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Abstract: Billions of Internet of Things (IoT) devices and sensors are expected to be supported by
fifth-generation (5G) wireless cellular networks. This highly connected structure is predicted to
attract different and unseen types of attacks on devices, sensors, and networks that require advanced
mitigation strategies and the active monitoring of the system components. Therefore, a paradigm
shift is needed, from traditional prevention and detection approaches toward resilience. This study
proposes a trust-based defense framework to ensure resilient IoT services on 5G multi-access edge
computing (MEC) systems. This defense framework is based on the trustability metric, which is
an extension of the concept of reliability and measures how much a system can be trusted to keep
a given level of performance under a specific successful attack vector. Furthermore, trustability is
used as a trade-off with system cost to measure the net utility of the system. Systems using multiple
sensors with different levels of redundancy were tested, and the framework was shown to measure
the trustability of the entire system. Furthermore, different types of attacks were simulated on an
edge cloud with multiple nodes, and the trustability was compared to the capabilities of dynamic
node addition for the redundancy and removal of untrusted nodes. Finally, the defense framework
measured the net utility of the service, comparing the two types of edge clouds with and without
the node deactivation capability. Overall, the proposed defense framework based on trustability
ensures a satisfactory level of resilience for IoT on 5G MEC systems, which serves as a trade-off with
an accepted cost of redundant resources under various attacks.

Keywords: trustworthy and resilient systems; trust management; internet of things sensor security;
5G multiple access edge computing security; attack mitigation

1. Introduction

Future fifth-generation (5G) wireless cellular networks will support billions of Internet
of Things (IoT) sensors and devices, including static and mobile endpoints, various robots,
and self-driving cars, as illustrated in Figure 1. These devices and the related applications
will attract and amplify the risk of vulnerability. 5G wireless communication technologies
under development promise tremendous improvements in many areas including speed,
connectivity, and reduced latency. These 5G networks can enable the movement of massive
amounts of data to connect distant sensors across a critical environment, as illustrated in
Figure 1. IoT on 5G will function as an integrated system with multi-access edge computing
(MEC) as an extension of cloud services. IoT and MEC systems will both be under various
attacks; therefore, we propose a defense framework to ensure the resilience of the entire
system under attack.

A variety of customers, such as individuals employing 5G devices for personal use or
large corporations and institutions, are widely using cloud computing platforms. Therefore,
a wide range of applications is migrated into the cloud, including e-commerce, data
storage, healthcare, gaming, and different web applications [1,2]. This allows customers to
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deploy and scale their services with much less effort, especially without hardware purchase
requirements [3]. However, it creates new concerns, such as with security and privacy [4,5].
These are the issues that customers consider before using cloud vendors and selecting
the most appropriate provider. Therefore, as cloud providers recognize these issues, they
develop their services such that they would address the customers’ concerns in order to
attract them [1].

Figure 1. Internet of Things on 5G multiple-access edge computing systems.

Similarly, devices and sensors that are connected via the internet or other types of
connections are being widely adopted. The speed of this adaptation process is estimated
to continue increasing as the new-generation networks such as 5G spread [6,7]. These 5G
networks have had many advances in wireless networking [8–11].

There are a variety of sensors in such devices, whether it be an autonomous vehicle,
a car with an active safety system, a robotic vacuum, or some other IoT device [12]. For
such systems, the security of the communication between the decision makers and the
sensors is critical. An attack on one of the sensors could cause undesirable outcomes
specific to the task [13] or simply unauthorized access to sensitive information such as
healthcare data [14].

Vendors have been implementing security measures in both cloud and systems
with communicating parts [5]; however, it is difficult to completely protect the whole
system from attackers [15]. Faced with such new challenges, the old security model of
defending the system’s perimeter is no longer valid. We must assume that whatever de-
fense mechanisms we deploy in the system will sooner or later be breached by attackers.
Therefore, it is advisable to implement new techniques, including trustworthiness assess-
ments [16], which would help the service to survive the attacks despite having to face
the cost of these techniques, such as active tracking, dynamic resource allocation, and
purchase of new resources. According to the Cybersecurity and Infrastructure Security
Agency (CISA), the current cyberspace shifts the attention from detection and perimeter
defenses to strengthening security with resilience [17,18]. A robust mechanism that
ensures resilience is the deployment of redundant resources based on the assessment
of the trustworthiness of the system services. Current methods may not adequately
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assess the trustworthiness of the systems and their components due to disproportionate
heterogeneity and multi-level hierarchies.

Various studies [19–21] and surveys [22,23] have been carried out on trust management
frameworks and their applications. Ruan et al. [24] proposed a measurement theory-based
trust management framework to provide improved flexibility to context-dependent appli-
cations by supporting multiple formulations and a new metric: the confidence of trust. Ap-
plications of this framework include stock market prediction using Twitter data [25], trust
management in environmental decision making [26–28], and the detection of crime [29],
fake users [30], and damaging users [31]. These applications show the potential of utilizing
a trust management framework to facilitate decision making in various fields by measuring
and assessing trust.

Trust frameworks have also been proposed to be implemented in both cloud and IoT
scenarios and other network-related ones, such as the scenarios that include 5G [32,33].
Ruan et al. also proposed a trust management framework for IoT [34], multi-access
edge computing [35], and cloud computing platforms [36]. Furthermore, Kaur et al. [37]
proposed the use of a geo-location and trust-based framework to filter out attackers in
5G social networks. These applications serve as stepping stones toward trustworthy arti-
ficial intelligence (AI) and decision making, which have been consistently promoted by
researchers [38–44], governments, institutions, and organizations such as the European
Union [45] and the International Organization for Standardization [46].

Park et al. [13] highlighted the significance of the security and privacy of communi-
cation and connectivity functions and proposed machine learning approaches to detect
anomalies in in-vehicle networks. Furthermore, Cao et al. [47] surveyed the emerging
threats in deep learning-based autonomous driving and listed different types of attacks
on sensors, such as jamming and spoofing. In addition to 5G, research has been carried
out and a framework has been proposed for sixth-generation (6G) networks, specifically
investigating the technology’s applicability and the privacy concerns in relation to un-
manned aerial vehicles (UAV) [48–50]. Ullo et al. [12] also highlighted the importance of
intelligent environment monitoring systems that use IoT and sensors; however, vendors
and providers would need precise metrics to take the necessary actions on time in order to
assess the trustworthiness of the systems.

To address the concerns about measuring the different aspects of trustworthiness,
the metrics of acceptance [51] and fairness [52] were proposed to facilitate environmen-
tal decision making, an explainability metric [53] was proposed to interpret AI medical
diagnosis systems, and a trustability metric [54] to assess trust in cloud computing. This
paper presents an extended version of the trust management framework that includes the
trustability metric, which helps to take action when an external attack or an internal event
occurs in an autonomous device equipped with sensors or in a service running on the cloud.
First, a sampling subsystem is explained as part of an autonomous system consisting of
one decision maker and two sensors; an attack on one of the sensors is simulated, and the
change in the trustability of the sensor and the entire system is shown. Then, the simulation
is repeated with increased redundancy by adding another sensor. Finally, another scenario
is simulated, where the extra sensor can be activated later, for instance, when the sensor
lifetime is essential.

The findings illustrate the utilization of the trust management framework and the
trustability metric in multiple incident scenarios within a sample cloud structure. The
sample cloud consisted of three nodes, where the trust of one of the nodes declined
relatively, continually, or sharply for both a short and extended period of time. It was
shown that the trustability metric captures the decline in trust in the entire service. Then,
additional scenarios were explored, where extra nodes could be added to each task
in order to keep the service trustability high with an increased expense. Furthermore,
results were shown for the cloud that had the option to remove nodes, specifically the
ones with low trust. Finally, the net utility metric was illustrated to compare these two
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scenarios with and without the node removal option. The main contributions of this
paper are as follows.

• The trustability metric was demonstrated using a sampling subsystem with a sensor
activation option, where an external attack occurs on a sensor;

• Different possible outcomes of internal incident scenarios were presented in a sample
cloud environment, where the trustability of the service is tracked by the framework
for each scenario;

• The trustability metric captured the trustability of the service whenever the cloud
architecture allowed for the addition and removal of extra nodes for each task;

• The net utility function captured the need for additional nodes and helped to decide
when to remove nodes in order to optimize the utility of the service;

• Overall, this paper proposes the use of a trust management framework with a trusta-
bility metric and a net utility function on a variety of external and internal incident
scenarios in order to help take timely actions to keep the service alive and optimize
the utility.

The rest of the paper is organized as follows. In Section 2, the trust management
framework is introduced, which is tailored to measure the trust of sensors and nodes to
capture overall trustability. In Section 3, the results of utilizing the framework and how it
captures trustability are presented and discussed in (i) a subsystem with sensors, where
an external attack occurs to a sensor, and (ii) a sample cloud, where internal incidents
happen to a node. In Section 4, findings and contributions are summarized, and future
work is discussed.

2. Materials and Methods

This section presents the trust management framework and how it is adapted to
capture the trustability of a system or service while considering its cost and utility.

2.1. Trust Management Framework

In [24], a measurement theory-based trust management framework was proposed for
online social communities. This framework has since been proven to facilitate decision-
making in multiple areas such as online social networks [25], the food-energy-water
nexus [44], crime detection [29], and cancer diagnosis [53]. It is a very flexible yet ro-
bust framework that can be adapted to different scenarios to capture trust.

The framework has two main components: impression, represented by m, and confi-
dence, represented by c. The impression is the level of trust one party shows the other, and
confidence is the degree of certainty of the impression. Although different formulations are
possible [24], we selected the intuitive ones, as shown in Equations (1) and (2), in order to
focus on the framework. In these equations, mA:B, cA:B, and rA:B

i represent the impression,
confidence, and a measurement from A to B.

mA:B =
∑N

i rA:B
i

N
(1)

cA:B = 1− 2

√
∑N

i (mA:B − rA:B
i )2

N(N − 1)
(2)

Trust measurements are context-dependent, which means that measurement needs
to be precisely defined and specific to the context. In this study, the alternative ways of
obtaining measurements [35] were combined, and predefined trust measurements were
used to reflect the incidents better and to be able to concentrate on the framework and
decisions. Furthermore, measurements were always normalized to be in [0–1], which
caused the impression to remain in the same interval of [0–1] as an arbitrary unit.
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2.2. Trust Management in Systems and Cloud

The proposed trust management framework can be adapted to scenarios where trust is
assessed for parts of an autonomous system or nodes of a cloud. There are several proposed
approaches [54] to measure trust, such as by measuring node flows, dividing them into
incoming and outgoing, assigning different weights to such flows, and considering the
trust of tasks inside of a node. Equation (3) shows that the trust of a node, mnode, can be
measured as the weighted average of trust of the flow, m f low, and tasks running on it, mtask.
As shown in Equation (4), just as the trust of the tasks running on a node can affect its trust,
the node itself can affect the trust in those tasks.

mnode =
w f lowm f low + ∑i wtaski

mtaski

w f low + ∑i wtaski

(3)

mtask =
w f lowm f low + ∑i wnodei

mnodei

w f low + ∑i wnodei

(4)

In this study, trust measurements were simulated for different scenarios, such as
a normal condition where the trust stays the same, with the exact high measurements
of around 0.9 for 10 time intervals where time has an arbitrary unit for the absence of
complication. Then, scenarios where the node received lower measurements were explored,
reflecting an anomaly in either the flow or the task activity, which has two types: a short-
term and a continuous decline in trust. Subsequently, additional scenarios where the node
received very low measurements were explored. Equation (5) represents the examples of
such trust measurements, which are also shown in Figure 2.

Regular = {0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9}
Short-term decline = {0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Continuous decline = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.1}
Sharp short-term decline = {0.9, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9}

Sharp continuous decline = {0.9, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}

(5)

Figure 2. Trust measurements while different types of attacks occur.

2.3. Redundancy, Cost, and Utility

The trust of the entire system was also explored, whether it be an autonomous system
already deployed in the field or a cloud system that could be managed later on. The overall
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trustability of the system was measured by considering the individual trust of the nodes and
their hierarchy, such that the nodes that were connected in series in logical representation
were all required to have high trust, whereas the nodes connected in parallel compensated
for each other’s abnormalities.

As discussed in [35], individual trustability was calculated using an exponential
formula with two different lambdas, λ1 and λ2. This is because impression, m, and
confidence, c, needed to be merged in order to reach a high trustability only when m and
c were both high. Moreover, a threshold, φ, was provided for trustability to be adjusted
for the application. In this study, the sample threshold used for demonstration was 0.5. In
other words, the scenarios where m went below 0.5 had much lower trustability by using
λ2, whereas λ1 was used otherwise. First, m and c were normalized and merged, as shown
in Equation (6), where φ is the threshold. Then, trustability, τ, was calculated using the
formula given in Equation (7), with the appropriate λ, which were assigned as λ1 = 4 and
λ2 = 8. Trustability calculation is also shown in Algorithm 1.

ν =
2(m− φ)c + 1

2
(6)

τ = e−λ(1−ν) (7)

Algorithm 1: Trustability, τ, is calculated as an exponential function, where λ is
decided by comparing the impression, m, with the threshold, φ.

Input: m, c
Output: τ
λ1 ← 4
λ2 ← 8
φ← 0.5

v← 2(m−φ)c+1
2

if m ≥ φ then
λ← λ1

end
else

λ← λ2
end
τ ← e−λ(1−v)

After calculating individual trustability, the entire system’s trustability was calculated.
First, the trustability of the nodes that were connected in parallel was aggregated, as shown
in Equation (8). Then, the transitive trustability was calculated using the formula given
in Equation (9). The final value reflects the entire system’s trustability, whether an active
cloud system or an autonomous system that had been deployed in the field.

τaggr = 1−Πi(1− τi) (8)

τtran = Πiτaggri (9)

Moreover, a formula to calculate the net utility of the service, including the cost of
resources and the probabilities of success and failure, was developed using the trustability
of the service. As shown in Equation (10), trustability, τ, was used for success, while 1− τ
was for failure; G represents the gain, and L denotes the loss. Then, the cost of resources
was deducted, representing the sum of the cost of all nodes for the cloud scenario.

Unet = τG− (1− τ)L−∑ Cnodei
(10)

In Section 3, trustability results are presented for the scenarios wherein such systems
with different configurations experience different incidents, thus causing node and system-
level trustability declines.
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3. Results and Discussion

This section presents the results for two types of attacks on systems. First, the effects
of external attacks on systems already deployed in the field are presented as well as the
possible actions to take afterward. For instance, a sensor could lose its trustability by
providing either inadequate or unreliable data. Furthermore, results and potential cautions
are discussed after a decline in the trustworthiness of a service running on the cloud due to
internal anomalies. In such a scenario, a service runs on multiple nodes deployed on the
cloud, and a subset of the nodes loses trustability due to various internal factors such as
high usage of processing power, memory, or bandwidth or a compromised task running on
a node.

3.1. External Attacks

This section explores the external attacks and related factors on the sensors and
subsystems of a system running in the field. In addition, the trust management system is
demonstrated by capturing such conditions and facilitating decision making. In Figure 3, a
sample diagram of an active safety system is shown in a vehicle that has multiple sensors
and two decision-making mechanisms. In real systems, higher levels of hierarchies among
decision makers and sensors are predicted [13].

Figure 3. Sample diagram of an active safety system in a vehicle.

For example, a vehicle with an active safety system is expected to make decisions
based on the information it receives from the sensors. However, such information may
not always be reliable due to compromised sensors or altered sensor data. In such cases,
the decision-making mechanism should be able to take the necessary actions for the safety
and reliability of the decision. For instance, a dead battery in a tire pressure sensor could
cause an incorrect tire condition measurement that would then affect the braking decision.
Similarly, malware in a camera system that measures the distance to the vehicles in front
could cause an erroneous distance measurement, which is crucial for emergency braking
and adaptive cruise control.

The systems of sensors and decision-making mechanisms could quickly get compli-
cated with multiple layers and hierarchies. We illustrate our trustworthy approach by
using a simple system that can be considered a subsystem of the entire mechanism. In the
first system, System-1, one decision-making element (DM) relies on two sensors, S1 and S2.
It receives information from these sensors and makes a decision. This system can also be
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represented as a logical system, where the sensors are connected in series. Figure 4 shows
the sample system and its logic representation.

Figure 4. Sample system (System-1) with one decision maker (DM) and two sensors, S1 and S2.
(a) System diagram as DM relies on S1 and S2. (b) Logic representation where the sensors are
connected in series.

We explored a scenario wherein the trust of the first sensor, S1, declines. In the
beginning, both sensors were assumed to have high trust, 0.90 and 0.95, respectively,
because of consecutive measurements with the same values, as shown in Equation (11).
However, due to a hypothetical external attack, the value of S1 became 0.1, which caused
trust to decline, as shown in Figure 5. This also caused a decline in the trustability of the
system, which was calculated using Equation (7).

S1 = {0.9, 0.9, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}
S2 = {0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95}

(11)

One option could be to include another sensor for the same task in order to overcome
the adverse effects of losing the ability to make trustworthy decisions as a result of one
sensor failure. The system was updated such that the DM could rely on two sensors, S1-A
and S1-B, for the information that previously required its reliance only on S1. Figure 6
shows the diagram of System-2 and its logic representation, where S1-A and S1-B are
connected in parallel.

When the previous scenario occurred and S1-A’s trust declined, the overall trustability
of System-2 did not decrease as it did in System-1. The initial trustability of System-2 was
also higher than that of System-1 due to the fact that it had the additional sensor, S1-B, in
the system from the beginning. Figure 7 shows the change in the overall trustability of
System-2 and the trust of the sensors over time.

Another scenario is to have the additional sensor, S1-B, in the system, but to
have it activated only when needed. When the trustability of the system is below a
specific threshold, another sensor is activated to bring the overall trustability back
to an acceptable level, as shown in Figure 8. A grace period for sensor activation
was added to reflect a more realistic scenario. This scenario could happen when a
sensor has a short lifetime and is only activated when the other sensor does not satisfy
the requirements anymore. One drawback of such an approach is the lower initial
trustability as compared to when all sensors activated, which can also be observed
when Figures 5 and 7 are compared.
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Figure 5. Trustability of System-1 and the sensors. The subsystem is susceptible to any trust
fluctuation due to serially connected sensors.

Figure 6. Sample system (System-2) with one decision maker (DM) and three sensors, S1-A, S1-B,
and S2. (a) System diagram as DM relies on three sensors, where S1-A and S1-B are used for the
same information. (b) Logic representation, where S1-A and S1-B are connected in parallel and are
connected to S2 in series.

Figure 7. Trustability of System-2 and the sensors. The overall trustability of System-2 is more
resistant to the trust surges of the sensors that are connected in parallel.
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Figure 8. The overall trustability of System-3 and the sensors. S1-B is only activated after distrust of
S1-A decreases the system’s trustability below a threshold. Activation takes time.

3.2. Internal Incidents

This section explores the incidents affecting some cloud nodes that run a service. The
trust management framework captured the decline in the trustability of the service and
nodes and assisted in taking timely actions to keep the service reliable. Although today’s
cloud infrastructures can be very complicated and highly hierarchical, the scenarios were
built on a sample cloud that had three nodes, with each running a different task.

Internal incident scenarios on cloud services differ from the system scenarios with
sensors explained in Section 3.1. While the number of sensors should be decided before
the device’s production, cloud scenarios have more flexibility. A task can be migrated
to another node, or alternative nodes can be launched. This also brings dynamic cost
optimization into the picture since the nodes can be dynamically added and removed.

The sample cloud architecture consisted of three nodes connected in series, which
means that the service needed three tasks deployed on different nodes. Since the reliability
of the service depends on all three nodes, those nodes can be considered connected in
series, as shown in Figure 9.

Figure 9. Sample cloud structure consisting of three nodes, each running a different task.

Four different scenarios were explored, as introduced in Equation (5), each of which
caused other declines in the trustability of the service. For each scenario, only the first node,
N1, was affected. In the first scenario, N1’s trust measurements declined slowly until time
5 and then stayed the same, as shown in Equation (12). This caused a slow decline in the
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trust of N1 until time 5, which subsequently started settling gradually. However, since the
nodes were connected in series, even a slight decrease in trust for one of the nodes caused
a considerable decline in the trustability of the service deployed on the cloud. Figure 10
shows the change in the trustability of the service and the nodes.

N1 = {0.9, 0.8, 0.7, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5} (12)

When the decline in trust of N1 continued, as shown in Equation (13), it placed more
significant stress on the overall trustability of the service. It even decreased the overall
trustability to almost zero, as shown in Figure 11, which is a sign that the system is not
trustworthy anymore due to the low trust of N1.

N1 = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.1} (13)

Figure 10. Trustability of a service running on three nodes on the cloud. A decline in the trust of N1
causes a decline in overall trustability.

Figure 11. When trust of N1 continuously declines, its effects on the overall trustability is more severe.
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Furthermore, a sudden decline in the trust measurements of N1 was explored, which
returns to normal after some time, as shown in Equation (14). For example, in this case,
while the regular trust measurements were at 0.9, it dropped to 0.1 at times 3 and 4 due
to an internal anomaly, such as high processing power, memory, or bandwidth usage. As
shown in Figure 12, the trust of N1 gradually recovered; however, the overall trustability
dropped close to zero at time 4 and recovered slowly due to historic trust measurements.

N1 = {0.9, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9} (14)

Figure 12. If the trust declines rapidly for a short period of time, overall trustability also declines but
does not recover quickly.

In the final scenario, the sudden decline in the trust of N1 was set to be permanent.
When the trust of N1 did not recover, as shown in Equation (15), the trustability metric did
not recover either, as shown in Figure 13. As in the previous scenario, it declined close to
zero, indicating the service’s low trustability.

N1 = {0.9, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1} (15)

In response to the decline in the trustability of the service, some measures can be taken.
One example is to use alternative nodes for each task. It provides the service to utilize
both nodes for the specific task. However, this option comes with a cost since the service
provider would be charged for each node operated. As we mentioned previously, a more
sophisticated approach would be to use the nodes when needed.

As shown in Figure 14, Cloud-2 can add a node for each task and remove them on
demand. A new scenario was explored where the trust of each primary node, N1, N2, and
N3, declined gradually, starting at different times. After a grace period of 1, a new node
was launched for each task to increase the overall trustability.

Once N1’s trust started to decline at time 2, the overall trustability of the service also
decreased. After a grace period, N4 was activated at time 4, which increased the trustability
of the service again. The new trustability was more than the initial trustability since N1
was still active despite the lower trust. At the same time, N2’s trust started to decrease,
which was compensated by launching N5 at time 6. Finally, N3’s trust started to decline,
and N6 was launched.
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Figure 13. A sudden drop in trust measurements causes a continuous decline in the trust of N1. This
reflects a more dramatic decline in the overall trustability of the service.

Figure 14. Cloud structure updated with additional nodes for each task. (a) The original Cloud-2
with N1, N2, and N3, including the options to add N4, N5, and N6. (b) N4 is added after N1’s trust
declines. (c) N5 is added after N2’s trust declines. (d) N6 is added after N3’s trust declines.

As seen in Figure 15, the overall trustability surpassed the initial value since the
old nodes were still active and had nonzero trust values. Another conclusion is that the
system became more resilient to individual trust declines once the nodes started having
alternatives, such as having additional nodes that were connected in parallel.
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Figure 15. The entire trustability of the system increases each time a new node is launched and
connected in parallel to the initial nodes.

Since the continuous decline in trust of the initial nodes keeps decreasing the overall
trustability, deactivating those nodes can be considered. Deactivating a parallel connected
node with a nonzero trust would also cause a decrease in trustability; however, it is worth
exploring the degree of decline resulting from the cost of the nodes.

Figure 16 represents each node’s overall trustability and trust when a node is deac-
tivated after a decline in trust. Compared to Figure 15, where the initial nodes are not
deactivated, the overall trustability is lower. However, the advantage appears when the
cost of the service is considered.

Figure 16. Deactivating a node that is losing trust is one way to keep costs low with the least sacrifice
in the overall trustability of the service.

The net utility of the system was calculated using Equation (10). The gain of a running
service was assumed to be 500 units, the loss of a down system was considered to be
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100 units, and the cost of an active node was assumed to be 50 units. Figure 17 shows the
trustability of services running on Cloud-1 and Cloud-2 and their net utilities. Cloud-1 has
higher trustability starting at time 4, when the nodes’ deactivation started in Cloud-2. The
final trustability of Cloud-1 and Cloud-2 are 0.64 and 0.55, respectively, showing a 14%
decrease. However, looking at the net utility, which also considers trustability, Cloud-1 has
a negative net utility of -16, whereas Cloud-2 has 79.

The result of the net utility function is highly dependent on the choice of gain, loss,
and node cost values. In this paper, we identified the importance of employing a trust
management framework to actively observe the trustability of the service and each node in
order to take the necessary actions that would proactively keep the service alive.

Figure 17. Trustability and net utility of Cloud-1 and Cloud-2. Cloud-1 has higher trustability but
lower net utility due to more active nodes.

4. Conclusions

This paper explored the external and internal attacks and incidents occurring in
systems with connected sensors and a service deployed on multiple nodes on a cloud.
First, two systems consisting of a decision maker and sensors were compared, where
the second system had an extra sensor for redundancy. The proposed trust management
framework successfully captured the trustability of the sensors and the entire system in
both scenarios. An alternative scenario was explored wherein the extra sensor could be
activated when necessary, and the results were compared with the prior scenarios.

Furthermore, a sample cloud was simulated with three nodes, where the trust of a
node decreased due to some internal incident. The trustability metric captured the overall
trustability decline for different incident types. Then, the cloud was updated to add and
remove nodes on demand. Each task was supported by an extra node when the individual
trust declined in order to keep the overall trustability of the service high. Finally, the cloud
systems with and without node deactivation were compared in terms of their trustability
measurements and the net utility of the comprehensive service.

The results showed that the utilization of our trust management framework helps in
deciding how to mitigate severe consequences of external attacks on sensors or internal
incidents on a cloud while considering the net utility of the system. One of the difficulties
in this work could be the measurement of the trust of the system parts, such as a sensor
or a node, which requires field knowledge for different scenarios; however, it is out of the
scope of this paper.

This work can be further extended by considering more realistic and complex scenarios,
which include multi-level hierarchies of sensors or nodes. Moreover, a decision maker may
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rely on other decision makers in addition to sensors. Similarly, a service may depend on
other services in addition to its tasks. These scenarios may require the trustability metric
formula to be adjusted to specific situations. Future work could also include the cost of
trustability measurement operations in the utility function since the historic computation
of trust could surge as the number of individual measurements and components increases.
Consequently, shifting the defense mechanism from classical, perimeter-based approaches
to system resilience is considered to be a long-term objective.
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