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Abstract: The fast expansion of ICT (information and communications technology) has provided
rich sources of data for the analysis, modeling, and interpretation of human mobility patterns.
Many researchers have already introduced behavior-aware protocols for a better understanding
of architecture and realistic modeling of behavioral characteristics, similarities, and aggregation of
mobile users. We are introducing the similarity analytical framework for the mobile encountering
analysis to allow for more direct integration between the physical world and cyber-based systems. In
this research, we propose a method for finding the similarity behavior of users’ mobility patterns
based on location and time. This research was conducted to develop a technique for producing
co-occurrence matrices of users based on their similar behaviors to determine their encounters. Our
approach, named SAA (similarity analysis approach), makes use of the device info i.e., IP (internet
protocol) and MAC (media access control) address, providing an in-depth analysis of similarity
behaviors on a daily basis. We analyzed the similarity distributions of users on different days of the
week for different locations based on their real movements. The results show similar characteristics
of users with common mobility behaviors based on location and time to showcase the efficacy. The
results show that the proposed SAA approach is 33% more accurate in terms of recognizing the user’s
similarity as compared to the existing similarity approach.

Keywords: similarity analysis; mobility; co-occurrences matrix; device-to-device communications

1. Introduction

The IoT (internet of things) is a network where embedded sensors are linked to the web,
so that data can be gathered and shared. It allows machines to communicate, cooperate,
and benefit from the experiences of others as much as humans do. Since the IoT network
generates and analyzes vast amounts of data, it is a major driver of big data analytical
projects. It is especially capable of transmitting vast volumes of data in real time. It is
possible to improve operations at all locations via various IoT devices; thus, it is an eye-
catching research topic for researchers [1]. Researchers have used numerous data tools to
research human actions, including bank notes, emails, and GPS (global positioning system)
systems [2,3]. Even though data collected from such sources aid in empirically informed
human mobility research, such tools also present limitations in size, data resolution, and
adaptation [4,5].

Mobile phones have arisen as more effective tools to address the limitations of the
tools for behavior analyses [6]. The use of smartphones is growing; they are mainly used
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for contact and sharing knowledge [7]. An individual typically carries a mobile phone
throughout the day. For this reason, the data on mobile phones have attracted the attention
of researchers interested in studying the patterns of human mobility [8–10]. Handheld
agent assemblies with identical characteristics of mobile communities have established
trends in wireless networks. This comes as no shock as these features often have significant
effects on device behaviors. Researchers have been researching ways to derive and test
certain features. One significant point is that periodic re-emergences occur at some sites,
which shows the relations between related instances. Therefore, individuals with common
concepts of conduct connect; this provides a significant dimension in which pairing of the
device position may be used to recognize resemblance trends of smartphone apps. So, to
quantify similarity characteristics among cell phones for this study, we used their interests
in spatial, temporal, and preferred word attachments to the sites and the travel frequencies
and lengths of those areas [11,12].

The existing approaches allow for the use of values dependent on the venue. Such
ideals have common perspectives of sites at somewhat remote positions, although those
sites can share the same network in most situations. Even some existing strategies have
used the associated matrix and multiple access points for each building, so the building’s
doors and rooms are distinct locations, and people at such locations are assumed to have
different mobility behaviors rather than identical mobility behaviors [5]. In this paper, we
used the co-occurrence matrix to capture human mobility preferences. In the co-occurrence
matrix, we used the location and time. We consider the location as a single access point for
each building. We used device info, i.e., IP and MAC addresses, to identify the user’s time
and location. When different people are in the same building and are slightly apart, i.e., at
different doors of a building, then the proposed approach regards these devices as having
the same mobility behavior; instead of using different networks for data transmission, the
same network is used to show similar mobility behavior. Our suggested approach involves
examining correlation patterns in detail on a regular basis.

The remainder of the paper is structured as follows. Section 2 presents the literature
review. In Section 3, we provide the methodology, system model for similarity analysis,
the proposed co-occurrence matrix to capture the human mobility preferences, as well
as an introduction of the similarity analytical framework for the mobile encountering
analysis. We conducted a case study. In Section 4, the results are discussed. We highlight
the comparison results of the ‘SAA’ approach with the existing work. In the final section,
the conclusions and future work are presented.

2. Related Work

Human behavior involves common perspectives of sites in somewhat remote positions;
those sites can share the same network in most situations. Even some existing strategies
have used the associate matrix and use multiple access points for each building, the
building’s doors and rooms are taken as distinct locations even if they are at the same
location [5]. To study human behavior, researchers have employed various data resources,
including bank notes, tweets, and GPS devices [13]. These data can be useful for traffic
control [1], city planning [14], mobile marketing [15], and much more. The data obtained
from these sources can also help in empirically driven studies on human mobility. However,
these resources show limitations in scale, data resolution, and adaption. To overcome the
constraints in behavioral analysis resources, mobile phones have emerged as more efficient
resources [16].

The use of smartphones is increasing; smartphones have become essential parts of
our lives. The mobile phone is mostly used for communication and information exchange.
People typically carry mobile phones around. The data used by a mobile phone is another
way of representing the mobility preferences of a mobile user. Hence, it is a useful tool
for identifying human mobility patterns. For this reason, mobile phone data are attracting
researchers who are interested in studying human mobility patterns. As with mobile data,
a large number of users can be tracked in the long term at a low cost. Among mobile
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users, some show similarities in mobility behaviors while others are dissimilar to one
group but similar to another. This is what we call similarity in mobility behavior. Before
discussing the similarities in mobility behaviors, first, we shall focus on the existing models
for mobility modeling. Mobility modeling provides a medium for simulating mobility in
wireless ad hoc networks [2,17], urban planning, and disaster response systems. Mobility
models use mobility traces to understand the nature of mobility. In mobility modeling, we
usually collect the real-time data of mobile users carrying a mobile phone with them during
traveling, shopping, in the office, or university, etc. The mobility traces are the results of
human mobility. This mobility is a result of repeated movements of a user to a specific
place, time-based human activities, mobility, and mobility based on social relationships [2].

The mobility of mobile users may be at a large scale, e.g., traveling from country to
country, or by airplanes and trains. Mobility at a smaller scale can involve, for example,
traveling within a city or a university, or from home to an office. After the collection of traces,
the data are altered and the daily life environment can be modeled. Moreover, mobility
patterns can be used to model people’s decisions based on their behaviors. Through
mobility modeling, various operations of a network, i.e., resource management, routing,
handover, and even a better independent deployment of connectivity models, can be
simulated. The simulation is possible due to the possibility of understanding human
movement patterns and regularities [14]. Modeling human mobility, at first, understanding
the mobility preferences of people is required. Mobility traces gathered through GPS
devices, social media accounts, and mobile phone networks can be used to analyze human
movements deeply at large scales. Moreover, there lies a high degree of predictability in
human mobility as most people tend to spend most of their time at specific locations. The
time to visit a particular location is also mostly fixed [17].

Although preliminary research suggests a connection between mobility, activity data,
and clinical phenomenology, no further conclusions can be drawn given the limitations of
the methods that are currently used. For instance, a 2015 study found a correlation between
the severity of depressive symptoms and GPS-derived metrics, such as normalized entropy
and location variance [18]. However, the same group conducted a subsequent study by
controlling multiple comparisons and found less conclusive results [19]. The study high-
lights the complex relationship between depression and geolocation data; schizophrenia
likewise presents disconnected results with portability measurements sometimes related to
fading psychosis [20,21], varying with other studies [22]. We propose that difficulties in
utilizing the data rather than any analysis are to blame for the lack of consensus.

Decomposing the smartphone sensor data into time series metrics and transforming
them into clinical features are two major problems. First, most studies do not replicate
because they make use of custom rules for extracting various features, such as sleep dura-
tion. Indeed, even Apple frequently changes its element calculations, making replications
utilizing Apple wellness information more complex [23]. Even though some features must
be built from raw accelerometer data, such as movement bouts, converting that data into
other derived metrics, such as running, sitting, and standing frequently involve complex
tasks. To make use of the time series data that comes with smartphone data capture, the
challenge of breaking down the data series nature into temporally aligned parts is crucial.
However, these kinds of data are rarely used in today’s research, with many papers utilizing
summary metrics as data endpoints [24]. Even though these data are valuable, clinically
relevant information is lost or ignored.

3. Similarity Analysis Approach

In this section, we calculate the similarity analysis with the co-occurrence matrix using
the capturing spatial–temporal values and user pair analysis. The calculating similarity
consists of the following steps:

• Matrix information based on an IP (internet protocol) address;
• Capturing spatial–temporal values for the co-occurrence matrix;
• Similarity analysis with the co-occurrence matrix.
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3.1. Information Based on IP Address

A user’s mobility in different places causes it to connect to different networks. This
connection with the networks assigns mobile devices to separate IP addresses. An IP
address is a 32-bit long address assigned to each device when it connects to a network. An
IP address can also provide geographical information about a device [25]. An IP address
has two parts: a network ID and a host ID. The network ID shows the information on
the type of the specific network to which the device is connected. The host ID provides
information about the particular host in the network. In comparison, the MAC (media
access control) address is a 48-bit unique identifier of each device

In recent research, Kim et al. [26] demonstrated that if a user is connected to an AP
(access point), the user keeps the connectivity unless the AP goes out of range and only
then connects to the new best available AP. In Figure 1, a user is connected to a public
AP, and even when the user arrives home, a better connection is available. The user stays
connected to the less reliable/slow public network unless the user himself shifts to the
better network or the public AP goes out of range. In a similar analogy, a set of two users,
despite having a small Euclidean distance between them, might be connected to a different
set of APs, and have different connectivity routes. This gives rise to the motivation that
IP-based similarity has been used rather than a Euclidean distance-based user’s mobility
similarity analysis.

Figure 1. Mobile user connectivity behavior with access points.

By keeping the scenario already mentioned above, in the presented research, the AP
connectivity is kept as a sign of presence at a location, i.e., if two users are connected to
the same AP are considered to be at the exact location. This increases the chance of the
two users having a direct connection in the MANET (mobile ad hoc network) scenario.
This connectivity consideration helps us better correlate the user’s mobility patterns and
shows improved similarity.

The proposed method models the space–time associations of the mobility patterns
and is, thus, better able to determine the similarities among the mobility patterns of users.
a user’s presence probability at a location is used to find the co-occurrence with others
as part of the model. In the proposed model, we used cosine similarity as a measure to
estimate the correlation among users. If the mobility patterns are correlated, i.e., mobility
directions are the same, then the cosine similarity enables the model to compute similarity
patterns among the users. Here, it is important to mention that the IP information is central
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to determining the geo location of a user. As previously mentioned, the IP address not only
shows the device ID but network information as well. In the model, IP addresses are used
as a whole, which results in the construction of a more informed model and, hence, better
similarity patterns are obtained. In Equations (1) and (2), the joint probability of the user’s
presence based on the IP address is made part of the model. The model is explained in the
next section and the effectiveness of the model is verified from the results presented later.

3.2. Capturing Spatial–Temporal Values for Co-Occurrence Matrix

The representation of IP address (location) and time values are done in form of a co-
occurrence matrix. In this co-occurrence matrix, each row vector describes the normalized
percentage of time the user spends at each location on a measured time, e.g., from 8 a.m. to
8 p.m. each day. The column reflects the most significant locations of the user. Depending
on the cases, we can define the granularity of the time duration as an hour, a day, or a week.
It is similar to the location, as a specific building in which the matrix provides flexibility to
represent the problems.

3.3. Similarity Analysis with the Co-Occurrence Matrix

This section explains mathematical notations used to describe the model. P is rep-
resented as an occurrence matrix with the order as m× n. The n denotes location (each
building has its access point), and m represents a particular day. Let pki define the specific
time in the kth row at the ith is the location of P, where M denotes the occurrence matrix of
user 1 . . . n, M is a matrix in the order of m× n. Let Mij represent the time in rows, and Jth
the location of M. For i is not equal to j when Mij equals the number of co-occurrences of
the time and location, I and j.

Mij =
m

∑
k=1

pki pkj (1)

Suppose Tj denotes the total object occurrence or object co-occurrence at j (location).

Ti =
m

∑
k=1

pki (2)

Suppose the total object occurrence or object co-occurrence at j (location) is denoted
by Tj.

Tj =
m

∑
k=1

pkj (3)

Direct Similarity Measure

The Fc shows the ratio between the observed time of users i and j, separately. The
cosine angle is used between the ith and jth columns of the co-occurrence matrix of P
for measuring.

Fc = (Mij, Tij) =
Mij√
(Ti, Tj)

(4)

In the above-given model, the concept of cosine similarity is used to show the similarity
of patterns in the mobility traces of the users. The user’s movement pattern is considered a
vector and the angle between the vectors is inversely proportional to the similarity between
the vectors, i.e., the mobility traces of the users. The inherent idea of cosine similarity is
that the vectors point in the same direction and have a higher similarity irrespective of their
Euclidean distance. Here, if two users follow a similar movement path, then they would
have a higher similarity. The similarity is modeled as a probability in this context.
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3.4. Benchmark for Similarity Analysis

The existing work for the similarity analysis uses longitudinal wireless activity sessions
to build a mobile user’s spatiotemporal profile [5]. The representation of spatiotemporal
preferences in the form of an association matrix can be changed to use each column
for a building (where the collection of access points represents a building) and the time
granularity can be changed to represent hourly, weekly, or monthly behaviors. In the
existing work, each row represents the day in the traces and the column represents the
access point. After that, it calculates the SVD (singular value decomposition) of each
associate matrix. The SVD of a given matrix A can be represented as a product of three
matrices: an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal
matrix V. It is written as

A = U.S.Vt (5)

After that, a mobile encounter index metric is represented Mei, which indicates the
similarity ranking (i.e., 0 represents totally dissimilar and 1 indicates exactly the same)
between two objectives’ mobility preferences by quantitatively measuring the similarity be-
tween the eigenvectors of their mobility matrices. For the pair of objectives, with respective
eigenvectors as A = a1, a2, a3, . . . , aar, and B = b1, b2, b3, . . . , brb, the mobility similarity can
be calculated by the weighted sum of the pairwise inner product of their eigenvectors as

Mei(A, B) = SAB =
RankA

∑
i=1

RankB

∑
i=j

WaiWbj|AiBj| (6)

where Mei(A, B) is a quantitative measure index that shows the closeness of two mobile
peers in their mobility preferences in the time–space dimension. SA,B is an index that shows
the closeness of users in terms of the values in their co-occurrence matrix. Here, A and B
are the respective eigenvectors of the users. Wai and Wbj are the numbers of co-occurrences
of users A and B at specific locations. Co-occurrence is measured in terms of time, location,
and device information.

The similarity analysis shows that the value of the similarity is within the range of
0 ≤ SA,B ≤ 1. The lower similarity rank indicates that peers have very different time–space
mobility preferences. In other words, they have fewer opportunities to meet each other
somewhere. Otherwise, for the higher similarity-ranked cases, the user pairs have similar
mobility preferences, or they have high probabilities to meet each other in some locations
where they have the same interests to visit. In addition, we can also quantify how the
mobility preferences similarity between the same pair of moving objectives varies with time.
Firstly, we can calculate the similarity between two mobile objectives, e.g., A and B, at two
points in time, Mci(A, B)T1 and Mci(A, B)T2, where T represents a specific time instance.
We perform this calculation on all user pairs and investigate the relationship between the
users’ location and time. We calculated the MCC (mobility correlation coefficient) of the
similarity matrices obtained after a T interval as

Mcc =
∑A,b(X− X̄)(Y− Ȳ)

NSxSy
(7)

where X = SA,B(T1), Y = SA,B(T2), and the notations X̄ and SX denote the average and
standard deviation of X, respectively. N is the total number of mobile user pairs. The
mobility correlation coefficient indicates how stable the interactions between the peer
pairs are. It has been reported that the similarity metrics between objective pairs correlate
reasonably well if the considered periods are not far apart.

3.5. The Case Study for the SAA Approach

This section contains a case study for understanding the SAA approach and its work
in detail. We conducted a case study where the data transmission distance is a key but
changeable factor contributing to overall energy consumption. It is straightforward that
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the shorter the transmission distance is, the more the total energy consumption will be
reduced. For example, we have two users, Alice and Bob, working at the same university
but on different campuses. Alice is a professor at the university, and Bob is studying there;
they normally have to meet to discuss the research work. Alice intends to send a file to Bob,
which will be required by Bob after seven days. At the moment, Bob is working on another
task. In this case, how can Alice send the file to Bob? There are several options available

Option A: Alice can send the data through the internet in a traditional way.
Option B: A direct file-transfer service can be used; for example, Alice and Bob can exchange
the data through point-to-point transfer through routers.

Options A and option B are the most popular ways; overall energy consumption
depends upon the distance and the size of the data. If we know Alice and Bob will meet,
we can consider option C. We have fewer requirements of time, data are not more urgent,
and the delay-tolerant indicator is decided to reach the data between that duration. In
option C, human mobility traces are matched according to behavior. Alice and Bob have
similar mobility preferences as they are at slightly distant locations (on any floor/room of
the building). They are also connected to the same network.

4. Numerical Studies
4.1. Dataset

This section provides the details of the traces that have been used for the experi-
ments. The traces are real measurements taken from the USC (University of Southern
California) [27]. The data contain information about Wi-Fi associations and user profiles.
The data involve different buildings on the campus, as well as access points, and are
collected on different days, including weekdays and weekends. For this study, we chose
campus environments since they are comprehensive with a high number of active users,
and are associated with sufficient location samples. The data consist of Wi-Fi usage and
location information.

4.2. Simulation Experiment

We abstracted a subset of peers that are independent of each other (as much as possible)
from the large population data. Then we conducted a relevant statistics analysis on the
selected co-occurrence matrix data of mobile peers. This matrix consists of information
about the AP, temporal values, IP address, and MAC address of the mobile devices. The
data set was divided based on each day, i.e., for seven days a week. For each day, we used
iterator tools for bringing the data in a sorted form, i.e., all combinations were extracted.
The locations visited by both users, x, y, were sorted and their co-occurrences were recorded.
After recording multiple co-occurrences, we removed the redundant information and only
unique location IDs were extracted, such as iterator tools (functions creating iterations for
efficient looping) and redundant information (using group by command).

4.3. Simulation Results

Based on the analysis of similarity profiles, we found the following results. At first,
different user pairs are shown that are at specific locations of the same time span. For
calculating mobility similarities among different user pairs at different time intervals, data
of the users are selected from the USC traces available in the dataset. Figures 1–3 show
different pairs of users who are found at the same location at the same time interval. The
following histograms show the similarities of different user pairs on different days of
the week.
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(a) (b)

(c) (d)

Figure 2. Similarity analysis during different days, (a) On Monday, (b) On Tuesday, (c) On Wednesday,
and (d) On Thursday. Similarity shows that these users are found on the same location during the
same time frame.

(a) (b)

Figure 3. Similarity analysis during different days, (a) On Friday, and (b) On Saturday. Similarity
shows that these users are found on the same location during the same time frame.

The users are from the same data set that we used for experiments. In these histograms,
the number of user pairs is taken as a function of similarity showing the behavioral
similarity of different days of mobile users. The result was a co-occurrence matrix having
no null value and combinations of visited locations for both users. Then we deployed the
SVD technique on the co-occurrence matrix for a normalized output. Each similarity value
was calculated for different days and plotted respectively. The experiment was performed
to show that the SAA approach is a deep analysis (on a daily basis) of similar behavior.
Figures 1–3 show the deep analysis of different pairs of users that are calculated at the
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same location at the same time interval. The following histograms show the similarities
of different user pairs on different days of the week. The users are from the same data set
that we used for experiments. In these histograms, the number of user pairs is taken as a
function of similarity showing the behavioral similarity of different days of mobile users.

The data set was divided based on each day i.e., for seven days a week. For each
day, we used iterator tools to bring the data in sorted form, i.e., all combinations were
extracted. The locations visited by both users x and y were sorted and their co-occurrences
were recorded. After recording multiple co-occurrences, we removed the redundant
information and only unique location IDs were extracted. We used iterator tools that
were function-creating iterations for efficient looping and redundant information using
groups by command.

For weekends, i.e., Saturday and Sunday, the lowest similarity reached zero and the
highest similarities were 0.000020 and 0.00008 as the number of active users was quite
less due to the absence of academic activity. In Figure 4, we compared the similarity
characteristics of those users who have common mobility behaviors based on location and
time. The comparative analysis of 7 days shows a very high similarity on Monday.

Figure 4. Similarity analysis of all 7 days of a week.

The comparison results show a similar pattern with the increased number of similarity–
user pairs in SAA as shown in Figure 4. The x-axis shows similarity and the y-axis shows
user pairs.

The graph given in Figure 5 shows the comparison of our purposed mode SAA with
the existing work. The existing approach uses longitudinal wireless activity sessions
and assigns more than one access point to a building and considered a different location.
Whereas our model is based on location and time with one access point to each building,
and the building is considered as one location. To capture more mobility patterns, we used
the co-occurrence matrix. The comparison results also show that the proposed model SAA
is 33% more efficient than the existing approach. The comparison results are based on (a
one-week) dataset.
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Figure 5. SAA approach similarity comparison with existing work.

5. Conclusions

A mobile phone is the most suitable and cost-efficient way to analyze mobility behavior.
This study provides a similarity analysis approach for finding behavior similarities in user
mobility (using mobile phone data). We used the spatial–temporal parameters of a mobile
user and the device network information of the mobile node in this regard. We provided
the spatial preferences of a user and temporal values at which particular locations were
visited. For experiments, we used the mobility traces of users from different campuses, i.e.,
(campus1, . . . , campus6). After extracting the spatial–temporal associations of traces, we
stored them in the co-occurrence matrix and normalized the time associations, and applied
the SVD technique to extract the preferred locations and times of a mobile user. During
the experiments, we performed a similarity analysis of the processed data and calculated
the similarities of different users on different days and campuses. The results show the
similarity characteristics of users with common mobility behaviors based on location and
time to showcase the efficacy. The results show that the purposed approach is a 33% more
accurate behavioral model as compared to the existing similarity approaches. In the future,
we plan to further investigate similarity modeling and prediction for similarity analysis.
We also intend to add more dimensions for a comparison analysis, such as response time,
energy consumption, etc.
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