 1× 140

Conv2_2 17× 1× 140 3× 1 1 15× 1× 140
Padding1_3 15× 1× 140 — — 17× 1× 140

Conv2_3 17× 1× 140 3× 1 1 15× 1× 140
Padding1_4 15× 1× 140 — — 17× 1× 140

Conv2_4 17× 1× 140 3× 1 1 15× 1× 140

Output Fully connected layer 140 — — 2 1

4.2. Ablation Study

There are two critical modules that work cooperatively in the BERT-DTCN model,
namely, BERT-based word embedding presentation and deepening of CNN-based text
classification (DTCN). In order to validate the effectiveness of the BERT, we compare the
performance of BERT-DTCN and DTCN in this section. The relevant parameter settings
of the DTCN and BERT-DTCN are the same as listed in Tables 2 and 4. We trained two
networks with the same training protocols based on the constructed dataset.
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The most intuitive evaluation index of the classification problem is used, i.e., accuracy
rate, the percentage of correctly classified samples in the total number of samples. Except
for the accuracy rate, three evaluation indexes related to text categorization were adopted,
namely, precision (P), recall (R), and the F1-score (F1) [12,35]. In this part, we take the
accuracy rate as the primary evaluation of the text classification model, and the F1, P, and
R as the auxiliary indicators.

As illustrated in Table 5, regardless of which category the defect text is in, the BERT-
DTCN achieves superior results in all of the elevation metrics (Acc, P, R, and F1). Moreover,
the overall accuracy of the catenary text classification reaches up to 97.40%. Compared
with the DTCN, the macro P, R, F1, and accuracy of BERT-DTCN are all improved by
0.42%. At each level of the catenary defect text dataset, the BERT-DTCN model achieves
improvements ranging from 0.36% and 0.53%. In addition, the training loss curves in
Figure 9 demonstrate that the BERT-DTCN converges faster and achieves better perfor-
mances with fewer steps over DTCN. The ROC curve displays the trade-off between the
true positive rate or sensitivity (proportion of positive tuples that are recognized) and the
false-positive rate (proportion of negative tuples that are incorrectly recognized as positive)
for DTCN and BERT-DTCN. The ROC curve in Figure 10 shows that the BERT-DTCN
has a larger area under the ROC curve than that of DTCN, with a better severity level
classification performance in the catenary defect text. Moreover, the PR curve in Figure 11
shows that the BERT-DTCN has both high precision, and high recall, characterizing the
superior effectiveness of classification performance.

To summarize, it is obvious that the BERT-based word embeddings have significant
positive impacts on the classification performance of the DTCN. This is because the word
embedding vectors obtained by BERT can accurately represent the semantic features of
catenary defect vocabulary and capture contextual information, improving the performance
of the catenary defect severity identification to a certain extent. Hence, we conclude that the
BERT can learn contextual semantic information, which reduces the interference brought
by the non-standard parts in the defect texts and contributes to beneficial effects on the text
categorization performance.

Table 5. Comparative results between BERT-DTCN with DTCN.

Model
Severity Level 1 (827) Severity Level 2 (826) Macro Average

Acc/%
P/% R/% F1/% P/% R/% F1/% P/% R/% F1/%

DTCN 96.75 97.22 96.98 97.20 96.73 96.97 96.98 96.98 96.98 96.98
BERT-DTCN 97.23 97.58 97.40 97.57 97.22 97.39 97.40 97.40 97.40 97.40

bold is with best classification performance.
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Figure 9. The training loss of DTCN and BERT-DTCN.
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Figure 11. The PR curves for DTCN and BERT-DTCN.

4.3. Classification Performance Comparison

To better evaluate the classification performance of BERT-DTCN, we compare our
method with state-of-the-art deep learning models for text classification based on the
constructed catenary defect text database.

The following baselines are adopted to validate the effectiveness and efficiency of the
BERT-DTCN model:

CNN: A method for sentence-level classification tasks based on CNN [20].
RNN: RNN for multitask learning [21].
RCNN: A method of extracting contextual information for text classification based on

RCNN [22].
FastText: A fast training model with a large corpus [40].
Att-Bi-LSTM: A word-level text categorization model based on Att-Bi-LSTM [23].
Transformer: A model architecture that enables global dependencies captured based on

an attention mechanism [36].
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We trained these networks with the same dataset and applied accuracy, P, R, and F1 to
evaluate the performances of these competing approaches.

As shown in Table 6, these comparative results illustrate that the BERT-DTCN achieves better
performances in all elevation metrics. On the constructed catenary defect text database, the macro
P, R, F1, and accuracy of BERT-DTCN reach up to 97.40%. This is because the BERT-DTCN can
capture richer features through specific downsampling and learned word embedding, enhancing
the representation of defect texts. Our model called BERT-DTCN outperforms competing models
that are widely used in the text classification task. Moreover, the CNN, RCNN, and Att-Bi-LSTM
also achieve superior performance in the catenary defect text classification in terms of macros P,
R, F1, and accuracy based on the constructed defect text dataset.

Compared with the competing methods, the training loss curves in Figure 12 demon-
strate that the BERT-DTCN converges faster and achieves better performances with fewer
steps. As depicted in Figures 13 and 14, the ROC and PR curves show that the BERT-DTCN
can enhance performance over several state-of-the-art models. In general, the BERT-DTCN
model achieves superior performance in the catenary defect level classification, which
validates the effectiveness of the DTCN and BERT-DTCN. It is obvious that the DTCN and
BERT-DTCN with the strategy of deepening the network can capture the global information
in the text, achieving a fairly superior performance.

In addition, the BERT-DTCN used word embedding presentations pertaining to BERT
to initialize word embeddings in the deep text categorization network and then feed it as
training proceeded (distinguishing the defect severity level). The DTCN module in BERT-
DTCN can be regarded as a deep extension of shallow CNN, sharing region embedding
enhancement with diverse unsupervised embeddings. Based on the experimental results
of the DTCN and CNN in Tables 5 and 6, the DTCN with deepened networks can perform
improvements in capturing more global information over CNN, which has proven the
conclusions in [33], i.e., the added depth is indeed useful.

Table 6. Comparison of BERT-DTCN with competing approaches on the constructed catenary defect
text database.

Model
Severity Level 1 (827) Severity Level 2 (826) Macro Average

Acc/%
P/% R/% F1/% P/% R/% F1/% P/% R/% F1/%

CNN 96.01 96.01 96.01 96.00 96.00 96.00 96.01 96.01 96.01 96.01
RNN 94.94 92.29 93.95 93.12 95.04 94.07 94.03 94.01 94.01 94.01

RCNN 96.70 95.53 96.11 95.57 96.73 96.15 96.13 96.13 96.13 96.13
Atti-Bi-LSTM 95.81 94.07 94.94 94.17 95.88 95.02 94.99 94.98 94.98 94.98

FastText 93.41 92.50 92.95 92.57 93.46 93.01 92.99 92.98 92.98 92.98
Transformer 94.04 91.66 92.84 91.85 94.19 93.01 92.95 92.92 92.92 92.92
BERT-DTCN 97.23 97.58 97.40 97.57 97.22 97.39 97.40 97.40 97.40 97.40

bold is with best classification performance.
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5. Conclusions

In this paper, we reported on the emerging text mining based on catenary defect
records collected in the operation and maintenance of the catenary. We investigated the
deep semantic learning method to automatically identify the severity level of the catenary
defect. Firstly, we analyzed and summarized the characteristics of the catenary text, includ-
ing diversity, correlation, uncertainty, and polysemy, and established the text dataset for
the deep semantic learning-based defect text classification model. Different from counting
vector representations obtained by discrete representative approaches, we applied the
pre-trained language model BERT to learn contextual word embedding vectors. At the
training phase, BERT-DTCN was trained by the cross-entropy loss to extract relevant defect
information. Then, the classifier can learn how to distinguish between the severity level 1
defect and severity level 2 defect, i.e., the complex defect information extraction problem
was transformed into a simple classification problem. We thoroughly analyzed the impacts
of the training protocol and word embedding presentations obtained by BERT and com-
pared the BERT-DTCN with other competing methods. The ablation experiments showed
that the word embedding vectors obtained by BERT contributed to positive effects on
the superior performance of the developed DTCN, which demonstrated the effectiveness
of our classification model BERT-DTCN on the constructed catenary defect text dataset.
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Comparative experiments showed that BERT-DTCN outperformed the competing deep
learning methods, which can effectively represent long-range associations in the catenary
defect texts and extract global semantic information with deepened networks. Moreover,
we found that the strategy of deepening the network can improve the classification per-
formance to a certain extent. The number of filters and the depth of the network were
two significant parameters for the deep networks. The proposed model can be applied
in the operation and maintenance of a catenary system to extract defect information and
categorize defect severity.

As for catenary defect record-based text mining, various issues and challenges need
to be further explored, which can contribute to fruitful and beneficial results for the safe
operation and maintenance of a catenary system. The extended catenary maintenance
corpora and terminology dictionaries might enhance the performance to a certain extent.
In addition, imbalanced data are other unsolved problems in this domain-specific task,
which have adverse effects on the performances of existing categorization algorithms. In
the future, these NLP tasks, such as imbalanced learning for catenary defect texts, BERT-
based named entity recognition in Chinese catenary defect texts, and knowledge graph
construction for the health management of a catenary system [6], deserve to be investigated
in depth.
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