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Abstract: For path following of snake robots, many model-based controllers have demonstrated
strong tracking abilities. However, a satisfactory performance often relies on precise modelling and
simplified assumptions. In addition, visual perception is also essential for autonomous closed-loop
control, which renders the path following of snake robots even more challenging. Hence, a novel
reinforcement learning-based hierarchical control framework is designed to enable a snake robot
with an onboard camera to realize autonomous self-localization and path following. Specifically,
firstly, a path following policy is trained in a hierarchical manner, in which the RL algorithm and gait
knowledge are well combined. On this basis, the training efficiency is sufficiently optimized, and the
path following performance of the control policy is greatly improved, which can then be implemented
on a practical snake robot without any additional training. Subsequently, in order to promote visual
self-localization during path following, a visual localization stabilization item is added to the reward
function that trains the path following strategy, which endows a snake robot with smooth steering
ability during locomotion, thereby guaranteeing the accuracy of visual localization and facilitating
practical applications. Comparative simulations and experimental results are illustrated to exhibit
the superior performance of the proposed hierarchical path following the control method in terms of
convergence speed and tracking accuracy.

Keywords: snake robots; visual localization; path following; reinforcement learning control

1. Introduction

Over the past decades, many researchers have been devoted to the control of snake
robots due to their complex multi-joint structure and high motion flexibility [1–3]. As the
application tasks of snake robots become more complex, the requirement for accomplishing
a safe and accurate path following tasks with independent perception continues to increase.
Specifically, path following, as one of the most fundamental and indispensable motion
skills, requires the robot to move along a specific curve. Visual self-localization provides
the real-time position of the robot via visual perception, which plays an important role
in assisting a robot in completing autonomous motions. However, the highly redundant
degrees of freedom and unique serpentine motion gait introduce many challenges to the
path following of snake robots with visual self-localization.

Snake robots typically move forward by mimicking the motion gait of biological
snakes. One of the most efficient and widely used motion gaits is the lateral undulatory
gait; that is, it periodically propagates a wave along the body, presenting an S-shaped
movement trajectory, which is named a serpenoid by Hirose [1]. For snake robots, the lat-
eral undulatory gait can be mathematically approximated by a gait equation that imposes
a sinusoidal signal for each joint. The path following control of snake robots has been
investigated for years based on the gait equation. There is substantial research that focuses
on designing a control law for the gait equation to adjust the motion direction and thus
control the robot in moving towards the desired path with the desired turning angle, which
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is calculated by the line-of-sight (LOS) guidance law [4–6]. Furthermore, for more com-
plicated application scenarios, path following controllers with an adaptive LOS guidance
law or gait equation are adopted for faster convergence speed, and higher stability [7–9].
In addition, for holonomic snake robots, virtual constraints are employed to regulate the
orientation, and forward speed of the snake robot via a state-dependent undulatory gait
equation, which replaces time-dependent signals in the lateral undulatory gait equation
with state-dependent constraints [10–13]. However, the methods mentioned above heavily
rely on precise modelling and laborious parameter tuning, which cannot guarantee optimal
path following performance.

Reinforcement learning (RL), as a popular machine learning algorithm that constantly
interacts with the environment to maximize expected returns, has made much progress in
robotic control [14–16]. Unlike traditional control methods, RL algorithms endow robots
with various motion skills without acquiring the exact robot model and exhibit excellent
robustness and flexibility regarding environment variations. In addition, in RL, the control
objectives and constraints can be conveniently added as terms to the reward function to
guide robots to complete the specified task, e.g., manipulator manipulation, tracking a
target velocity, mimicking human motor skills, etc. Model-free (MF) RL has shown its
unique advantages in mastering specific skills or accomplishing specific tasks. However,
end-to-end MFRL training often suffers from sample inefficiency and is prone to generating
weird and unnatural actions, which seriously reduce training speed, and the learned
policy may even damage the practical robot. Consequently, it is essential to integrate
RL algorithms with gait knowledge to improve training efficiency and generate natural
actions that make deployment on a practical robot easier. Recently, RL algorithms assisted
by gait knowledge have made great progress in the fields of quadruped robots, bipedal
robots, etc. [17–21]. For snake robots, the gait equation can reflect the shape of the motion
trajectory; thus, it is an ideal source of gait knowledge. However, incorporating the gait
equation with the RL algorithm for path following tasks is still a difficult problem. In our
prior work [22], a two-stage control framework that combines PI2 with the gait equation is
proposed for the snake robot to perform goal-driven tasks, but the gait equation is only
adjusted at each gait cycle. As a result, the robot cannot promptly correct its gait according
to the position error, so the control accuracy of this method is too low for performing path
following tasks.

In addition to path following control, satisfactory visual self-localization of snake
robots is also a challenging topic. Due to the slender body structure and serpentine
motion gait, a snake robot obtains forward momentum using whole-body motion; thus,
the camera installed on the robot also shakes accordingly, which brings difficulties to stable
visual perception and localization. To solve this problem, the robot is usually required
to remain stationary or to move slowly during the imaging process, which optimizes
localization accuracy but sacrifices locomotion efficiency [23,24]. Ref. [25] proposes a pan-
tilt compensation strategy to realize visual self-localization without reducing the robot’s
locomotion efficiency, in which the position of the robot is updated by an external visual
marker. The camera is mounted on a pan-tilt that actively rotates to compensate for head
motions, which ensures that the visual marker is always within the camera’s field of view.
Consequently, this method requires relatively smooth head swings at adjacent moments
to guarantee the successful compensation of the pan-tilt. However, during the training of
the path following policy using RL algorithms, a snake robot is prone to learning a policy
that gains a higher reward for approaching the desired path faster, leading to an aggressive
policy; i.e., it vigorously wiggles the entire body from side to side to gain stronger forward
momentum, based on which, the pan-tilt cannot promptly compensate for the motion of
the head; thus, the camera installed on the pan-tilt will lose the target marker.

To solve the above-mentioned problems, a novel hierarchical path following the
control method is proposed for snake robots, which presents high training efficiency and
promising tracking performance. Specifically, the hierarchical path following the control
method is developed by combining the RL algorithm and the gait equation. On the
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one hand, the hierarchical control method generates motion gaits by modifying the gait
equation, which provides gait knowledge for the RL algorithm and thus accelerates the
training process. In addition, it ensures that the resulting motor gait belongs to the lateral
undulatory gait so that the learned policy can be directly transferred to the practical snake
robot without any retraining. On the other hand, the proposed hierarchical method adjusts
the gait equation in real-time via the RL algorithm, which expands the feasible gait set
of the gait equation, thus enabling a snake robot to change the motion gait based on the
feedback state promptly. In addition, in order to enable a snake robot to achieve visual
self-localization using the pan-tilt compensation strategy, a visual localization stabilization
item is added to the reward function of RL policy training, which effectively limits the
swing amplitude of the head at adjacent moments. The contributions of this paper are
summarized as follows:

• A novel hierarchical control method that combines the RL algorithm and the gait
equation is developed for the path following of snake robots, which guarantees
efficient training and is satisfactory following the accuracy.

• A visual localization stabilization term is introduced into the reward function to
avoid excessive head swings, which ensures successful pan-tilt compensation, thereby
optimizing the accuracy of visual localization.

• To verify the effectiveness of the algorithm, real-world experiments are implemented
on a practical snake robot, and the experimental results demonstrate the promising
path following the performance of the proposed method.

2. Materials and Methods
2.1. Problem Statement

The path-following task of snake robots can be formulated as a Markov decision
process (MDP) defined by the tuple (S ,A,R,P , γ), where S denotes the state space, A
represents the action space, R is the reward function, P indicates the state transition
probability, and γ stands for the discount factor. At each timestep, the snake robot samples
and then executes the action at ∼ π(at | st) based on current state st observed from
the environment, and then the robot transfers to a new state st+1 ∼ p(st+1 | st, at) and
receives a reward rt = r(st, at, st+1), where the subscript ?t depicts the current timestep
t. The objective of this MDP is to train a policy π∗ψ with parameter ψ that maximizes the
expected cumulative discounted return J, as indicated in Equations (1) and (2), so as to
equip a snake robot with the excellent path following skill:

π∗ψ = arg max
a∈A

J (1)

J = Eτ∼p(τ|π)

[
T−1

∑
t=0

γtrt

]
(2)

where T denotes the planning horizon of each episode, and τ denotes a trajectory {s0, a0, r0,
s1, . . . , sT−1, aT−1, rT−1, sT}.

2.2. Hierarchical Path Following Control

In this paper, the objective is to design a controller that enables a snake robot to follow
the given path with visual self-localization. To this end, we proposed a hierarchical RL
path following method to guarantee satisfactory following the ability for various desired
paths in terms of efficient training, strong robustness, and excellent following accuracy.
The proposed hierarchical algorithm effectively incorporates the RL algorithm with the
gait equation and consists of two layers, namely the RL policy training layer and the gait
execution layer. Specifically, compared with the motion gait produced by the traditional gait
equation, the proposed method tends to generate a forward gait with slighter head swings,
which improves the accuracy of visual localization and further guarantees satisfaction
following accuracy. In addition, compared with the end-to-end RL algorithm, the designed
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hierarchical RL method not only greatly accelerates the training speed but also learns a
natural and robust policy that can be directly implemented on a practical snake robot.

The overall architecture of the proposed control method is presented in Figure 1, which
consists of two stages, namely the visual localization and hierarchical RL path following
policy training. Specifically, for a n−link snake robot, at each timestep t, firstly, the pan-tilt
compensate strategy proposed in [25] is adapted to provide the real-time position of a
snake robot, which can be used to obtain the current system state; subsequently, the RL
policy training layer outputs an action to modify the gait parameter of the gait equation
based on the state, with the aim of changing the motion direction of the robot to make it
close to the desired path. Finally, the gait execution layer sends the corresponding joint
angles to the snake robot for executing the path following task.

( , )t tx y

Joint angles at last time -1
i
tφ

Distance from target point ed
Distance from desired path pd

Hierarchical Path Following Policy

oϕ

( ) sin( ( 1) ) o
i t t iφ α ω δ ϕ= + − +ts ta

Visual Positioning

i
tφJoint angles

Environment Information:

Pan-tilt Compensation:

Camera 
optical axis

Position

RL Policy 
Training Layer: Gait Executive Layer:

Figure 1. The overall control architecture of the proposed path following method, which consists of
two stages: visual self-localization and hierarchical path following control.

2.2.1. Visual Localization

Due to the head swings caused by the lateral undulatory gait, the camera mounted
on the robot head always loses the visual marker, so the position of the robot cannot be
updated in real-time. Therefore, Ref. [25] proposes a pan-tilt compensation strategy to
always keep the camera plane parallel to the visual marker plane via active compensation,
where the compensation angle of the pan-tilt θPT

t is represented as follows:

θPT
t = −θhead

t (3)

where θhead
t is the orientation angle of the head of a snake robot at timestep t, and the

compensation angle θPT
t is only related to θhead

t with the same value and the opposite
direction; that is, if the head turns to the left, the pan-tilt automatically rotates the same
angle to the right to keep the camera facing the visual target. θhead

t can be indicated in the
following manner:

θhead
t =

π

2
− θac

t − θPT
t−1 (4)

where θac
t denotes the current deviation angle between the visual marker plane and the cam-

era plane after the last pan-tilt compensation. After the pan-tilt compensation, the position
of the head of a snake robot can be calculated through visual localization and coordinate
transformation as follows:

Xw
cam = Rw

tgtX
tgt
cam + pw

tgt

Xw
head = Rw

camXcam
head + Xw

cam

(5)

where Xw
cam is the coordinate of the camera mounted on the head, which can be calculated by

rotation matrix Rw
tgt and translation matrix pw

tgt from the visual target coordinate system to

the world coordinate system and the position of camera Xtgt
cam in the visual target coordinate
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system. Furthermore, Xw
head is the position of the head of the snake robot, Rw

cam denotes the
rotation matrix between the camera coordinate system and the world coordinate system,
and Xcam

head expresses the coordinate of the head in the camera coordinate system.
Based on the above introduction, it can be derived that the angle of the robot head

plays an important role in determining the accuracy of the visual localization. Excessive
head swings lead to loss of visual markers, which further results in the failure of path-tilt
compensation. Consequently, a visual localization stabilization term is proposed to reduce
head swings during motion and embedded in the training process of the path following
strategy, which will be described in detail below.

2.2.2. Rl Policy Training Layer

As the first stage of the hierarchical control framework, the training objective of the
RL policy training layer is to find a policy that outputs the optimal action according to the
current state of the whole system, which will be used to modify the gait equation [1] in the
later control stage to ensure good path following performance. To this end, the high-level
control law of the hierarchical control framework is defined as follows:

uhigh = at ∼ πψ(at | st) (6)

In order to achieve satisfactory path following performance, a snake robot is expected
to approach the desired path as close as possible; in addition, to prevent the robot from
stopping as soon as it approaches the path, random target points are selected on the desired
path along the forward direction of the robot to guide its forward motion while continuing
the path following.

The state of the path following task is embedded in vector st ∈ Rn+1, which consists
of the distance between the real-time position of the snake robot and the desired path
dp, the distance between the robot and the endpoint de, and the joint angles command
φi

t−1, i = 1, 2, ..., n− 1 at the last timestep.
According to state st, action at ∈ R1 drives the snake robot to follow the desired path

by adjusting the parameter of the gait equation, which generates the lateral undulatory gait
as the Equation (7), with α, ω, δ, and φo denoting the gait amplitude, angular frequency,
phase difference, and offseting of the lateral undulatory gait, respectively.

φi(t) = α sin(ωt + (i− 1)δ) + φo (7)

where φi(t), i = 1, 2, ..., n− 1 is the i-th joint angle of the snake robot at time t. Different
groups of four gait parameters generate different forms of the motion trajectory of the
lateral undulatory gait. To drive the robot to follow the desired path, the joint offset φo,
which can modify the motion direction in real-time, is selected as the action and then
generated by the policy network.

at = φo (8)

To improve the accuracy and efficiency of the path following, the reward function is
designed as follows:

rt = rp + re − ph (9)

where rp encourages the snake robot to approach the desired path with a defined tolerance,
the second term re rewards the robot for moving forward towards the endpoint as soon as
possible, and the last term ph is the visual localization stabilization term, which penalizes
the robot for excessive head swings in adjacent moments. Specifically, the three terms are
constructed as follows:

rp =


cp if

∣∣∣dp
t+1

∣∣∣ < d1

cp exp (d1 −
∣∣∣dp

t+1

∣∣∣) if d1 ≤
∣∣∣dp

t+1

∣∣∣ ≤ d2

0.0 if
∣∣∣dp

t+1

∣∣∣ > d2

(10)
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re = ce(de
t − de

t+1) (11)

where cp and ce are the weighting constants, and d1 and d2 are the distance thresholds at
which the reward approaching the goal path can be obtained.

In order to improve the accuracy of the visual localization mentioned in Section 2.2.1,
the visual localization stabilization term ph is depicted as follows, with ch being a negative
constant and φ∗ being the angle threshold:

ph =

{
ch if

∣∣φ1
t+1 −φ1

t
∣∣ ≥ φ∗

0.0 if
∣∣φ1

t+1 −φ1
t
∣∣ < φ∗

(12)

where φ1
t and φ1

t+1 are the head angles of the snake robot at timestep t and t + 1.
The Proximal Policy Optimization (PPO) algorithm is adopted to train policy πψ, which

is represented by a fully connected network with 3 Tanh hidden layers of [64, 32, 32] units.

2.2.3. Gait Executive Layer

The gait executive layer is the second stage of the hierarchical control framework,
which is controlled by the high-level action at and presents a modified motion gait via the
gait equation shown in Equation (7). The low-level control law is illustrated as follows:

ulow = φi(t) (13)

The generated control command ulow of the joint angels is directly sent to a snake
robot and helps it to change the motion direction and then converge to the desired path.

3. Results

In this section, the hierarchical path following policy is firstly trained and then tested in
the simulation, and the training efficiency and the effectiveness of the proposed algorithm
are verified. Subsequently, the trained policy is directly transferred to real-world experi-
ments, and several experiments are implemented on a practical snake robot to validate the
actual following performance for different desired paths.

3.1. Simulations

The simulation environment is developed based on the Mujoco [26] simulator, and the
model of the snake robot is composed of nine connection modules with a pair of pas-
sive wheels and eight yaw joints. During training, the start point of the snake robot is
(0 m, 0 m). The desired paths are straight lines y = y∗ ∈ [−1.5 m, 1.5 m], sinusoidal curves
y = A sin ωx + φ, A ∈ [0.2 m, 1.0 m], ω ∈ [π

2 rad, πrad], φ ∈ [−1.5 m, 1.5m], and circles
x2 + y2 = R2, R ∈ [1.5 m, 3.0 m], respectively. The target point is a random point on the
desired path with an x−coordinate x∗ ∈ [4.0 m, 5.0 m]. The end-to-end PPO algorithm,
which takes the same state as the input and directly outputs joint angles, is selected as the
comparative method to demonstrate the training efficiency and tracking performance of
the proposed algorithm. Firstly, the comparison of the mean reward of an episode between
the two methods is depicted in Figure 2.

The training results demonstrate that the proposed hierarchical control method achieves
a superior training performance with a higher episode reward and faster convergence speed
compared with the comparative method. Specifically, the proposed method converges to
higher episode reward within about 1M timesteps, while the comparative method slowly
converges to a reward value that is less than one-third of that of the proposed method at
about 2M timesteps, which clearly indicates the strong path following ability and reliable
training efficiency of the proposed method.
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Figure 2. Mean reward of an episode for the proposed hierarchical method and the end-to-end
comparative method.

To verify the following performance of the learned policy, the path following tests are
performed on three different types of desired paths, and the following results are shown in
Figures 3–5. It is indicated that the snake robot converges to the desired path agilely and
accurately, and then it keeps following the path with small tracking errors driven by the
proposed method, implying the superior path following ability of the hierarchical trained
policy; in comparison, under the control of the end-to-end comparative method, the snake
robot requires longer convergence time and presents larger tracking errors.

Figure 3. Simulation path following results of the desired line for the proposed hierarchical method
and the end-to-end comparative method.



Sensors 2022, 22, 9867 8 of 12

Figure 4. Simulation path following results of the desired sinusoidal curve for the proposed hierar-
chical method and the end-to-end comparative method.

Figure 5. Simulation path following results of the desired circle for the proposed hierarchical method
and the end-to-end comparative method.

3.2. Experiments

To validate the actual performance of the proposed method, two groups of hardware
experiments are conducted on a self-built practical snake robot, and the results and analyses
are provided in this part. Specifically, the snake robot is composed of visual localization
module and motion modules, where the visual localization module contains a RealSense
D435i camera for capturing images and a Dynamixel AX-12A actuator serving as the
pan-tilt, and each 3D-printed body module has a mass of 0.416 g; it consists of a Hitec
HS-5585MH actuator, a lithium battery pack with a voltage of 7.4 V, a wireless serial port
and a pair of passive wheels.
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Firstly, to examine whether visual localization stabilization term ph improves the localiza-
tion accuracy by reducing head swings, we compare the accuracy of the visual localization for
the trained policies with and without the stabilization item ph, and the comparative results are
depicted in Figure 6. To intuitively present the accuracy of the visual localization, the position
and orientation results obtained by visual localization are compared with the results of the
motion capture system Qualisys Track Manager (QTM). The desired path is y = −0.1, the start
point of the snake robot is (1.0 m, 0.6 m), and the initial orientation is π

2 .
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Figure 6. Results of visual localization for the trained policies with and without the visual stabilization
item ph. (a) Position results. (b) Orientation results.

From the results depicted in Figure 6, it is clear that the results of the visual localization
are close to the actual results regardless of the position or orientation under the control of
the proposed method. In contrast, under the control of the comparative method without
the stabilization item ph, the position and orientation of the snake robot (denoted by the
solid blue lines shown in Figure 6) are only obtained at the beginning of the experiment,
and subsequently, this information cannot be updated and the robot fails to follow the
desired path, which is caused by the loss of visual target by the camera mounted on the
head. At the beginning of the path following, the comparative method tends to generate a
relatively large joint angle of the head to rapidly change the motion direction of the robot,
thereby improving the convergence speed of the robot. However, the large head angle
leads to a violent head swing, so the camera mounted on the head loses the visual target
and thus, the pan-tilt cannot successfully compensate the joint angle of the head.

Subsequently, different actual experiments for a straight line and a circle are carried
out to evaluate the following accuracy of the proposed hierarchical path following method.
For the straight-line path following, y = 0.0 is taken as the desired path, and the start point
of the snake robot is (0.0 m,−0.9 m). Then, circle x2 + y2 = 4 is chosen as the desired path,
and the start point is (−0.25 m, 2.0 m). The following results are illustrated in Figures 7
and 8, which denote that the learned hierarchical path following policy can be directly
transferred to the practical system and successfully drive the snake robot to converge to
and then follow the desired paths.

Figure 6. Results of visual localization for the trained policies with and without the visual stabilization
item ph. (a) Position results. (b) Orientation results.

From the results depicted in Figure 6, it is clear that the results of the visual localization
are close to the actual results regardless of the position or orientation under the control of
the proposed method. In contrast, under the control of the comparative method without
the stabilization item ph, the position and orientation of the snake robot (denoted by the
solid blue lines shown in Figure 6) are only obtained at the beginning of the experiment,
and subsequently, this information cannot be updated and the robot fails to follow the
desired path, which is caused by the loss of visual target by the camera mounted on the
head. At the beginning of the path following, the comparative method tends to generate a
relatively large joint angle of the head to rapidly change the motion direction of the robot,
thereby improving the convergence speed of the robot. However, the large head angle
leads to a violent head swing, so the camera mounted on the head loses the visual target
and thus, the pan-tilt cannot successfully compensate the joint angle of the head.

Subsequently, different actual experiments for a straight line and a circle are carried
out to evaluate the following accuracy of the proposed hierarchical path following method.
For the straight-line path following, y = 0.0 is taken as the desired path, and the start
point of the snake robot is (0.0 m,−0.9 m). Then, circle x2 + y2 = 4 is chosen as the
desired path, and the start point is (−0.25 m, 2.0 m). The following results are illustrated
in Figures 7 and 8, which denote that the learned hierarchical path following policy can
be directly transferred to the practical system and successfully drive the snake robot to
converge to and then follow the desired paths.
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Figure 7. Path following results of the desired line for the proposed hierarchical method.

Figure 8. Path following results of the desired circle for the proposed hierarchical method.

4. Discussion

We can observe that the experimental results shown in Figure 8 exhibit the following
performance of a snake robot for a quarter circle rather than an entire circle. This is because
the number of the visual marker and the maximum rotation angle of the pan-tilt in our
experiment are both limited; that is, there is only one fixed visual marker, and the rotation
angle of the pan-tilt is limited to (−140◦, 140◦). When the snake robot tracks the remaining
three-quarters of the circle, the direction of the robot head will be opposite to the direction
of the visual marker so that the angle that the pan-tilt needs to compensate for is larger than
the maximum rotation angle, and the visual localization cannot be successfully completed.

Additionally, it is noteworthy that the accuracy of the path following in simulations
and experiments mainly depends on the accuracy of localization. However, in this paper,
an external visual marker is employed to assist positioning, which introduces additional
systematic errors. In addition, the lack of diversity of the input data sources, i.e., only a
monocular camera, limits the robustness and stability of the localization.

Future work: In future, we will focus on more intelligent methods to solve the prob-
lems mentioned above. Firstly, we will adopt multiple visual markers to assist the visual
localization. When the direction of the head changes, a snake robot will autonomously
select a visual marker in the corresponding direction to update its position so as to achieve
the all-around visual positioning and track the path in any direction. In addition, we will
focus on multi-sensor fusion technologies, where the sensors include GPS, IMU, camera,
radar, etc., to complete autonomous perception without any external assistance, which
will further improve the intelligence of perception and expand the application scenarios of
snake robots. Finally, in order to further improve the robustness of the proposed method,
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some extrinsic perturbations will be imposed on a snake robot during training, including
external force disturbance, sensory information noise and changes in physical parame-
ters, thereby promoting the adaptability of a snake robot to system errors and changes in
different application scenarios.

5. Conclusions

In this paper, a hierarchical RL-based control method is proposed to achieve satisfac-
tory path following performance for snake robots with an onboard camera. Specifically,
firstly, the hierarchical path following method, consisting of the RL policy training layer
and the gait executive layer, optimizes the learning efficiency, exhibits reliable path fol-
lowing ability, and guarantees the transferability of the learned policy to the practical
system by sufficiently combining the advantage of the RL policy network and the gait
equation. Subsequently, the position of a snake robot can be updated in real time via
visual localization due to the introduction of the visual localization stabilization item in the
reward function. A series of simulation and hardware experimental results validate that
the proposed method is capable of achieving a precise and fast convergence with respect to
the path following tasks for a snake robot with autonomous visual perception.
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