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Abstract: Pragmatic, objective, and accurate motor assessment tools could facilitate more frequent
appraisal of longitudinal change in motor function and subsequent development of personalized
therapeutic strategies. Brain functional connectivity (FC) has shown promise as an objective neuro-
physiological measure for this purpose. The involvement of different brain networks, along with
differences across subjects due to age or existing capabilities, motivates an individualized approach
towards the evaluation of FC. We advocate the use of EEG-based resting-state FC (rsFC) measures
to address the pragmatic requirements. Pertaining to appraisal of accuracy, we suggest using the
acquisition of motor skill by healthy individuals that could be quantified at small incremental change.
Computer-based tracing tasks are a good candidate in this regard when using spatial error in tracing
as an objective measure of skill. This work investigates the application of an individualized method
that utilizes Partial Least Squares analysis to estimate the longitudinal change in tracing error from
changes in rsFC. Longitudinal data from participants yielded an average accuracy of 98% (standard
deviation of 1.2%) in estimating tracing error. The results show potential for an accurate individual-
ized motor assessment tool that reduces the dependence on the expertise and availability of trained
examiners, thereby facilitating more frequent appraisal of function and development of personalized
training programs.

Keywords: motor skill assessment; EEG sensors; resting state functional connectivity; phase lag
index; partial least squares correlation and regression

1. Introduction

There is widespread interest in using objective neurophysiological measures for as-
sessment and monitoring of longitudinal change in motor function [1–5]. Addressing the
technical and pragmatic challenges associated with estimating motor function might help
bring about more frequent assessments and facilitate the development of a personalized
training strategy. Pragmatic considerations should include cost, availability, and duration
of the assessment. Device portability and elimination or reduction of required physical
tasks can help in this regard. With respect to technical considerations, the assessment tool
must achieve comparable accuracy to conventional protocols used for evaluating motor
function and require minimal expertise to carry out the measurements.

Execution of motor tasks involves synchronized activities of broad areas of the
brain [6,7]. The selection of relevant neurophysiological measures should therefore al-
low for the evaluation of wide-ranging network interactions. Brain FC is a good candidate
in this regard. FC is generally quantified in terms of correlation in activities of different
brain areas [8]. Empirical research with electroencephalography (EEG) has shown that
engagement and communication between brain regions are facilitated through neural
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synchronization at different frequencies [9,10], and that the synchronization parameters can
be used as metrics to quantify FC between associated brain areas [11]. The high temporal
resolution of EEG systems is favourable towards accurate measurement of synchronization
(coherence) between different regions of the brain and is why EEG systems are commonly
used in studies where coherence is selected as a measure of FC. This dynamic change in FC
is at play for both task-based and resting state activities of the brain [12]. Prior studies have
investigated the changes in rsFC of stroke survivors during acute and sub-acute phases as
a consequence of rehabilitation [13,14] and its contribution towards prediction of future
outcome and stratification [15]. Resting state FC has also been used to investigate the global
network interactions and their influence on motor performance in healthy individuals [16].
The resting state analysis eliminates the need for execution of physical tasks and can po-
tentially result in a shorter assessment time. When considering the relative low cost and
portable nature of EEG systems, the use of rsFC for estimating motor function can meet the
pragmatic requirements of the assessment tool.

Pertaining to technical considerations and specifically the accuracy of assessment,
rsFC has shown promise in estimating motor function [17,18]. In these studies, coherence
at different canonical frequency bands were used as a measure of rsFC and Fugl-Meyer
assessment scores were used as a measure of motor impairment in stroke survivors. Par-
tial Least Squares (PLS) algorithms were applied to estimate motor function from rsFC
measures. PLS is a multivariate statistical method that uses singular value decomposition
to project the covariance of input variables onto the latent space for correlation analysis
and generation of regression models for the prediction of dependant variables [19]. PLS
is particularly useful when working with very large number of independent variables
and a small number of observations [20]. Although these studies showed good results in
estimating motor function, the accuracy of the algorithms was evaluated against subjective
measures (Fugl-Meyer scores) that quantify relatively large changes in motor function [21].
As an example, the hand movement from ipsilateral ear to contralateral knee for each of
the shoulder, elbow, and the forearm was assessed with score levels quantified at 0 (can not
be performed), 1 (partial motion), and 2 (full motion) [22]. To gain a better understanding
of the estimation accuracy of these algorithms, their performance needs to be evaluated
against a more objective measure of behavior that can be quantified at smaller incremental
change as compared with conventional assessment protocols. Specific to motor function,
longitudinal acquisition of a skill by healthy individuals through physical training is a
good candidate for this purpose. Computer-based tracing tasks, where the deviation from
graphical tracks is used for the assessment of tracing skill, are an example of such objective
measures. The ability of the algorithms to accurately estimate modest changes in motor
skill may prove useful in addressing the technical requirements of the assessment tool.

Longitudinal motor learning studies with healthy participants using functional mag-
netic resonance imaging showed that some areas of the brain exhibited a transient change
in FC while other areas showed a more lasting change towards consolidation and long-
term retention [23–25]. This persistent change in FC has the potential for quantifying,
and subsequently estimating the change in motor skill. Prior work using EEG modality
showed correlation between rsFC and motor learning [26], with several studies focusing
on the ability of generalized global configuration of FC to estimate skill acquisition in
healthy participants [27–32]. The authors showed interaction between a wide range of
brain networks at different synchronization frequencies for motor learning. Involvement
of different networks and frequencies, along with differences across subjects due to age
or existing capabilities, motivates an individualized approach towards the evaluation of
correlating FC measures. As such, we explored a longitudinal motor skill training program
involving a computer-based tracing task, in which healthy participants used a computer
mouse with their non-dominant hand to trace a predetermined and non-trivial pattern on
a computer screen. The aim was to improve motor skill by attempting to reduce tracing
error over a period of six to eight training sessions spread over as many days. Tracing error
was used as an objective measure of behavioral performance that could be quantified at
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small incremental changes. Resting state EEG data were collected before and after each
training session and used for the evaluation of rsFC. We then investigated the accuracy
of an individualized PLS method in estimating longitudinal change in skill from changes
in rsFC.

2. Materials and Methods
2.1. Study Design
2.1.1. Workflow

Figure 1 shows the experimental workflow for data collection and analysis. Tracing
errors during physical training were used to appraise the change in acquired motor skill.
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Figure 1. Experimental workflow for data collection and analysis.

2.1.2. Setup

We used a 32-electrode gel-based EEG cap (g.Nautilus, g.tec medical engineering,
Austria) operating at a sampling rate of 250 Hz, and OpenVibe v2.2 for data acquisition
and storage. The reference electrode was placed on the right earlobe, with the ground
electrode located midway between FZ and FPZ. We applied enough conductive gel to
maintain contact impedance below 30 K-Ohm. Recorded EEG data were imported into
MATLAB-7.8.0 (MathWorks Inc., Natick, MA, USA) for signal processing and analysis.

Python 3.7 was used to create our experimental track patterns on a computer screen.
We opted for elliptical trajectories instead of straight lines [31] to increase the degree of
difficulty for tracing tasks. The track was constructed from eight quarter-ellipses that were
arranged to form a four-section curved-pattern, as shown in the inset (top-left corner) of



Sensors 2022, 22, 9857 4 of 14

Figure 2. In this figure, the green dot represents the starting point for the placement of the
mouse pointer before tracing the corresponding track towards the red dot. The selection
of the active track section was controlled through the program, as explained later in the
protocol. We adjusted the pointer speed so that the distance between opposing tips of the
track pattern corresponded to approximately 35 cm of mouse travel across the torso (x-axis:
left to right) and 25 cm away from the torso (y-axis: top to bottom). The rational was to
promote large enough physical movements to engage multiple arm joints without the need
to move the torso. We also disabled the driver option that caused a non-linear relation
between the pointer’s speed and the mouse acceleration. The objective was to maintain
relational consistency between the mouse and pointer coordinate systems. The horizontal
area in physical space was thus represented by pixels on the computer screen, and time
was measured through the computer’s real-time clock. Total position–error while tracing a
track section was determined by the area (in pixels) between the actual pointer trajectory
(Trace) and the desired track path (Track), as shown in Figure 2.
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Figure 2. Participants’ tracing trajectory over a track section. The position–error is the total area
between the Trace (red) and Track (blue) section. The inset at the top-left corner shows the complete
track pattern. The green and red dots identify the active track to be traced. Axes are in units of screen
pixels. Reproduced with permission from [33].

2.1.3. Participants

Seven healthy right-handed participants, HP1 through to HP7 (Mean Age = 38.7,
SD = 21.5, 3 females), volunteered for the research study. Participants had no known
neurological conditions, artifact-inducing implants, or physical conditions that would
exclude them from the study. The Research Ethics Board of Simon Fraser University
approved the protocol for this study, and all participants signed informed written consent
forms.

2.1.4. Protocol

Every participant completed a longitudinal experiment that included seven sessions,
limited to a single session per day over two weeks. Each session consisted of four phases.
There were no breaks in between or during each phase unless the participant specifically
asked for one due to fatigue.

• Phase-1: The pre-training 5-min resting state EEG data collection. Participants were
asked to sit comfortably upright with their feet flat on the floor, still and quiet with
their eyes closed, but awake. Participants were notified of the start of EEG recording.

• Phase-2: An 8-trial test, with each trial including a tracing task with the right hand
(dominant hand). Data from Phase-2 were collected but not used in this study.
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• Phase-3: 90-trial training, with each trial including a tracing task with the left hand
(non-dominant hand). These trials were over a randomly selected section of track and
direction of tracing. Participants were asked to move the mouse on the table using only
their arm and not their torso. Participants were prompted to move the mouse-pointer
to the vertex identified by the green dot and instructed to trace the track towards the
vertex with the red dot (Figure 2). They were asked to trace quickly and accurately,
without compromising one for the other. To complete each trial, participants had
to keep the pointer at the destination vertex for one second. This would penalize
performance indicators when moving too fast to stop at the destination vertex.

• Phase-4: Post-training 5-min resting state EEG data collection.

Each session lasted between 70 to 90 min depending on EEG setup time and the
participants’ tracing speed during Phase-3.

2.2. Tracing Performance

Position–error between the participants’ tracing trajectory and the intended track
pattern was selected as one of the performance indicators. Time taken to trace each section
(trial) was selected as another indicator. Total position–error during a trial was determined
by the area between the trace and track trajectories (Figure 2). To discourage participants’
attempt to reduce position–error by tracing slower, we used each trial time as a penalizing
(multiplication) factor to inflate the respective position–error. Conversely, to discourage
participants’ attempt to reduce trial time by moving the mouse too quickly to stop at the
destination vertex, we accumulated positional offsets from the track endpoint until the
pointer came to rest at the destination vertex.

We used both accumulated position–error as well as the accumulated product of
position–error and its corresponding tracing time from each trial, as two separate indictors
of tracing performance. Changes in motor skill between sessions were reflected in variations
in the magnitude of one or both of these measures. The selection of two metrics was our
attempt in addressing the differences in participants that were more focused on tracing error
rather than the tracing speed (or vice versa). We speculate that these may involve different
interacting brain regions. Participants were updated on their tracing performance after
each training session. Position–error was measured in units of pixels-squared, representing
the area between the track and trace trajectories, and was converted to spatial units of
squared-centimetres (cm2) based on an estimated coverage of 0.25 mm2 per pixel. The
product of position–error and its associated tracing time was measured in units of cm2 s.

Each training session consisted of 90 tracing trials, generating 90 intermediate per-
formance values. We used two different approaches to produce a measure of tracing
performance for each session. First, a single value corresponding to the median of all
90 trials (single-median option), and second, the median of the first 30 trials as a measure
of performance before training, and the median of the last 30 trials as a measure of per-
formance after training (dual-median option). The two measures allowed for separate
evaluation of consolidated and short-term learning.

2.3. EEG Data Processing

Longitudinal EEG data from each participant were processed independently of the
other participants, making this an individualized assessment rather than a cross-sectional
or inter-participant analysis. We used an EEG sampling frequency of 250 Hz and a frontend
finite impulse response bandpass filter of 1–45 Hz. We defined five canonical frequency
bands specified as Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–15 Hz), Beta (15–30 Hz),
and Gamma (30–45 Hz) for our second stage filters and band separation. We further
divided each band into low, medium, and high sub-bands, resulting in 15 distinct center-
frequencies and 15 different Morlet wavelets for bandpass filtering [34]. Center-frequencies
were approximately one bandwidth apart. We used coherence as a measure of functional
connectivity. In general, evaluation of coherence could involve the use of both amplitude
and phase. Spectral coherence is an example of this. Excluding the power is commonly
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referred to as synchronization. For the sake of simplicity, we use the term coherence and
synchronization interchangeably, but clarify that spectral coherence involves the evaluation
of phase synchronization that is modulated by power. We computed the instantaneous
coherence through five different algorithms, namely Phase-Clustering, Spectral Coherence,
Imaginary part of Coherence, Phase Lag Index (PLI), and weighted PLI [34]. Coherence was
evaluated for every combination of electrode-pairs (496 channels) at each of the 15 center
frequencies. Resulting coherence measures from each algorithm were then separately
averaged over 1-s non-overlapping epochs, generating a total of 300 samples for each
channel and at each frequency. For the sake of consistency with our prior study with
stroke survivors [18], we used only a 2-min section (120 samples), starting at an offset
of 30-s from the beginning of EEG data for PLS analysis. The 30-s offset was selected
to allow the participants to settle into a resting state, in particular for post-training EEG
collections where the participants may have still been thinking about their tracing tasks.
For each of the five coherence evaluation algorithms, we used the maximum sample value
(peak-detected) out of the 120-sample window to generate a single connectivity index for
each channel. Both single-median and dual-median behavioral measures were used for
correlation analysis with the connectivity indices. We selected the median of all 90 trials
for each session as the behavior data (tracing performance) associated with that session
for the single-median option. These were used for correlation analysis with connectivity
indices from both the pre- and post-training EEG data separately. For the dual-median
option, a correlation analysis was carried out between the median of the first 30 trials and
the connectivity indices from the pre-training EEG, and the median of the last 30 trials with
that of post-training EEG.

2.4. PLS Analysis

PLS takes advantage of principal component analysis to address the potential collinear-
ity that might exist between a large number of independent variables in the feature space.
Similar approaches such as principal component regression try to achieve this by first
finding the orthogonal components of the independent variables and then selecting the
first few components to develop a regression model for predicting the dependant variable.
Although these components can optimally explain the variance in the independent vari-
ables, there is no guarantee that they are the most relevant predictors of the dependant
variable [20]. PLS regression, however, finds the principal components of the covariance
of the independent and dependant variables and builds a regression model through an
iterative deflation process.

We used PLS Correlation (PLSC) to identify the most robust channels and frequencies
that contributed towards correlation between the connectivity indices and the selected
measure of tracing performance [35]. We selected the options with the lowest p-values
for this purpose. We repeated the process 50 times for each participant and selected the
channels that were consistently present in over 80% of the repetitions and at the same
level of robustness. We used permutation for quantifying the p-values and bootstrap to
test for robustness. The resulting connectivity indices for the identified channels and
frequencies were then used in PLS-Regression (PLSR) to produce a model for estimating
the corresponding tracing performance. In brief, singular value decomposition of the
covariance matrix generates the first set of latent vectors for the dependant and independent
variables that explain the largest variance. The first regression coefficient in the latent space
was computed from these vectors. The vectors were also used to compute an estimate of the
input matrices that were subsequently used to deflate them. The process was then repeated
with the deflated matrices until full deflation or stopped after finding a reduced number
of predictive latent variables. The regression coefficients were then brought back into the
feature space to construct a model for estimating the dependant variable from independent
variables [20,35].

The estimation accuracy was examined through a cross-validated leave-one-out ap-
proach over the seven training sessions and quantified by the root-mean-square-error
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(RMSE) in estimation. The estimation error was presented as a percentage of the average
tracing error obtained from the selected single- or dual-median option. The ratio of estima-
tion RMSE over average tracing error allowed for comparison between estimation accuracy
from different tracing performance measures obtained through position or position–time
error. Data from participants with multiple combinations of contributing channels and
frequencies were passed through iterative PLSR analysis. The goal was to find the specific
combination that resulted in the smallest RMSE in estimating the tracing performance with
the lowest number of contributing channels that resulted in a statistical power of 0.8 at
α = 0.05 for the number of available samples for each participant.

3. Results
3.1. Data Collection

We carried out 53 training sessions, collected over 500 min of EEG data and 4700 tracing
trials from seven participants. Data from four sessions were discarded due to external
noise and technical recording issues. Except for HP1 and HP2, all other participants had
7 training sessions with 70 min of EEG data and 630 tracing performance measurements
for each participant. Participant HP2 had to stop after 6 sessions and participant HP1
volunteered for 8 sessions.

3.2. Tracing Performance

Figure 3 shows the results of longitudinal training for participant HP1 with position
error (blue bars) and position–time error (red bars) from all 90 tracing trials. The bullseye
represents the median value. The results for the first and last 30 tracing trials were similar
in nature and were omitted for the sake of clarity and space. Note that a change in one
metric without a corresponding change in the other could be used to identify and isolate
the active metric. For example, a participant that focuses primarily on the position error
may achieve a change in this measure of performance by slowing the speed of tracing.
This could potentially appear as very little overall change in position–time measures. The
opposite situation would correspond to a participant that focuses primarily on speed with
less attention to positional error. These activities may involve different groups of interacting
brain areas, resulting in different models for predicting the tracing performance. Figure 4
shows the longitudinal training results for the remaining participants HP2 to HP7 but is
limited to the final selection of the position or position–time errors after PLSR analysis, as
shown in Table 1.
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Figure 3. Longitudinal tracing performance for HP1 during 8 sessions of physical training program
with 90 trials in each session. Performance is in terms of position error (blue bars) and product of
position error and time (red bars). The bullseye indicates the median value. Corresponding results
from the first and last 30 trials were similar in nature and were excluded for the sake of clarity.
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Table 1. PLS analysis of the rsFC from pre- or post-training EEG data. PLSC was used to identify
the contributing channels and frequency bands that correlated with the tracing performance at
p-value < 0.05 (uncorrected). The selection of channels was based on robustness of contribution
and was evaluated through bootstrapping. PLSR was used to generate the estimation model. The
number of channels was further reduced iteratively to obtain a statistical power of 0.8 at α = 0.05
for the estimation model. RMSE is calculated through a cross-validated leave-one-out approach for
each model.

Participant EEG Freq. Band Tracing Performance Channels R2 RMSE (%)

HP1 Pre-training Beta-High (27 Hz) Single-median Pos-time 5 0.988 4.29
HP2 Post-training Alpha-High (13 Hz) Dual-median Pos-only 3 0.986 1.06
HP3 Pre-training Beta-Med (21 Hz) Single-median Pos-only 2 0.855 1.81
HP4 Post-training Beta-Med (21 Hz) Single-median Pos-time 4 0.995 1.15
HP5 Pre-training Beta-Low (16 Hz) Dual-median Pos-time 4 0.997 0.98
HP6 Pre-training Beta-Low (16 Hz) Dual-median Pos-time 4 0.982 1.60
HP7 Pre-training Beta-High (27 Hz) Single-median Pos-only 3 0.943 2.98
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3.3. PLS Analysis

Synchronization values using the PLI algorithm, averaged over 1-s non-overlapping
epochs, and peak-detected across a 2-min EEG interval at a start-offset of 30-s, resulted in
strong correlation (p < 0.05 uncorrected) between the tracing performance and connectivity
indices. For most participants, PLSC analysis generated multiple combinations of promising
correlation between rsFC extracted from pre- or post-training EEG data and different tracing
performance measures. We used bootstrapping to identify the most robust channels and
center frequencies that contributed towards the correlation with tracing performance. PLSR
analysis was constrained to these channels and frequencies. We generated a regression
model for each combination and applied cross-validated leave-one-out approach to evaluate
the estimation RMSE, which was subsequently used to represent the estimation accuracy.
We then selected the model with the lowest RMSE as the best performing estimator of
the change in motor skill for that participant. RMSE was presented as a percentage of the
average tracing error for the respective participant. This allowed for comparison between
estimation accuracy from different tracing performance measures obtained through position
or position–time error.

Regression coefficients represent the contribution of corresponding channels (pre-
dictors) at the identified frequency bands towards estimating the tracing performance
(behavior) from rsFC indices. The small number of training sessions (samples) for each par-
ticipant has a negative impact on the statistical power of our analysis. We therefore aimed
to reduce the number of predictors to counter the effects of our small sample size. The aim
was to reduce the channel count to the maximum number of predictors that resulted in a
statistical power of greater than 0.8 at α = 0.05, given the R2 and the number of samples
(sessions) for the respective participant. To achieve this, we iteratively removed the channel
with the lowest regression coefficient, based on the argument that these channels would
have less impact on the overall estimation accuracy compared to the channels with the
higher regression coefficients. Table 1 shows the channel count and the corresponding R2

that resulted in a statistical power of greater than 0.8. The specific electrode-pairs associated
with each channel are presented in Table 2. The difference in contributing channels for each
participant highlights the motivation behind an individualized approach in development
of models for estimating longitudinal change in motor skill.

Table 2. Contributing channels in the individual regression models for predicting the respective
motor skill. Channel-3 for HP3 (Italicized) was excluded from the final model to reduce the number
of predictors, thereby increasing the statistical power at the given R2.

Participant Channel-1 Channel-2 Channel-3 Channel-4 Channel-5

HP1 T7–CP6 FC1–P4 C4–P3 PZ–OZ FZ–FC5
HP2 F7–FC6 C3–CP5 F3–PO4
HP3 CP1–P3 AF3–FC2 F8–C4
HP4 FC2–PO4 FP1–CP1 FZ–T7 AF3–T8
HP5 FP1–T8 C4–PO3 F3–CP1 PZ–PO4
HP6 C4–P3 AF4–OZ FC5–FC2 F8–CP5
HP7 FZ–T8 F3–P8 C3–PO4

Figure 5 shows the results of the cross-validated leave-one-out approach in graphical
form. The linear-fit in each graph is generated by the line-of-best-fit using least-squares
method. We set the y-intercept to 0 under the assumption that the line should pass through
the origin. The mean slope of the Linear-fit was at 0.997. Removing this constraint did not
introduce a change in the mean slope of the Linear-fit.



Sensors 2022, 22, 9857 10 of 14Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 5. Linear fit of the estimated versus actual tracing performance from a cross-validated leave-
one-out approach for each participant. A separate regression model was developed for each partic-
ipant. The participants’ motor skill was estimated from their corresponding rsFC measures, as iden-
tified in Table 1. 

4. Discussion 
The primary objective in this study was to investigate the accuracy of a proposed 

individualized method for estimating modest incremental change in motor skill from ob-
jective neurophysiological measures. The methodology was expected to address the tech-
nical and pragmatic challenges associated with appraisal of motor function to facilitate 
more frequent assessments. rsFC was selected as the objective neurophysiological meas-
ure to allow for the evaluation of wide-ranging network interactions while eliminating 
the need for execution of physical tasks during assessments. We focused on EEG systems 
as the measurement modality of choice due to their portability, relative low cost, and be-
cause they require a minimal level of the examiners’ expertise and time. These were criti-
cal design requirements for a tool that could potentially facilitate more frequent individ-
ualized assessments of motor function and subsequent development of personalized in-
tervention strategies. We opted to use computer-based tracing tasks to evaluate spatial 
error in tracing as an objective measure of motor skill that could be quantified in small 
incremental changes. PLSC analysis was applied to limit the number of contributing EEG 
channels for estimating change in skills, followed by PLSR analysis to build a model for 
estimation. We further reduced the number of predictors (channels) in our estimation 
model to maintain a statistical power of ≥0.8. The proposed approach resulted in an aver-
age estimation accuracy of 98% with a standard deviation of 1.2%. At this level of accuracy 
in estimating objective measures of behavior, the proposed method may have the poten-
tial to provide intermediate valuations of motor function from subjective measures of be-
havior that inherently have larger margins of error [17,18,21]. 

PLSC analysis resulted in multiple combinations of behavioral and neurophysiolog-
ical measures for each participant. The identified channels (electrode-pairs) for each par-
ticipant were more consistent for rsFC at similar frequency bands and using the same 
tracing performance option (Pos-only or Pos-time). The latter may indicate the involve-
ment of different brain areas when combining the precision of tracing (Pos-only error) 
with corresponding speed of tracing (Pos-time error) as a measure of change in motor 

Es
tim

at
ed

 (c
m

2 .se
c)

Es
tim

at
ed

 (c
m

2 )

Es
tim

at
ed

 (c
m

2 )

Es
tim

at
ed

 (c
m

2 .se
c)

Es
tim

at
ed

 (c
m

2 .se
c)

Es
tim

at
ed

 (c
m

2 .se
c)

Es
tim

at
ed

 (c
m

2 )

Figure 5. Linear fit of the estimated versus actual tracing performance from a cross-validated
leave-one-out approach for each participant. A separate regression model was developed for each
participant. The participants’ motor skill was estimated from their corresponding rsFC measures, as
identified in Table 1.

4. Discussion

The primary objective in this study was to investigate the accuracy of a proposed
individualized method for estimating modest incremental change in motor skill from
objective neurophysiological measures. The methodology was expected to address the
technical and pragmatic challenges associated with appraisal of motor function to facilitate
more frequent assessments. rsFC was selected as the objective neurophysiological measure
to allow for the evaluation of wide-ranging network interactions while eliminating the
need for execution of physical tasks during assessments. We focused on EEG systems as
the measurement modality of choice due to their portability, relative low cost, and because
they require a minimal level of the examiners’ expertise and time. These were critical
design requirements for a tool that could potentially facilitate more frequent individualized
assessments of motor function and subsequent development of personalized intervention
strategies. We opted to use computer-based tracing tasks to evaluate spatial error in
tracing as an objective measure of motor skill that could be quantified in small incremental
changes. PLSC analysis was applied to limit the number of contributing EEG channels for
estimating change in skills, followed by PLSR analysis to build a model for estimation. We
further reduced the number of predictors (channels) in our estimation model to maintain a
statistical power of ≥0.8. The proposed approach resulted in an average estimation accuracy
of 98% with a standard deviation of 1.2%. At this level of accuracy in estimating objective
measures of behavior, the proposed method may have the potential to provide intermediate
valuations of motor function from subjective measures of behavior that inherently have
larger margins of error [17,18,21].

PLSC analysis resulted in multiple combinations of behavioral and neurophysiological
measures for each participant. The identified channels (electrode-pairs) for each participant
were more consistent for rsFC at similar frequency bands and using the same tracing
performance option (Pos-only or Pos-time). The latter may indicate the involvement
of different brain areas when combining the precision of tracing (Pos-only error) with
corresponding speed of tracing (Pos-time error) as a measure of change in motor skill.
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Similarly, synchronization at different frequency bands may indicate an alternative group
of neural networks associated with different aspects of skill improvements [9,36–38]. This
is further complicated by the individualized nature of learning as can be seen from Table 2.
While this study was not focused on cross-participant analysis, it is important for future
studies to focus on the localization of most predicting electrode-pairs for a generalized
model [18]. This study was focused on evaluating the estimation accuracy of the proposed
method rather than identifying the contributing brain areas. Source localization algorithms
may have to be applied to better understand the relationship between synchronization
frequency and contributing brain areas [9,39]. Prior studies with healthy participants had
shown rsFC as a predictor of skill acquisition and the extent of global connectivity as
indicators of future motor performance [27,31]. This is consistent with our results with per-
training rsFC as predictors of tracing errors. We expected that training-related changes in
rsFC would consolidate several hours after the training session [6,40] and would therefore
relate to the next pre-training tracing performance. We can see this from the results in
Table 1 for five of the participants. The relationship with post-training performance (HP2
and HP4) might be worth further investigation in future studies with larger numbers of
participants.

Concerning the measure of tracing performance, we selected the first and last 30 trials
to quantify the pre- and post-training skill levels. This was done based on a cursory
examination of the variance in tracing performance over the course of all training sessions.
Our analysis revealed larger variation in tracing performance for smaller number of trials
(<30) during the earlier sessions than later in the training program. We used the ratio of
the standard deviation of tracing performance over the corresponding median of those
trials (SD-Ratio) for this analysis. This indicated that during earlier sessions when tracing
skill was less developed, we needed more trials to get a reasonable estimate of tracing
performance. However, as training progressed towards later sessions, the participants
could trace more consistently, thereby requiring smaller number of trials. The change
in SD-Ratio between 30 and a lower number of trials during these later sessions were
relatively small, and as such, we opted to use the first 30 trials as a more stable measure
to evaluate the pre-training tracing performance throughout the training program. To
maintain consistency, we used the last 30 trials to measure the tracing performance for
post-training. It should be noted that in some cases we observed a reduction in tracing
performance during the last 30 trials, despite having practiced over the prior 60 trials. This
may reflect a confounding factor related to fatigue. A more comprehensive assessment of
performance variation over different trial-count selections for pre- and post-training may
reveal additional information and is warranted for future studies specific to motor skill
improvement.

Our objective for this study did not necessitate a trendline for changes in motor skill,
nor a statistically significant change in the acquired skill through out the physical training
sessions. Our aim was to investigate the presence of a relationship between rsFC and motor
skill (measured through median tracing performance) and whether the relationship could
be captured with a regression model to accurately estimate the individuals’ tracing perfor-
mance from their respective rsFC. We also did not carry out any cross-participant analysis of
motor performance, as our objective was to develop an individualized assessment method
and not a generalized model to investigate commonality between participants. We specu-
lated that the ability to acquire motor skill was highly individualized and expected to see
large differences between participants with respect to the extent and rate of change in skill.
The results in Figure 4 are in line with this speculation and support our motivation for the
development of individualized models for estimating motor skill.

Inherent in our analysis is the dependence on passage of time. The stable changes
in functional connectivity have been attributed to the development of specialized neural
circuits for fast and efficient execution of tasks. These changes are not necessarily all
associated with an increase in recruitment but also the opposite, indicating that some
networks may have become either more efficient or less important for the respective motor
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skill acquisition [24,41]. We can make similar interpretations about the sign of regression
coefficients in our study to indicate an increase or decrease in network recruitment. The
longitudinal impact of contributing channels is expected to change as motor skill improves
over time. Having a simple and cost-effective tool might facilitate an opportunity to
monitor and track the individualized time dependent changes in contributing channels by
examining the change in their respective regression coefficients. We expect these changes
to be gradual and suggest that new individualized models could be developed based on
a rolling reassessment of the rsFC as new longitudinal samples become available. This
will also allow for the progressive exclusion of older samples and the associated channels
that are less contributing towards the regression model, thereby maintaining the statistical
power of the regression analysis. It may also be possible to expedite this temporal change
in the regression models by influencing the synchronization levels of the contributing
channels through brain stimulation, be it external or through endogenous techniques such
as mental imagery and real-time neurofeedback.

5. Conclusions

In this study we investigated the accuracy of an individualized PLS processing tech-
nique for estimating an objective measure of change in motor skill. We used resting-state
EEG to evaluate functional-connectivity indices and position errors from computer-based
tracing tasks as a measure of motor skill. We carried out a longitudinal motor skill training
program in which seven right-handed healthy participants used a computer mouse with
their non-dominant left hand to trace a pattern on a computer screen. Each participant
went through six to eight training sessions spread over as many days. We used PLSC to
identify the contributing channels specific to each participant and PLSR to develop an
individualized model for estimating the longitudinal change in motor skill of the respective
participant. Using leave-one-out cross-validation technique, we observed an average root-
mean-square estimation error of 1.98%, corresponding to an average estimation accuracy of
98% (standard deviation 1.2%). Considering the pragmatic advantages of using EEG-based
resting-state functional connectivity measures for estimating longitudinal change in motor
skill, the proposed method shows potential towards an objective and highly accurate motor
assessment tool. It may reduce the dependence on the expertise and availability of trained
examiners, thereby facilitating more frequent appraisal of the function and development of
personalized training programs.

Author Contributions: Conceptualization: N.R.; methodology: N.R.; software: N.R.; formal analysis:
N.R., R.D., C.M.; investigation: N.R.; resources: C.M., R.D.; writing—original draft preparation: N.R.;
writing—review and editing: R.D., C.M.; supervision: C.M., R.D.; funding acquisition: C.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Canadian Institutes of Health Research (CIHR-FDN-
148384).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Research Ethics Board of Simon Fraser University (REB#: 20200269
approved on 29 March 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to restrictions for commercial use.

Acknowledgments: The authors thank the members of Menrva Research Group for their valuable
input in this research and HealthTech Connex for providing the EEG system used in this research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Sensors 2022, 22, 9857 13 of 14

References
1. Boyd, L.A.; Hayward, K.S.; Ward, N.S.; Stinear, C.M.; Rosso, C.; Fisher, R.J.; Carter, A.R.; Leff, A.P.; Copland, D.A.; Carey,

L.M.; et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation
roundtable. Int. J. Stroke 2017, 12, 480–493. [CrossRef] [PubMed]

2. Philips, G.R.; Daly, J.J.; Príncipe, J.C. Topographical measures of functional connectivity as biomarkers for post-stroke motor
recovery. J. Neuroeng. Rehabil. 2017, 14, 67. [CrossRef] [PubMed]

3. Stinear, C.M. Prediction of motor recovery after stroke: Advances in biomarkers. Lancet Neurol. 2017, 16, 826–836. [CrossRef]
4. Milot, M.-H.; Cramer, S.C. Biomarkers of recovery after stroke. Curr. Opin. Neurol. 2008, 21, 654–659. [CrossRef]
5. Zhang, X.; D’Arcy, R.; Menon, C. Scoring upper-extremity motor function from EEG with artificial neural networks: A preliminary

study. J. Neural Eng. 2019, 16, 036013. [CrossRef] [PubMed]
6. Krakauer, J.W.; Hadjiosif, A.; Xu, J.; Wong, A.L. Motor learning. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2019; pp.

613–663.
7. Carter, A.R.; Shulman, G.L.; Corbetta, M. Why use a connectivity-based approach to study stroke and recovery of function?

Neuroimage 2012, 62, 2271–2280. [CrossRef]
8. Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [CrossRef]
9. Marino, M.; Liu, Q.; Samogin, J.; Tecchio, F.; Cottone, C.; Mantini, D.; Porcaro, C. Neuronal dynamics enable the functional

differentiation of resting state networks in the human brain. Hum. Brain Mapp. 2018, 40, 1445–1457. [CrossRef]
10. Fries, P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci. 2005, 9,

474–480. [CrossRef]
11. Bastos, A.M.; Schoffelen, J.-M. A Tutorial review of functional connectivity analysis methods and their interpretational pitfalls.

Front. Syst. Neurosci. 2016, 9, 175. [CrossRef]
12. Albert, N.B.; Robertson, E.M.; Miall, C.R. The resting human brain and motor learning. Curr. Biol. 2009, 19, 1023–1027. [CrossRef]

[PubMed]
13. Pirovano, I.; Mastropietro, A.; Antonacci, Y.; Barà, C.; Guanziroli, E.; Molteni, F.; Faes, L.; Rizzo, G. Resting state EEG directed

functional connectivity unveils changes in motor network organization in subacute stroke patients after rehabilitation. Front.
Physiol. 2022, 13, 862207. [CrossRef] [PubMed]

14. Pichiorri, F.; Petti, M.; Caschera, S.; Astolfi, L.; Cincotti, F.; Mattia, D. An EEG index of sensorimotor interhemispheric coupling
after unilateral stroke: Clinical and neurophysiological study. Eur. J. Neurosci. 2018, 47, 158–163. [CrossRef] [PubMed]

15. Fanciullacci, C.; Panarese, A.; Spina, V.; Lassi, M.; Mazzoni, A.; Artoni, F.; Micera, S.; Chisari, C. Connectivity measures
differentiate cortical and subcortical sub-acute ischemic stroke patients. Front. Hum. Neurosci. 2021, 15, 669915. [CrossRef]
[PubMed]

16. Allaman, L. Spontaneous Network coupling enables efficient task performance without local task-induced activations. J. Neurosci.
2020, 40, 9663–9675. [CrossRef]

17. Wu, J.; Quinlan, E.B.; Dodakian, L.; McKenzie, A.; Kathuria, N.; Zhou, R.J.; Augsburger, R.; See, J.; Le, V.H.; Srinivasan, R.;
et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 2015, 138, 2359–2369.
[CrossRef] [PubMed]

18. Riahi, N.; Vakorin, V.A.; Menon, C. Estimating Fugl-Meyer upper extremity motor score from functional-connectivity measures.
IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 860–868. [CrossRef]

19. McIntosh, A.R.; Lobaugh, N.J. Partial least squares analysis of neuroimaging data: Applications and advances. Neuroimage 2004,
23, S250–S263. [CrossRef]

20. Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev.
Comput. Stat. 2010, 2, 97–106. [CrossRef]

21. See, J.; Dodakian, L.; Chou, C.; Chan, V.; McKenzie, A.; Reinkensmeyer, D.J.; Cramer, S.C. A standardized approach to the
Fugl-Meyer assessment and its implications for clinical trials. Neurorehabil. Neural Repair 2013, 27, 732–741. [CrossRef]

22. Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of
physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [PubMed]

23. Ma, L.; Narayana, S.; Robin, D.A.; Fox, P.T.; Xiong, J. Changes occur in resting state network of motor system during 4 weeks of
motor skill learning. NeuroImage 2011, 58, 226–233. [CrossRef] [PubMed]

24. Wiestler, T.; Diedrichsen, J. Skill learning strengthens cortical representations of motor sequences. eLife 2013, 2, e00801. [CrossRef]
[PubMed]

25. Frizzell, T.O.; Grajauskas, L.A.; Liu, C.C.; Hajra, S.G.; Song, X.; D’Arcy, R.C.N. White matter neuroplasticity: Motor learning
activates the internal capsule and reduces hemodynamic response variability. Front. Hum. Neurosci. 2020, 14, 509258. [CrossRef]
[PubMed]

26. Guggisberg, A.G.; Rizk, S.; Ptak, R.; Di Pietro, M.; Saj, A.; Lazeyras, F.; Lovblad, K.-O.; Schnider, A.; Pignat, J.-M. Two intrinsic
coupling types for resting-state integration in the human brain. Brain Topogr. 2014, 28, 318–329. [CrossRef]

27. Wu, J.; Srinivasan, R.; Kaur, A.; Cramer, S.C. Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage 2014,
91, 84–90. [CrossRef]

28. Sigala, R.; Haufe, S.; Roy, D.; Dinse, H.R.; Ritter, P. The role of alpha-rhythm states in perceptual learning: Insights from
experiments and computational models. Front. Comput. Neurosci. 2014, 8, 36. [CrossRef]

http://doi.org/10.1177/1747493017714176
http://www.ncbi.nlm.nih.gov/pubmed/28697711
http://doi.org/10.1186/s12984-017-0277-3
http://www.ncbi.nlm.nih.gov/pubmed/28683745
http://doi.org/10.1016/S1474-4422(17)30283-1
http://doi.org/10.1097/WCO.0b013e3283186f96
http://doi.org/10.1088/1741-2552/ab0b82
http://www.ncbi.nlm.nih.gov/pubmed/30818293
http://doi.org/10.1016/j.neuroimage.2012.02.070
http://doi.org/10.1089/brain.2011.0008
http://doi.org/10.1002/hbm.24458
http://doi.org/10.1016/j.tics.2005.08.011
http://doi.org/10.3389/fnsys.2015.00175
http://doi.org/10.1016/j.cub.2009.04.028
http://www.ncbi.nlm.nih.gov/pubmed/19427210
http://doi.org/10.3389/fphys.2022.862207
http://www.ncbi.nlm.nih.gov/pubmed/35450158
http://doi.org/10.1111/ejn.13797
http://www.ncbi.nlm.nih.gov/pubmed/29247485
http://doi.org/10.3389/fnhum.2021.669915
http://www.ncbi.nlm.nih.gov/pubmed/34276326
http://doi.org/10.1523/JNEUROSCI.1166-20.2020
http://doi.org/10.1093/brain/awv156
http://www.ncbi.nlm.nih.gov/pubmed/26070983
http://doi.org/10.1109/TNSRE.2020.2978381
http://doi.org/10.1016/j.neuroimage.2004.07.020
http://doi.org/10.1002/wics.51
http://doi.org/10.1177/1545968313491000
http://www.ncbi.nlm.nih.gov/pubmed/1135616
http://doi.org/10.1016/j.neuroimage.2011.06.014
http://www.ncbi.nlm.nih.gov/pubmed/21689765
http://doi.org/10.7554/eLife.00801
http://www.ncbi.nlm.nih.gov/pubmed/23853714
http://doi.org/10.3389/fnhum.2020.509258
http://www.ncbi.nlm.nih.gov/pubmed/33192383
http://doi.org/10.1007/s10548-014-0394-2
http://doi.org/10.1016/j.neuroimage.2014.01.026
http://doi.org/10.3389/fncom.2014.00036


Sensors 2022, 22, 9857 14 of 14
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