ﬂ Sensors

Article

Low Latency and High Data Rate (LLHD) Scheduler: A Multipath
TCP Scheduler for Dynamic and Heterogeneous Networks

Tabassum Lubna 1@, Imtiaz Mahmud 2 and You-Ze Cho 1-*

check for
updates

Citation: Lubna, T.; Mahmud, 1.; Cho,
Y.-Z. Low Latency and High Data
Rate (LLHD) Scheduler: A Multipath
TCP Scheduler for Dynamic and
Heterogeneous Networks. Sensors
2022, 22,9869. https://doi.org/
10.3390/522249869

Academic Editor: Luis Velasco

Received: 2 November 2022
Accepted: 13 December 2022
Published: 15 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Electronic and Electrical Engineering, Kyungpook National University,
Daegu 41566, Republic of Korea

2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

* Correspondence: yzcho@ee knu.ac.kr

Abstract: The scheduler is a crucial component of the multipath transmission control protocol
(MPTCP) that dictates the path that a data packet takes. Schedulers are in charge of delivering data
packets in the right order to prevent delays caused by head-of-line blocking. The modern Internet is
a complicated network whose characteristics change in real-time. MPTCP schedulers are supposed
to understand the real-time properties of the underlying network, such as latency, path loss, and
capacity, in order to make appropriate scheduling decisions. However, the present scheduler does
not take into account all of these characteristics together, resulting in lower performance. We present
the low latency and high data rate (LLHD) scheduler, which successfully makes scheduling decisions
based on real-time information on latency, path loss, and capacity, and achieves around 25% higher
throughput and 45% lower data transmission delay than Linux’s default MPTCP scheduler.

Keywords: data rate; delay; MPTCP; schedulers

1. Introduction

Modern devices possessing various communication interfaces are becoming ubiq-
uitous due to the rapid growth of advanced technologies. The simultaneous usage of
several communication interfaces is projected to deliver faster throughput and decrease
data transmission latency [1]. Regarding dependable data delivery by using concurrent
communication over multiple communication interfaces, the Internet engineering task force
(IETF) has introduced a multipath transmission control protocol (MPTCP) as the transport
layer protocol. The MPTCP is an extension of the transmission control protocol (TCP),
which is a widely accepted transport layer protocol for reliable data transfer [2].

The MPTCP includes three fundamental tools for controlling data transmission: a path
manager, a congestion control algorithm (CCA), and a scheduler [3]. The path manager is
in charge of establishing end-to-end paths between the sender and the receiver. Depending
on the status of the route, it might add or remove it. Each route between the sender
and recipient is considered a subflow (SF). The CCA determines the congestion window
(CWND), which is the amount of data that may be sent via each of the SFs. The CCA
seeks to make maximum use of the underlying network while equitably sharing available
resources with other flows in that network. Schedulers decide which SF a data packet
should traverse. Its purpose is to prevent head-of-line (HoL) blockage at the receiver by
ensuring orderly packet delivery. This study aims to improve the performance of the
MPTCP schedulers.

Today’s Internet is a highly complex network integrating wired and wireless links
where the traffic load fluctuates rapidly in real-time. Moreover, events like handoffs, decline
in signal strength, and user movement typically produce considerable packet losses in
mobile networks [4]. The 4G/5G and WiFi networks are the two main communication
interfaces that current devices use. The properties of each of these networks vary, particu-
larly in terms of latency, bandwidth (BW), and path loss. The task of MPTCP schedulers is

Sensors 2022, 22, 9869. https://doi.org/10.3390/5s22249869

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s22249869
https://doi.org/10.3390/s22249869
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4894-4735
https://orcid.org/0000-0001-9427-4229
https://doi.org/10.3390/s22249869
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249869?type=check_update&version=1

Sensors 2022, 22, 9869

20f11

quite challenging due to the various characteristics of these networks. Often the through-
put of the MPTCP connection declines, owing to HoL blockage induced by out-of-order
delivery [5]. To solve this complex problem, numerous research studies have presented a
variety of schedulers [6-8]. However, these schedulers largely consider the latency as the
core of the scheduling algorithm, disregarding the other crucial metrics, such as BW and
path losses. Particularly in wireless networks, where route factors, such as packet loss rate
and BW change fast in real-time, it is critical that the scheduler consider these parameters
in order to make the best scheduling decision. Otherwise, making a scheduling decision
without considering the route characteristics may result in increased packet losses and
transmission delay, culminating in complicated HoL blocking at the receiver, extending the
delay even more. The end result might be even worse performance than the single path
TCP [9-11]. Therefore, an intelligent scheduler that takes into account path characteristics,
such as path loss and BW, as well as other relevant information, is necessary to make the
best scheduling decision.

The present MPTCP stack includes the knowledge of both BW and path losses by
continually monitoring the data-rate of each path in real-time [12]. Due to the fact that
it provides a thorough picture of the continually changing network in real-time, this
information may be crucial for developing the scheduling algorithm. As a result, we
suggest a new scheduler, called the low latency and high data rate (LLHD), based on the
information that is available. The following are the main contributions:

e In this work, we offer LLHD, a unique MPTCP scheduler that, in addition to taking
network characteristics like latency into account, also takes BW and packet losses into
account in order to make an effective scheduling decision in real-time;

e LLHD is able to outperform schedulers used currently by achieving a better through-
put with less latency for data transmission;

e Unlike other schedulers, LLHD can respond to changes in networks that fluctuate dy-
namically and deliver the highest throughput with the shortest data transmission time.

The remainder of the paper is structured as follows: a summary of the existing MPTCP
schedulers is provided in Section 2, followed by a detailed description of the proposed
LLHD in Section 3, an evaluation of the performance of each scheduler under consideration
in Section 4, and a conclusion in Section 5.

2. Related Works

This section briefly describes the existing schedulers available in the MPTCP Linux
Kernel [9]. However, as mentioned earlier, none of them considers all the available network
information and fails to produce the expected results in changing network scenarios.

2.1. Shortest RTT Scheduler

Quentin et al. introduced the shortest RTT (SRTT) scheduler. It is the default scheduler
in the MPTCP Linux Kernel. The packets are allocated to the SE, which has the least
RTT among the available SFs and has space in its CWND. When the CWND of the SF
having the minimum RTT is full, only then is the data sent through the SF having the next
minimum RTT, based on the availability of space in its CWND. However, once the CWND
of the shortest RTT subflow becomes available, data transmission is resumed through
that subflow. This strategy simply concentrates on transferring the packets in the fastest
reasonable period [13].

2.2. Round-Robin

In the round-robin (RR) scheduler, the SF for sending a packet is decided in a round-
robin fashion. It circularly chooses one SF from all the SFs with available CWND. This
scheduling neither focuses on short-time delivery, nor aims to eliminate HoL blockage [14].

Sensors 2022, 22, 9869

30f11

2.3. Redundant

This scheduler sends the same data through all SFs that have space in CWND. This ap-
proach of broadcasting the same data over numerous communication interfaces helps lower
the HoL blocking at the receiver, hence providing short data delivery latency. However,
conveying the same packet wastes significant BW, which may be utilized for delivering
other vital data by developing an effective scheduling system [15].

2.4. Earliest Completion First

The earliest completion first (ECF) scheduler aims to create an intelligent scheduling
option by considering the RTT of the SFs, their available CWND, and the amount of data to
be delivered. In an abstract form, in determining the scheduling choice, it tries to anticipate
the arrival time of the packets at the receiver. Then it schedules the packets through the
available SFs in such a way that the data arrives in line at the receiver [16]. Thus, it tries to
fully utilize all the resources, while at the same time obtain better throughput and lower
delay. However, in the modern Internet, wireless links are fairly common. The wireless
links” characteristics change in real-time with the mobility of the user and ECF is caught off
guard in such scenarios, as it does not consider packet losses or real-time changes in the
path characteristics. Therefore, it cannot always perform well and cannot be applied as a
generic scheduler [17].

2.5. Block Estimation

The block estimate (BLEST) scheduler provides a way to anticipate HoL blocking.
Depending on the RTT and send window of an SF, it assesses whether or not transmitting
data over that SF could induce HoL blocking at the receiver. If it identifies such a possibility,
BLEST stops delivering data via that SF for some time. This implies that if the network
path with the highest RTT is the only one accessible, BLEST can choose to wait for the
lowest RTT path to become available again if it believes that transmitting on the highest
RTT path would cause the receiver to be blocked. In basic form, it waits for the shortest
RTT SF to become available, even if other SFs could have room in their CWND, to prevent
HoL blocking at the receiver [18]. However, this strategy cannot produce the best results
in all cases since it may result in considerable packet delivery delays, especially for larger
files, when one path remains unused, resulting in a waste of resources [19]. Moreover, the
real-time path characteristics changes are not considered while making the prediction or
scheduling decision. As a result, it may often mislead BLEST to pause sending through
the best available paths, especially for wireless links. Thus, BLEST also fails to be a generic
scheduling solution for the MPTCP [17].

3. Low Latency and High Data Rate (LLHD) Scheduler

In this section, we discuss the proposed LLHD scheduler in detail. As mentioned
earlier, for successfully avoiding HoL blocking at the receiver, the schedulers should
be aware of the continuously changing environment of the network. The key network
parameters include delay, path loss, and BW. We designed the LLHD in such a way
that it keeps track of all these parameters in real-time and performs the scheduling by
systematically considering these parameters.

The goodput of an SF represents how much of the actual data can be sent through
that SF. Thus, it consists of both BW and path loss information, and can be calculated as
follows [20]:

Goodput = Throughput — Losses 1)

Moreover, RTT represents the delay in data transmission. The SF that has the highest
goodput and lowest RTT can be regarded as the best SF for data transmission. Now, to select
the best SF for sending a data packet, the LLHD defines a utility function () as follows:

v=GPy+Bx

1
RTTy @

Sensors 2022, 22, 9869

40f11

where S is the balancing factor, GPy and RITy are the normalized goodput and RTT,
respectively, and are defined as follows:

GP
GPy = 3
N =GP 3)
RTT
RTTyNn = 4
N = RTTo 4)

where GP, GPyux, RTT, and RT T,y are the goodput of SF;, maximum goodput among all
the SFs, RTT of SF;, and maximum RTT among all the SFs, respectively. Note that SF; is a
member of the set containing all the SFs with available CWND. Finally, the SF; is selected as
the best SF to send a packet, which has the highest value of . Moreover, the LLHD makes
this comparison each time it receives an ACK by any of its SFs. Algorithm 1 summarizes
the LLHD algorithm. Backup SFs are SFs that are specifically designated as such by the
sender and are only utilized if no normal SFs are available. An SF is unavailable if it is no
longer useable, and an SF is temporarily unavailable if the sender is unable to send because
the SF is now inaccessible but may become available once the connection is restored.

Algorithm 1: Low latency and high data rate (LLHD) Scheduling algorithm

Initialization:
best_SF = null

Y _max =0

B =0.001

RTT_max = 9999999
GP_SF_max = 9999

Upon reception of ACK:
for all subflow i do
if SF_i is backup then
continue
end if
if SF_i is unavailable then
continue
end if
if SF_i is temp_unavailable then
continue
end if
Y _curr = (GP_SF_i/GP_SF_max) + B X (RTT_max/RTT_SF_i)
if CWND_available_for_SF_i and y_curr > y_max then
Y_curr=Y_max
best_SF = SF_i
end if
end for
return best_SF

4. Performance Evaluation

This section evaluates the performance of the LLHD and the MPTCP schedulers
available in the Linux Kernel with respect to the throughput and flow completion time
(FCT). A Mininet [21] emulator was used for the performance comparison. We first describe
the experimental setup, then compare the performance.

4.1. Experimental Setup

As mentioned earlier, the Mininet emulator was used for the experiments. We coded
the LLHD scheduler for MPTCP Linux Kernel v0.93.4, compiled it with “make”, and
installed it using “insmod”. The code for the LLHD can be found in the GitHub repository
given in [22]. The emulation time was 300 s and the CCA was LIA [23].

Sensors 2022, 22, 9869

50f11

We considered three emulation scenarios for the performance comparison, as shown
in Figure 1. Scenario #1 explores two separate SFs linking the multipath sender with the
multipath receiver. Two SFs have two bottlenecks with a capacity of BW 10 Mbps and
5 Mbps, path latency of 10 ms and 5 ms, and path loss rate of 1% and 2%, respectively. In
this instance, the high BW route has the high RTT with the lowest packet loss rate. Hence,
the optimal approach is the high BW path with high RTT, rather than the lowest RTT option.
Thus, the schedulers confront the issue of determining the ideal route based on BW rather
than merely RTT.

(a) Router-1 Router-2

% ==

L
== BW= 100 Mbps, delay= 1ms, loss= 0%
== BW= 10 Mbps, delay= 10 ms, loss= 1%
== BW= 5 Mbps, delay= 5 ms, loss= 2 %
SK,

Multipath Sender 2 @ @ Multipath Receiver

Router-3 Router-4

Router-1 Router-2

== BW= 100 Mbps, delay= 1ms, loss= 0%

== BW= 10 Mbps, delay= 5 ms, loss= 2 %
== BW= 10 Mbps, delay= 5 ms, loss= variate
S,
Multipath Sender 2 @ @ Multipath Receiver

Router-3 Router-4

Router-1 Router-2

== BW= 100 Mbps, delay= 1ms, loss= 0%
== BW= 10 Mbps, loss= 2%, delay= 5 ms
== BW= 10 Mbps, loss= 2%, delay= variate

@ @ Multipath Receiver

Router-3 Router-4

SK,
Multipath Sender 2

Figure 1. Scenarios for evaluating the considered schedulers (a) Scenario #1, (b) Scenario #2, and
(c) Scenario #3.

Scenario #2 covers two separate SFs that link the multipath sender and recipient. Two
SFs have the same bottleneck capacity of BW 10 Mbps and a delay of 5 ms. However, the
path loss rate of SF-1 is 2%, whereas that of SF-2 ranges from 2% to 10%. Both paths in this
case have the same BW and RTT. However, the loss rate varies over time. Thus, rather than
the RTT and BW, schedulers must pick the appropriate route in real-time based on the path
with the lowest loss rate.

Finally, Scenario #3 has two separate SFs linking the sender and receiver. Two SFs
have the same BW of 10 Mbps and a 2% loss rate. However, the delay for SF-1 is 5 ms, but
the delay for SF-2 ranges from 5 ms to 25 ms. In this case, both pathways have the same
BW and loss rate; nevertheless, the RTT varies. As a consequence, in this case, schedulers
should choose the best route based on RTT rather than other factors, such as BW and packet
loss rate.

4.2. Performance Comparison in Scenario #1

We begin by comparing the throughput and total data transmitted by the schedulers
for Scenario #1. As seen in Table 1, the LLHD had the best throughput and can send the
maximum amount of data. BLEST was the second-best performer due to its SF blocking
system that avoids HoL blocking. The ECF was the next best performer, given its appro-
priate estimated arrival time for this scenario. It should be noted that the performances of
all three schedulers were extremely close. On the contrary, SRTT and RR performed much
worse. The lowest RTT route had low BW and packet loss rates, while the largest RTT path
had high BW and low packet loss rates. As a result, the highest BW path is the optimum
route for this scenario. The SRTT scheduler continued to transmit along the low RTT path
while disregarding other criteria, such as packet loss rate and BW. As a result, it falls short

Sensors 2022, 22, 9869

60f 11

of the LLHD, BLEST, and ECF. In the case of RR, the data were sent randomly among the
SFs, yielding the worst performance. This result also shows that packet scheduling without
a proper method cannot assure a significant performance for the schedulers. It should be
noted that the CWND cap determined by the LIA is the reason why the throughput of
all schedulers was relatively low compared to the overall capacity. Additionally, we will
only provide the FCT results for the remaining scenarios since the throughput and FCT
outcomes follow a similar trend.

Table 1. Throughput and total sent data for the considered schedulers.

Schedulers Throughput (Mbps) Total Sent Data (MB)
SRTT 2.17 79
RR 2.15 75
ECF 2.83 100
BLEST 2.84 101
LLHD 2.90 104

As shown in Figure 2, we conducted further tests in Scenario #1 by transmitting
various data sizes and evaluating their FCT. We can see that the LLHD scheduler, with its
smart route selection approach based on both the RTT and the goodput, achieved the lowest
FCT for the various file sizes. As was previously indicated, by taking goodput into account,
the LLHD not only analyzes the throughput per SF (i.e., the capacity of a route), but also
takes path losses into account, since goodput excludes lost packets. The LLHD identified
the subflow with the highest RTT as the best subflow in this scenario. It achieved optimum
performance in terms of FCT and throughput by sending the most packets along the best
route. BLEST was the second-best performer, owing to its built-in capacity to eliminate
HoL blocking at the receiver. ECF comes in third place for performance. ECF sometimes
can take more time than LLHD and BLEST. We argue that since there are random losses,
and BLEST and ECF do not have the proper method to recognize the random link property
changes and packet losses, they cannot make the best scheduling decision. This incorrect
decision causes HoL blocking at the receiver, resulting in a prolonged FCT. As previously
stated, the SRTT scheduler only took into account RTT and failed to accurately predict the
network scenario in Scenario #1, resulting in an abnormally high FCT. Furthermore, RR
performed the poorest since there was no suitable scheduling mechanism.

350

- - N N w
o ()] o n o
o o o o o
1 1 1 1 1

Flow Completion Time (s)

50

File Size

Figure 2. Performance evaluation of the considered schedulers in terms of FCT for variate file size in
Scenario #1.

Sensors 2022, 22, 9869

7of 11

4.3. Performance Comparison in Scenario #2

Using different packet loss rates throughout the path between Router-3 and Router-4,
we examined the schedulers’ performance in Scenario 2. Both paths had the same latency
and BW. Additionally, a 2% packet loss was specified for the link between Router-1 and
Router-2. Again, due to its advanced algorithm, which considers packet losses while
making scheduling decisions, the LLHD was able to achieve the lowest FCT in this trial,
following the FCT results presented in Figure 3. RR, which distributes packets arbitrarily
among the SFs, showed the poorest performance with the greatest FCT. After LLHD,
BLEST, ECF, and SRTT exhibited the lowest FCT, sequentially, for the same reasons as
previously indicated.

200

175

ime (s)
-
0
o
1

125

100

~
()]
1

Flow Completion T
o
o

N
(6]
1

o
I

RTT

— I~ | —

(%) (=] (o P T 2 (] (Y (PR 19 [) [PO [T 2

() e E&COUJI FlEoWT] [ZIEo|w
ff- (i e S (i e (i

@ @—| | al=| [» @—| | @

LLHD

[

4

Bl
o

Figure 3. Performance evaluation of the considered schedulers in terms of FCT for variate packet

LLHD

Packet Loss Rate

loss rate in Scenario #2.

4.4. Performance Comparison in Scenario #3

Scenario #3 tested the schedulers by varying the delays in the path between Router-
3 and Router-4. Other characteristics, such as BW and packet loss rate, were the same
for both routes. We fixed the delay between Router-1 and Router-2 to 5 ms. As seen in
Figure 4, the LLHD obtained the lowest FCT. However, in a 10 ms delay, the SRTT scheduler
achieved the lowest FCT. In addition, it tied with the LLHD in the 15 ms and 20 ms delay
situations and had very close FCT in the remaining cases. As previously mentioned, the
SRTT scheduler prioritizes the shortest RTT path and attempts to route the majority of
packets down that path. As a result, because the path between Router-1 and Router-2
clearly has the lowest RTT, the SRTT scheduler decided that the path between Router-1 and
Router-2 was the best path and attempted to send the majority of packets through that path,
achieving significantly better performance in this scenario. The LLHD yielded roughly the
same, since it also chooses routes based on RTT. It also incorporates the available BW and
loss rate in the scheduling choice by taking goodput into account. The performance of the
remaining schedulers followed the same pattern as previously observed. The RR, on the
other hand, performed the poorest owing to its lack of a solid scheduling mechanism and
dependence only on randomness.

Sensors 2022, 22, 9869

8of 11

= ==
Multipath
Sender

Router-1 Router-2

BW=100 Mbps, delay=1 ms, loss= 0%
BW=10-30 Mbps, delay=

Router-3 Router-4

200

175 +

ime (s
-
a
o
1

125 +

100 +

~
a
1

Flow Completion T
o
o
1

N
[$)]
1

0
-l lBlel Howlblel [l wlblel Bl s
ClEolwiT) IZEowE [felElolwEl |RIEowT| [EEolw

| |- () (e e S} L | 1
@ | R (7] o= |©» fre = I 2 | (7] o

One-Way Delay

Figure 4. Performance evaluation of the considered schedulers in terms of FCT for variate path delay
in Scenario #3.

4.5. Performance Comparison in a Comprehensive Scenario

Until now, we have observed the performance of the considered MPTCP schedulers
in scenarios where one parameter was variable, and the others were fixed. To grasp the
overall performance where all the parameters variate, as seen in the real-world scenarios,
we performed experiments with the scenario shown in Figure 5a. The route connecting
Router-1 to Router-2 and Router-3 to Router-4 has a variable BW ranging from 10 to
30 Mbps, a latency ranging from 10 to 30 ms, and a packet loss rate ranging from 2 to 10%.
These factors change throughout time. We transmitted files of various sizes and executes
30 emulation runs for each file size. The average FCT is shown in Figure 5b. As we can
see, the LLHD easily outperformed the others due to its smart scheduling decision-making,
which takes into account changing path characteristics. The ECF and BLEST suffered due
to their lack of path characteristics awareness, whereas the SRTT and RR performed the
poorest, since they are entirely depending on RTT and randomness, respectively.

400

350 +

2300

- N N
(S o ()]
o o o
L L 1

Flow Completion Time

1004

Multipath 504
Receiver 0

10-30 ms, loss=2-10%

File Size

() (b)

Figure 5. Performance evaluation of the considered schedulers in terms of FCT for a comprehensive
scenario: (a) considered comprehensive scenario and (b) observed FCT.

Sensors 2022, 22, 9869

9of11

W

36
Multipath Client
Located at
Berkeley, USA

Ver, 20p)

, \13\“"“\

4.6. Performance Comparison in a Real-World Experiment

Finally, we tested the proposed LLHD and the considered MPTCP schedulers in a real-
world test experiment, as shown in Figure 6a. We set up the server at Kyungpook National
University on an Ubuntu machine with an Intel Core i7 9700k processor and 16 GB RAM.
The server was linked to the Internet through the campus Ethernet and the KT 5G network.
The client was in Berkeley, USA, with an Ubuntu computer powered by an AMD Ryzen
5500U CPU and 16 GB of RAM. The client was connected to the Internet via Xfinity’s WiFi
service and Verizon’s 5G Internet service. The client downloaded files with different sizes,
such as 2, 10, 50, and 100 MB. We repeated the test at least 30 times for each scheduler, and
the results are shown in Figure 6b. In accordance with the emulation findings, the LLHD
outperformed the other schedulers due to effective scheduling decisions that consider
all available information. The BLEST and ECF were also close, but their gaps are due to
their lack of knowledge about network changes. Because of a lack of adequate scheduling
methods, the SRTT and RR failed to produce satisfactory results.

120
=
100 - '8
0 3

()

£ 80+
-
c
g

% 60
o
5

Gy, O 404
Lis e 3
Srhey, i

P74 NN E 20 4

\\C“ AAAAA
56 Multipath Server 0-
w Located at Kyungpook
National University,
South Korea
File Size
(a) (b)

Figure 6. Performance evaluation of the considered schedulers in a real-world experiment:
(a) real-world test setup and (b) observed FCT.

5. Conclusions

In this paper, we concentrated on designing a novel MPTCP scheduler that can
make proper scheduling decisions while taking into account real-time network changes.
We developed an LLHD scheduler that considers changes in network metrics, such as
latency, path loss, and BW, and makes an appropriate scheduling choice based on the
dynamic changes. We included the LLHD in the MPTCP Linux Kernel and made the source
code publicly accessible. In extensive emulation studies, the LLHD effectively dealt with
heterogeneous and constantly changing network characteristics, and efficiently used the
available path capacity of the underlying network in contrast to current schedulers.

The downside is that our proposed method works reactively, attempting to effectively
make the scheduling decision after loss occurrences or changes in the network. In a future
study, we would want to integrate a method for predicting path characteristics changes, so
that the LLHD may make scheduling decisions while taking projected network changes
into account.

Author Contributions: Conceptualization, T.L.; methodology, T.L.; software, T.L. and .M.; validation,
T.L. and I.M.; formal analysis, T.L.; investigation, T.L.; resources, T.L.; data curation, T.L. and
LM.; writing—original draft preparation, T.L. and L.M.; writing—review and editing, T.L. and I.M.;
visualization, T.L.; supervision, Y.-Z.C.; project administration, Y.-Z.C.; funding acquisition, Y.-Z.C.
All authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 9869 10 of 11

Funding: This research was funded in part by the Ministry of Education, 2018R1A6A1A03025109,
and was funded by the Korean government, 2019R1A2C1006249.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Acknowledgments: This research was supported in part by the Basic Science Research Program
through the National Research Foundation of Korea (NRF), funded by the Ministry of Education
(No. NRF-2018R1A6A1A03025109); and by the National Research Foundation of Korea (NRF) grant,
funded by the Korean government (No. NRF-2019R1A2C1006249).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

Liibben, R.; Morgenroth, J. An Odd Couple: Loss-Based Congestion Control and Minimum RTT Scheduling in MPTCP. In
Proceedings of the IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14-17 October 2019;
pp. 300-307.

Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O. TCP Extensions for Multipath Operation with Multiple Addresses; Internet
Engineering Task Force: Fremont, CA, USA, 2013.

Lubna, T.; Mahmud, I.; Cho, Y.-Z. D-LIA: Dynamic congestion control algorithm for MPTCP. ICT Express 2020, 6, 263-268.
[CrossRef]

Talukdar, A.; Cudak, M.; Ghosh, A. Handoff Rates for Millimeterwave 5G Systems. In Proceedings of the IEEE 79th Vehicular
Technology Conference (VTC Spring), Seoul, Republic of Korea, 18-21 May 2014; pp. 1-5.

Ford, A.; Raiciu, C.; Handley, M.; Barre, S.; Iyengar,]. Architectural Guidelines for Multipath TCP Development; IETF, Informational
RFEC: Fremont, CA, USA, 2011; ISSN 2070-1721.

Aggarwal, S.; Saha, S.K.; Khan, I.; Pathak, R.; Koutsonikolas, D.; Widmer, J. MuSher: An Agile Multipath-TCP Scheduler for
Dual-Band 802.11ad/ac Wireless LANs. IEEE/ACM Trans. Netw. 2022, 30, 1879-1894. [CrossRef]

Xing, Y.; Xue, K.; Zhang, Y,; Han, J.; Li, J; Liu, J.; Li, R. A Low-Latency MPTCP Scheduler for Live Video Streaming in Mobile
Networks. [EEE Trans. Wirel. Commun. 2021, 20, 7230-7242. [CrossRef]

Lee, S.; Yoo, J. Reinforcement Learning Based Multipath QUIC Scheduler for Multimedia Streaming. Sensors 2022, 22, 6333.
[CrossRef] [PubMed]

Mahmud, I.; Lubna, T.; Cho, Y.-Z. Performance Evaluation of MPTCP on Simultaneous Use of 5G and 4G Networks. Sensors 2022,
22,7509. [CrossRef] [PubMed]

Mahmud, L; Cho, Y.-Z. Performance of Multipath TCP Schedulers in Concurrent Use of 5G and 4G Networks. In Proceedings of
the 27th Asia Pacific Conference on Communications (APCC), Jeju, Republic of Korea, 19-21 October 2022; pp. 550-553.
Adarsh, V,; Schmitt, P; Belding, E. MPTCP Performance over Heterogenous Subpaths. In Proceedings of the 28th International
Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July-1 August 2019; pp. 1-9.

Wang, P,; Bianco, C.; Riihijarvi, J.; Petrova, M. Implementation and performance evaluation of the quic protocol in linux kernel. In
Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Montreal, QC, Canada, 28 October-2 November 2018; pp. 227-234.

Arzani, B.; Gurney, A.; Cheng, S.; Guerin, R.; Loo, B.T. Impact of Path Characteristics and Scheduling Policies on MPTCP
Performance. In Proceedings of the 28th International Conference on Advanced Information Networking and Applications
Workshops, Victoria, BC, Canada, 13-16 May 2014; pp. 743-748.

Stallings, W. Operating Systems Internals and Design Principles; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1998.

Felix, B.; Steuck, I.; Santos, A.; Secci, S.; Nogueira, M. Redundant Packet Scheduling by Uncorrelated Paths in Heterogeneous
Wireless Networks. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25-28 June
2018; pp. 00498-00503.

Lim, Y.-S.; Nahum, EM.; Towsley, D.; Gibbens, R.J. ECF: An MPTCP Path Scheduler to Manage Heterogeneous Paths. In
Proceedings of the 13th International Conference on Emerging Networking Experiments and Technologies, Incheon, Republic of
Korea, 12-15 December 2017; pp. 147-159.

Wu, H,; Alay, O.; Brunstrom, A.; Ferlin, S.; Caso, G. Peekaboo: Learning-Based Multipath Scheduling for Dynamic Heterogeneous
Environments. IEEE]. Sel. Areas Commun. 2020, 38, 2295-2310. [CrossRef]

Ferlin, S.; Alay, O.; Mehani, O.; Boreli, R. BLEST: Blocking Estimation-Based MPTCP Scheduler for Heterogeneous Networks. In
Proceedings of the IFIP Networking Conference (IFIP Networking) and Workshops, Wien, Austria, 17-19 May 2016; pp. 431-439.
Zhang, H.; Li, W,; Gao, S.; Wang, X.; Ye, B. ReLeS: A Neural Adaptive Multipath Scheduler Based on Deep Reinforcement
Learning. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April-2
May 2019; pp. 1648-1656.

Qiao, D.; Choi, S.; Shin, K. Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Trans. Mob. Comput. 2002,
1,278-292. [CrossRef]

http://doi.org/10.1016/j.icte.2020.03.005
http://doi.org/10.1109/TNET.2022.3158678
http://doi.org/10.1109/TWC.2021.3081498
http://doi.org/10.3390/s22176333
http://www.ncbi.nlm.nih.gov/pubmed/36080792
http://doi.org/10.3390/s22197509
http://www.ncbi.nlm.nih.gov/pubmed/36236607
http://doi.org/10.1109/JSAC.2020.3000365
http://doi.org/10.1109/TMC.2002.1175541

Sensors 2022, 22, 9869 11 of 11

21. Lantz, B.; Heller, B.; McKeown, N. A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA, 20-21 October 2010; pp. 1-6.

22. Lubna, T.; Mahmud, I. Delay-Data Rate Scheduler Linux Kerner Code. Available online: https://github.com/imtiaztee /DRS
(accessed on 19 September 2022).

23. Raiciu, C.; Wischik, D.; Handley, M. Practical Congestion Control for Multipath Transport Protocols; Technical Report; University
College London: London, UK, 2009.

https://github.com/imtiaztee/DRS

	Introduction
	Related Works
	Shortest RTT Scheduler
	Round-Robin
	Redundant
	Earliest Completion First
	Block Estimation

	Low Latency and High Data Rate (LLHD) Scheduler
	Performance Evaluation
	Experimental Setup
	Performance Comparison in Scenario #1
	Performance Comparison in Scenario #2
	Performance Comparison in Scenario #3
	Performance Comparison in a Comprehensive Scenario
	Performance Comparison in a Real-World Experiment

	Conclusions
	References

