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Abstract: At many construction sites, whether to wear a helmet is directly related to the safety of the
workers. Therefore, the detection of helmet use has become a crucial monitoring tool for construction
safety. However, most of the current helmet wearing detection algorithms are only dedicated to
distinguishing pedestrians who wear helmets from those who do not. In order to further enrich the
detection in construction scenes, this paper builds a dataset with six cases: not wearing a helmet,
wearing a helmet, just wearing a hat, having a helmet, but not wearing it, wearing a helmet correctly,
and wearing a helmet without wearing the chin strap. On this basis, this paper proposes a practical
algorithm for detecting helmet wearing states based on the improved YOLOv5s algorithm. Firstly,
according to the characteristics of the label of the dataset constructed by us, the K-means method
is used to redesign the size of the prior box and match it to the corresponding feature layer to
increase the accuracy of the feature extraction of the model; secondly, an additional layer is added
to the algorithm to improve the ability of the model to recognize small targets; finally, the attention
mechanism is introduced in the algorithm, and the CIOU_Loss function in the YOLOv5 method is
replaced by the EIOU_Loss function. The experimental results indicate that the improved algorithm
is more accurate than the original YOLOv5s algorithm. In addition, the finer classification also
significantly enhances the detection performance of the model.

Keywords: helmet wearing states; small target detection; YOLOv5s

1. Introduction

The construction site environment is complex; objects, as well as operators may
fall from a height at any time. Injuries due to accidents can be effectively decreased by
wearing safety helmets. However, tragedies resulting from inadequate supervision of the
construction system and insufficient safety awareness of the workers occasionally occur.
Therefore, supervising the wearing of safety helmets through a helmet wearing detection
algorithm has high practical value.

The early studies primarily used manual feature extraction to detect the wearing of
helmets. The mainstream research idea is to locate the position of the pedestrian using the
HOG feature, C4 algorithm, and other methods [1–4] and then identify the characteristics
of the helmet in the head area, such as the color, contour, and texture [5–7]. Finally, SVM
and other classifiers were used to complete helmet detection [8,9]. Figure 1 shows the four
main implementation steps of this kind of algorithm: pre-processing, Region Of Interest
(ROI) selection, feature extraction and detection or classification. Because of the simple
structure of the algorithm, the traditional algorithm has less computational requirements
and a faster detection speed.

Figure 1. Main steps of helmet wearing detection methods based on traditional algorithms.
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However, there is still a gap between the detection effect of the traditional algorithm
and the practical application requirement of high precision. The effectiveness of helmet
wearing detection is poor under the traditional algorithm, especially when the frames are
under the influence of illumination and angle variability. Convolutional neural networks are
frequently employed in target detection in various disciplines [10] due to their great feature
extraction capabilities with the emergence of deep learning methods [11–14]. Scholars have
successively applied RCNN, fast RCNN, SSD, YOLO, and other algorithms to the research
of helmet wearing detection [15–20]. Among them, the SSD and YOLO algorithms have
higher accuracy as one-stage algorithms, while YOLO has a higher detection rate on this
basis, which makes the YOLO algorithm stand out in the research and application of helmet
wearing detection [21–23]. In order to better explain the optimization process of the helmet
wearing detection algorithm, we provide Figure 2.

Figure 2. Development of helmet wearing detection algorithm based on deep learning.

However, the majority of the YOLO series of algorithms for detecting helmet wearing
perform two-class tests on the dataset SHWD, which merely determines whether a hel-
met is being worn or not. It is difficult for those algorithms to meet the comprehensive
helmet wearing state detection under complex conditions, and there is little space for
further research.

In this paper, an algorithm based on the improved YOLOv5s algorithm is proposed
for detecting the wearing states of safety helmets. The specific contributions are as follows:
(1) Different from the existing datasets, we construct a six-class helmet wearing dataset,
which aims to distinguish the different states of helmets in the construction scene and
improve the feature extraction accuracy and detection performance of the whole model.
(2) A small target detection layer is added to the YOLOv5 network, and the anchor size
is revised in accordance with the new detection layer and the dataset we constructed. In
addition, the attention mechanism is introduced to the backbone network of YOLOv5s,
and its initial CIOU_Loss is replaced with the EIOU_Loss function. (3) Using our dataset to
train the improved YOLOv5 algorithm, we can obtain a model that can accurately identify
the wearing of safety helmets.
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This paper is organized as follows: Section 2 presents the YOLOv5s algorithm and
some improved techniques of this paper. The experimental process and analysis of the
improved YOLOv5s algorithm are elaborated in Section 3, such as the experimental setup,
dataset acquisition, training and test results, and ablation experiment. Section 3 also
compares the improved algorithm with some current helmet wearing detection algorithms
to further show the experimental effect. The research of this paper is finally concluded in
Section 4, which also suggests the future work.

2. Methodology and Improvement
2.1. YOLOv5s Algorithm

The input, backbone, neck, and prediction output make up the YOLOv5s algorithm [24],
and its framework is shown in Figure 3. The backbone network is the feature extraction
network, which mainly includes the CBS module, CSP module, and fast spatial pyramid
pooling (SPPF) module. The CBS module is the combination of the convolutional module,
batch normalization module, and activation function, named SiLu. The CSP structure
divides the original input into two branches for the convolution operations, so that the
number of channels is halved, and concats two branches, so that the input and output
of the CSP are the same size. In other words, the CSP allows the model to learn more
features. Moreover, the CSP includes CSP1_X and CSP2_X, the main difference between
them being that there is a residual module in CSP1_X, and CSP2_X corresponds to the CBS
module. The residual structure can increase the gradient value of the back-propagation
between layers, avoiding the gradient loss caused by network deepening, so that features
with finer granularity can be extracted without worrying about network degradation; the
SPP structure can convert any size of feature map into a fixed-size feature vector. The SPPF
structure used in YOLOv5 replaces the original parallel MaxPool of the SPP structure with
a serial MaxPool, making the SPP structure more efficient.

The neck is the feature fusion network that combines the top-down and bottom-up
feature fusion techniques in order to more effectively incorporate multi-scale features
extracted from the backbone network before transferring them to the detection layer. After
the non-maximum suppression and other post-processing operations, a large number
of redundant prediction frames are eliminated. Finally, the prediction category with
the highest confidence score is output, and the frame coordinates of the target position
are returned.

Figure 3. The framework of the YOLOv5s algorithm.
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Based on the strong detection and discrimination ability of the YOLOv5s algorithm,
in this paper, to detect the wearer of a helmet in a variety of situations, we improved and
adjusted the prior frame and loss function of the algorithm to detect the wearing states of
safety helmets in various scenarios. In order to more effectively detect distant and dense
targets, we also added a small target detection layer to the framework. In the selection of
the loss function, although CIOU_Loss adopted by the YOLOv5s algorithm fully considers
the overlapping area, center point distance, and aspect ratio of the boundingbox regression
through previous improvements, we adopted EIOU_Loss with a better aspect ratio and
stronger robustness as the loss function of the algorithm. Finally, we added an attention
mechanism to the network to improve its detection capabilities as a whole.

2.2. Redesign the Prior Anchor Frame

The prior anchor frame data of the original YOLOv5s algorithm is calculated according
to the characteristics of the eighty-class dataset of COCO. In order to make the YOLOv5s
algorithm work better in our helmet wearing state detection research, we rebuilt the prior
box size in YOLOv5s’s algorithm using the K-means approach in accordance with the
length-width ratio and other elements of our helmet dataset, so that the prior box size
is more consistent with our dataset. Specifically, we first selected the number of anchors
k (9 or 12 in this paper) and initialized k anchor boxes. For the bounding box of each
sample in the dataset, we calculated its Intersection Over Union (IOU) with each anchor
box, classified the sample into the anchor box with the largest IOU, and recalculated and
updated each anchor box. We repeated this until no anchor boxes changed, and finally
we realized the clustering of the anchors. Table 1 lists the prior anchor frame sizes before
and after modification. It should be noted that we added a small object detection layer to
the original YOLOv5s algorithm framework, so we correspondingly added a prior anchor
frame under the small target detection scale.

Table 1. A priori anchor frame size before and after modification (taking the integer).

Feature Map Scale Original Prior Box Size Modified Prior Box Size

Add small target detection
scale (160 × 160) – (5, 6) (8, 14) (15, 11)

Small scale (80 × 80) (10, 13) (16, 30) (33, 23) (15, 17) (24, 29) (39, 46)
Mesoscale (40 × 40) (30, 61) (62, 45) (59, 119) (63, 74) (96, 121) (156, 177)
Large scale (20 × 20) (116, 90) (156, 198) (373, 326) (231, 270) (385, 421) (592, 562)

Table 2 illustrates the comparison of the algorithm’s convergence speed before and
after anchor modification. It can be seen from the table that the YOLOv5s algorithm with
the redesigned anchor has a faster convergence speed, which significantly increases the
training efficiency of the model. In addition, the mean Average Precision (mAP) of the
modified anchor algorithm also increased by roughly 1%.

Table 2. Comparison of convergence speed of anchor before and after modification.

Anchor mAP@0.5 (%) BatchSize Epoch at End

Original Anchor 90.3 12 241
Modified Anchor 91.4 12 171
Original Anchor 90.9 32 286
Modified Anchor 91.9 32 148

2.3. Add a Small Target Detection Layer

In order to better apply this algorithm to the actual scene, the initial network structure
of YOLOv5s was modified in this paper to solve the problem of the YOLOv5s algorithm
having an insufficient effect in detecting long-distance and small targets in the study of
helmet wearing status. Specifically, on top of the initial three detection layers, we added
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a small target detection layer to allow the model to pull feature information from deeper
networks and enhance its capacity to recognize small objects. Figure 4 displays the network
structure of the enhanced model.

Figure 4. YOLOv5s algorithm framework with the added small target detection layer.

We selected the mean Average Precision when the IOU is 0.5 (mAP@0.5) and the
mean Average Precision when the small target area is less than 322 (mAP@small) in the
COCO evaluation index system to evaluate the improvement result. Table 3 shows that the
accuracy was improved when the small target detection layer was added, and the model’s
capability to recognize small objects was significantly improved.

Table 3. Partial COCO evaluation indicators.

Model mAP@0.5 (%) mAP@small
(%)

Epoch at End
(Epochs)

YOLOv5s 90.3 45.2 234
YOLOv5s with a small target layer 91.7 65.6 199

2.4. Adopt EIOU_Loss

After the improvement of IOU_Loss to CIOU_Loss, the loss function of the YOLO
algorithm was able to comprehensively consider the overlapping area, center point distance,
and aspect ratio of bounding box regression. Furthermore, some scholars split the loss
term of the aspect ratio into the difference between the predicted width and height and
the minimum external frame width and height based on CIOU_Loss [25,26], accelerating
the convergence and improving the regression accuracy. The more efficient loss function is
EIOU_Loss. Next, we will introduce and compare the two loss functions.

First, the penalty term of CIOU_Loss is shown in Equation (1).

RCIOU =
ρ2(b, bgt)

c2 + αv (1)

where b and bgt represent the center points of the prediction box and the ground-truth box,
respectively, and ρ represents the Euclideandistance between two center points. c indicates
the diagonal distance of the minimum closure area that can contain both the prediction box
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and the ground-truth box. α is a weight function, and v is used to measure the similarity of
the aspect ratio. α and v are defined by Equations (2) and (3), respectively.

α =
v

(1 − IOU) + v
(2)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 + αv (3)

The complete CIoU_Loss function is defined in Equation (4).

LCIOU = 1 − IOU +
ρ2(b, bgt)

c2 (4)

where Cw and Ch are the width and height of the minimum bounding box covering the
two boxes.

CIOU_Loss considers the overlapping area, center point distance, and aspect ratio of
bounding box regression. However, it reflects the difference of the aspect ratio through v,
rather than the real difference between the width and height and their confidence, so it
sometimes hinders the effective optimization similarity of the model. The penalty term of
EIOU_Loss is used to calculate the length and width of the target frame and anchor frame,
respectively, by separating the influence factor of the aspect ratio on the basis of the penalty
term of CIOU_Loss. The loss function includes three parts: overlapping loss (LIOU), center
distance loss (Ldis), width and height loss (Lasp). The first two parts continue the method
in CIOU_Loss, but the width and height loss directly minimizes the difference between
the width and height of the target frame and anchor frame, making the convergence speed
faster. The EIOU_Loss function is defined by Equation (5).

LEIOU = LIOU + Ldis + Lasp

= 1 − IOU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(5)

As shown in Table 4, by replacing CIOU_Loss with EIOU_Loss in the YOLOv5s
algorithm, the mAP of the model is increased by 1.2%. Moreover, the model’s convergence
speed is also accelerated by the use of EIOU_Loss.

Table 4. Comparison of model mAP before and after modification of loss function.

Loss Function mAP@0.5 (%) Epoch at End (Epochs)

CIOU_Loss 90.3 234
EIOU_Loss 91.5 191

2.5. Increase Attention Mechanism

Based on the series of improvements mentioned above, we added an attention module
to the network in order to further enhance the model’s capacity for detection and force the
network to focus more on the target to be detected. Our specific actions mainly involved
two methods: one is to insert the attention module into the tenth layer of the backbone of the
YOLOv5 model (such as SE, CBAM, ECA, and CoordAtt), and the other is to replace all CSP
modules (Layers 3, 5, 7, and 9) in the backbone of the YOLOv5 model with our attention
modules (such as C3SE). In order to select the attention mechanism that is most suitable for
the helmet wearing states detection network in this research, we trained SE, C3SE, CBAM,
ECA, CoordAtt, and Transformer, respectively [27–33], and the findings are displayed
in Table 5. The detection performance of the YOLOv5s algorithm was improved after
introducing the attention module. Moreover, CoordAtt performed best with this algorithm.
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Moreover, we also tried to introduce the lightweight module Ghost in the experiment.
Table 5 indicates that, while Ghost reduces the model’s weight, some accuracy is sacrificed
in the process.

Table 5. Comparison of model mAP adding different attention modules.

Model with Attention Module Batch_size Epoch at End (Epochs) mAP@0.5 (%) Weight (Mb)

YOLOv5s 4 234 90.3 13.6
YOLOv5s + SE 4 207 92 13.7

YOLOv5s + C3SE 4 194 91.7 12.5
YOLOv5s + CBAM 4 300 91.7 13.7
YOLOv5s + ECA 4 162 92.1 13.6

YOLOv5s + CoordAtt 4 163 92.3 13.6
YOLOv5s + Transformer 4 163 92 15.9

YOLOv5s + Ghost 4 253 90.9 11.4

3. Experiment and Analysis
3.1. Experimental Setup

In our experiments, the operating system was Linux, the CPU was a AMD Ryzen 9
5950X 16-Core Processor 3.40 GHz, the GPU was a Tesla v100-sxm2-16GB, the framework
was Pytorch, the batch size was set to 16, the epoch was set to 300 (the early stopping
mechanism was also enabled), and the image size was 640 × 640.

3.2. Dataset

At present, there are few datasets on helmet wearing. The public dataset named
SHWD only includes two cases of helmet wearing and pedestrians, which cannot reflect the
various states of the helmet in the real construction scene completely. Therefore, this paper
collected 8476 images using dataset selection, web crawling, and self-shooting, and then we
annotated them by labelImg to build a dataset of six categories which includes not wearing
a helmet (person), only wearing a helmet (helmet), just wearing a hat (hat_only), having
a helmet, but not wearing it (helmet_nowear), wearing a helmet correctly (helmet_good),
and wearing a helmet without the chin strap (not_fastened). A wide range of construction
scenarios were included in the dataset created for this study, which can accurately reflect
real construction scenarios. However, in the early images of helmet wearing, most helmets
were only attached to the head, and there was no design for the chin strap. In addition,
it is difficult to judge whether a person is wearing a helmet correctly when he/she has a
head covering or we have a remote view of his/her back. Therefore, the classification of
“wearing a helmet (helmet)” in our dataset is more like a “suspicious” classification.

The dataset was split into a training set and a validation set at a 7:3 ratio. Table 6 lists
the total number of target box annotations of each category in the dataset.

Table 6. The number of target box labels of each category in the dataset.

Dataset Person Helmet hat_only helmet_nowear helmet_good not_fastened

train 3299 6273 3299 1956 2218 912
val 1430 2723 1433 846 964 399

The sample of the six categories is shown in Figure 5. It is worth noting that a six-class
dataset was constructed to better distinguish and recognize the use of helmets in the con-
struction scene, and finer classification can also better improve the detection performance
of the model. For example, the class “hat_only” can distinguish some situations better that
interfere with the wearing of safety helmets (such as a worker wearing a baseball cap that
is very similar to a safety helmet, as well as police and nurses at the construction site); the
class “helmet_nowear” is intended to detect the situation where the helmet is held in the
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hand or there is a helmet in the environment, but it is not being worn. The above research
can also pave the way for further image description research on this subject.

Figure 5. Sample diagram of the six classes.

It is worth mentioning that the images in our test set were collected from a recent
construction site, completely independent of the training set and validation set, which
makes the test results more convincing. Figure 6 represents some samples of the training
set and test set.

Figure 6. Some samples of the training set and test set.

3.3. Training Results

The improved YOLOv5s algorithm and the original algorithm used the same dataset for
300 epochs of training under the same experimental environment mentioned in Section 3.1.
The mean Average Precision (mAP) comparison curve of the experiments is shown in Figure 7.

As can be seen from Figure 7, after 50 epochs of training, both algorithms converged
rapidly, and the improved YOLOv5s algorithm converged faster than the original algorithm.
Additionally, the enhanced YOLOv5s method significantly improves the average accuracy
when compared to the original algorithm.
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Figure 7. mAP@0.5 contrast curve.

3.4. Test Results
3.4.1. Qualitative Analysis

In order to better show the detection results of the algorithm for the six classifications,
we tested on the example diagram in Section 3.2. The detection results of the yolov5s
algorithm before and after improvement are shown in Figure 8.

Figure 8. Comparison of the detection results of the six categories by the YOLOv5s algorithm before
and after improvement.

We can see from Figure 8 that, for the six states of helmet wearing in this research, the
detection results of the original YOLOv5 algorithm missed the detection of helmet_nowear
and falsely detected helmet_good, while the improved YOLOv5 algorithm could accurately
detect the six states, and the confidence level was mostly higher than the original YOLOv5
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algorithm. After many tests, it was found that the improved YOLOv5 algorithm had
strong robustness.

In addition, in order to better test the detection effect of our algorithm on helmet
wearing in a real construction scene, we selected distant and small targets, mesoscale
targets, and dense targets from the test set for helmet wearing status detection. The
detection results of the yolov5s algorithm before and after improvement in the real scene
are shown in Figure 9.

Figure 9. Comparison of YOLOv5s algorithm detection results before and after improvement in the
real scene.

The improved YOLOv5s algorithm had an excellent detection impact for targets at all
scales and dense targets, reducing many missed and false detections, as can be observed in
Figure 9. In particular, some long-distance targets at the construction site can be detected
accurately, which makes the model more practical.

3.4.2. Quantitative Analysis

We used the Precision and Recall, which are respectively defined in Equations (6) and (7),
to quantitatively assess the performance of the model in terms of detection, and the PR curves
of various categories under the YOLOv5s algorithm model before and after improvement are
drawn, respectively. Figure 10 demonstrates that the enhanced YOLOv5s algorithm improved
the detection performance of each classification, with the mAP improved by 3.9%.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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where TP denotes the number of samples that predict the correct category as positive, FP
indicates the number of samples that incorrectly predict the category as positive, and FN
represents the number of samples that identify the correct category as negative.

Figure 10. PR curve comparison. (a) PR curve of YOLOv5s. (b) PR curve of improved YOLOv5s.

From the comparison of the PR curves, it can be shown that the improved model greatly
improved the detection performance of the helmet wearing state, and the improved model
was particularly accurate at detecting the classes helmet_nowear and hat_only. However, due
to its fine features, the class not_fastened is not significantly different from the classes helmet
and helmet_good, and the detection performance needs to be improved. In view of the low
detection accuracy of this classification, in the dataset preparation stage, we focused on
supplementing and enhancing it, but the detection effect was not significantly improved.
We will consider fusing the fine-grained algorithms in further research.

3.5. Ablation Experiment

In this research, the ablation experiments based on the YOLOv5s algorithm were
designed to demonstrate the impact of each modification on the effectiveness of helmet
wearing state identification more clearly. In Table 7, the experimental findings are shown.

Table 7. Comparison of ablation experiment findings.

Model Precision (%) Recall (%) mAP@0.5 (%)

YOLOv5s 90.7 84.2 90.3
1 Anchor + 2 Small 91.5 87.4 91.8
Anchor + 3 EIOU 90.9 86.5 91.7

Anchor + 4 Attention 92.4 86.5 92.4
Small + EIOU 90.2 85.1 90.9

Small + Attention 91.2 85.7 91.6
EIOU + Attention 92.2 86.7 92.1

Anchor + Small + EIOU 92.1 85.2 91.4
Anchor + Small + Attention 91.8 87 92.8
Anchor + EIOU + Attention 91.9 88.4 92.5
Small + EIOU + Attention 91.1 87.2 92.0

Anchor + Small + EIOU + Attention 92.4 89.1 93.4
1 Anchor means to redesign the size of the prior anchor frame; 2 Small means to add a small target layer; 3 EIOU
means to adopt EIOU_Loss; 4 Attention means to introduce the attention module.

Table 7 details the experimental results of the four improved methods mentioned in
Section 2 under different combinations. Overall, the combination of various improvement
methods improved the performance of helmet wearing status detection, and the four im-
provements together had the best effect. In the two mixed experiments for improvement,
the combination of redesigning the anchor and introducing an attention mechanism had
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the best effect, while the combination of adding a small target layer and modifying the
loss function had the worst effect. In the three mixed experiments for improvement, the
combination of redesigning the anchor, adding a small target layer, and introducing an
attention mechanism had the best effect, while the combination of redesigning the anchor,
adding a small target layer, and modifying the loss function had the worst effect.

3.6. Comparative Experiment

To demonstrate the performance of the improved YOLOv5s algorithm better, we tested
some highly evaluated target detection algorithms in the field of deep learning on our
dataset. Table 8 shows the Average Precision (AP) of each algorithm on our six-class dataset.
Table 9 compares the mAP (both IOU = 0.5 and IOU = 0.5:0.95, area = small), Frames Per
Second (FPS), and the file size of each algorithm from a more macro perspective.

Table 8. AP of each algorithm on the six-class dataset.

Algorithms Person Helmet hat_only helmet_nowear helmet_good not_fastened

FasterRCNN
(resnet50) 69.44% 89.73% 94.55% 93.21% 84.98% 80.17%

FasterRCNN (VGG) 65.44% 88.70% 92.41% 92.12% 79.21% 79.76%
SSD (VGG-16) 57.9% 84.37% 90.59% 90.4% 88.62% 89.2%

YOLOv3 83.8% 88.43% 90.92% 92.31% 64.21% 73.68%
YOLOv5s 94.3% 92.5% 97.8% 94.6% 90.4% 72.4%

Improved YOLOv5s 93.1% 94.5% 98.5% 91.7% 93% 89.2%

It can be seen from Table 8 that the improved YOLOv5s algorithm performed best
in the detection of the wearing states of helmets, hat_only, helmet_good, and not_fastened;
the original YOLOv5 algorithm was the top performer in the detection of person and
helmet_nowear. The SSD-VGG16 algorithm performed as well as the improved YOLOv5s
algorithm in detecting not_fastened. Table 9 shows that the improved YOLOv5s algorithm
performed best in the mAP with an IOU of 0.5 and small target evaluation indicators; for
the FPS, the YOLOv5s algorithm before and after the improvement had little difference,
but both were much higher than the other algorithms. In addition, although the file size of
the improved YOLOv5s method was 1.4 MB larger than the initial algorithm, it was still
less than other competing algorithms. This feature makes the YOLOv5s algorithm have
greater hardware portability and practical value.

Table 9. Comparison of detection performance of each algorithm.

Algorithms mAP@0.5 (%) mAP@small (%) FPS (f·s−1) Weight (MB)

FasterRCNN (resnet50) 84.09 16.4 9.49 108
Faster-RCNN (VGG) 82.94 16.1 35.9 521

SSD (VGG-16) 83.51 32.3 40 93.1
YOLOv3 82.22 17 17.58 235
YOLOv5s 90.3 39.1 110 13.6

Improved YOLOv5s 93.4 69.7 111 15

4. Conclusions and Future Works

In order to solve the problem in which most of the existing helmet wearing detection
algorithms only deal with whether the helmet is worn or not and do not pay attention to
the various states of the helmet in the actual scene, this paper constructed a dataset with
finer classification and proposed a helmet wearing state detection algorithm based on an
improved YOLOv5s algorithm.

For the dataset, compared with existing datasets, the quality of the six-category dataset
we built is higher, especially the added class hat_only, which can distinguish some cases
that can be confused with class helmet and the class helmet_nowear enriches the detection
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capability of the model and helps in the preparation of future research. Furthermore, we
made four improvements to the YOLOv5s algorithm. By adapting to the annotation of
this dataset, the size of the prior box was redesigned, and a small target detection layer
was added for the situation where the actual construction scene is far away and the target
objects are dense. Furthermore, we introduced the attention mechanism CoordAtt to the
algorithm and used the EIOU_Loss function to replace the original CIOU_Loss in the
YOLOv5s algorithm.

According to the experiments in Section 3, the improved algorithm’s false detection
and missed detection rates were lower than those of the present helmet wearing detection
methods. Moreover, its detection precision and small target detection capability were
greatly improved. However, our current algorithm still has some shortcomings, mainly
reflected in the lack of detection accuracy of the class not_fastened with small differences be-
tween classes. In this study, we performed data augmentation and improved the YOLOv5s
algorithm’s structure, but this did not completely solve the problem. Next, we will consider
using a fine-grained algorithm to solve this problem [34–36]. In addition, in view of the
richness and strong expression ability of our dataset, the idea for further research is to
study the description of the construction images to further assist the safety monitoring of
construction sites through image description.
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