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Abstract: It is helpful to have a replacement strategy by predicting the number of failures of in-service
electricity meters. This paper presents a failure number prediction method for smart electricity meters
based on on-site fault data. The prediction model was constructed by combining Weibull distribution
with odds ratios, then the distribution parameters, failure prediction number, and confidence intervals
of prediction number were calculated. A strategy of meter replacement and reserve were developed
according to the prediction results. To avoid the uncertainty of prediction results due to the small
amount of field data information, a Bayesian failure number prediction method was developed. The
research results have value for making operation plans and reserve strategies for electricity meters.

Keywords: failure number prediction; electricity meter; Weibull distribution; replacement
strategies; Bayesian

1. Introduction

More than 0.5 billion electricity meters have been installed in China since smart
electricity meters started being implemented in 2009. The smart meters were replaced
when the operation period reached eight years. Smart electricity meters are seriously
affected by various factors, such as temperature, humidity, thunder and lightning, power
system fluctuation, and electromagnetic interference, and the failure risk increases with
long-term operation. With the increased number of installed electricity meters, failures
also grew gradually. Failure number prediction is necessary for decision-making on spare
parts inventory. In addition, the requirement for in-service life of smart electricity meters
was enhanced by the state grid from 8 years to 16 years in 2020. The service period of
installed meters will reach 8 years soon. Whether or when to replace the 8-year meters is a
challenging problem. In this paper, we would like to investigate this problem and provide
the technical basis for the phased rotation of smart electricity meters.

Ref. [1] combined the k-means clustering and bidirectional long- and short-term neural
networks to predict the performance degradation trend of built-in electricity meter relays,
and then evaluated their reliability. In Ref. [2], the mean impact value (MIV) algorithm was
combined to predict the reliable life of the contactor through an adaptive BP neural network
model. Ref. [3] evaluated the reliability of smart electricity meters according to the Bayesian
method using accelerated degradation data. Ref. [4] analyzed and predicted the reliability
of each module of the electricity meters based on the VC++ platform. Ref. [5] established
the LSTM model based on Harris hawks optimization and predicted its reliable life by
measuring the contact resistance value. Ref. [6] used the least square method to calculate
Weibull distribution parameters and then evaluated the reliability of batch electricity meters.
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Ref. [7] examined the fault data under external stress conditions to predict the remaining
life of the smart electricity meters in operation. Existing studies analyzed electricity meter
reliability based on laboratory tests, and a few investigations focused on historical fault
data. In addition, previous research focused on reliability estimation and life prediction
rather than failure number prediction.

Existing studies showed that the Bayes method was effective in reliability assessment
for small sample products. Ref. [8] proposed a machine learning technology to predict
rainfall, which integrated Bayes theory and achieved good prediction results. Ref. [9]
introduced Bayes theory into the neural network model to optimize the estimation of
relevant parameters and improve the accuracy, adaptability, and generalization ability
of SOC estimation of batteries with different chemical components. Ref. [10] used the
Bayesian method to update the previous estimation of users’ consumption habits by using
the actual power load information, predicting the hourly load situation. It effectively
evaluated the household energy use pattern and users’ consumption habits. Ref. [11] used
several different machine learning technologies, among which Bayesian methods were
integrated to predict metabolic sites (SOMs) for xenogeneic detection, which solved the
most critical problems in the first stage of metabolic prediction. Ref. [12] used the naïve
Bayes data-driven model to determine the formation conditions of pure gas hydrate and
mixed gas hydrate, which was applied to predict the formation conditions of gas hydrate,
effectively reducing the uncertainty of prediction results. Although the Bayes method has
a good effect, there was no research on the prediction of smart electricity meter failure
numbers that used the Bayes method. Electricity meters have the characteristics of large
quantity and comprehensive coverage. For example, there were more than 50 million
electricity meters in a province. Similar products and historical data produced a large
quantity of failure data of electricity meters, which reflected the reliability of electricity
meters. To make use of multisource reliability information, the Bayes method was adopted
to expand the information capacity in the form of previous data and improve the accuracy
of prediction evaluation [13].

Ref. [14] reviewed the latest progress in the application for smart electricity meter data
and discussed the directions of using smart electricity meter data for analysis. Ref. [15]
calculated a distribution system reliability index according to smart electricity meter data.
Ref. [16] used smart meter data and household features data to seek the most appropriate
methods of energy consumption prediction. Using the cross-industry standard process
for data mining (CRISP-DM) method, support vector machines, random forest regression
and neural networks methods, prediction experiments were performed with household
feature data and past consumption data of over 470 smart meters that gathered data for
three years. The results help utilities to offer better contracts to new households and
to manage their smart grid infrastructure based on the forecast demand. In addition,
Refs. [17,18] used neural networks and hierarchical probabilistic forecasts methods to
predict energy consumption. Ref. [19] established a nonlinear Wiener process prediction
model to calculate the reliable life of the contactor. Ref. [20] collected the degradation data
before periodic censoring to analyze and calculate product reliability. Ref. [21] used the
time series algorithm to predict the monthly failure number of electricity meters. Ref. [22]
presented an approach of ε-support vector regression (ε-SVR) for predicting the remaining
useful life of bearings. Most of the above prediction methods used neural networks, support
vector machines, random forest and time series algorithms. However, most of the above
prediction methods require a large quantity of data and are cumbersome to construct. This
paper skillfully constructs a mathematical prediction model according to the field data,
which is a simple and efficient way to solve the problem. To make the prediction result
more accurate, this paper introduces the odds ratio to study the failure number prediction
in the future interval under the Weibull distribution.

The arrangement of this paper is as follows: Section 2 is the prediction of failure
numbers in the future, Section 3 is a replacement strategy for smart electricity meters, and
Section 4 is a case study. The effectiveness of this method was verified by engineering
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examples. The research results provide technical support for the operation and maintenance
of electricity meters and improving life cycle management.

2. Prediction of Failure Number
2.1. Smart Electricity Meters

The smart electricity meter is essential equipment for smart grid data collection, and
undertakes the tasks of raw power data collection, measurement and transmission. It is the
basis of information integration, analysis and optimization and information presentation.
In addition to the metering function of primary electricity consumption of traditional elec-
tricity meters, smart electricity meters also have intelligent functions, such as bidirectional
multi-rate metering function, user-end control function, bidirectional data communication
function of various data transmission modes, anti-electric theft function and so on, in
order to adapt to the use of smart grids and new energy [16]. Smart electricity meters are
essential equipment for power grid companies. Their operation state affects the stability
and power supply security of the whole power grid system, and it is a bridge to realize
the communication between enterprises and users. With the wide application of smart
electricity meters, a large number of fault data are generated in the field, which will be of
great help in the prediction of failure number of electricity meters and the formulation of
the replacement strategy of electricity meters in the future.

2.2. Field Fault Data

The field fault data structure is shown in Figure 1. After the electricity meter was put
into operation, the fault data of the electricity meters were collected in the specified time
ts. The time fault data after the specified time ts could not be obtained. Let the number
of electricity meters be N and be put into use in a batch, and G electricity meters failed
within the observation time from 0 to ts. Failure can be detected no matter how small
the observation time from 0 to ts, but to predict better, we need fault data with longer
observation time. The failure time was recorded as t1, t2, . . . ,tG, respectively. If the time is
set as te, the number of faults within the future prediction time interval4t from ts to te is
H. To maintain the regular operation of the equipment, we need to reserve H electricity
meters. After setting the forecast time in the future, the number of electricity meters was
still H in this batch, so they obeyed G + H + K = N, and the probability of (G, H, K)
corresponding occurrence was g, h, and k, respectively, where g + h + k = 1. In addition,
the future prediction time interval4t from ts to te is set according to the actual demand
of the power company. Under normal circumstances, the power company will bid for the
meter every year, so we only need to predict the number of meter failure in the following
year. As such, the prediction time interval4t from ts to time te is generally one year, where
4t = te − ts.
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2.3. Life Distribution of Smart Electricity Meters

It is known that the life of an electricity meter follows the Weibull distribution [23,24].
Let the energy of an electricity meter be expressed as a random variable obeying the
Weibull distribution with time t, then the probability density function and cumulative
failure probability, respectively at time t is:

f (t) =
m
η
(

t
η
)

m−1
e−(

t
η )

m

(1)

F(t) = 1− e−(
t
η )

m

(2)

where η is the scale parameter and m the shape parameter.
The Weibull distribution parameters were estimated as follows:

m−1 =

G
∑

i=1
tm

i
ln ti + (N − G)ts

m ln ts

G
∑

i=1
tm
i + (N − G)tsm

− 1
G

G

∑
i=1

ln ti (3)

η = (

G
∑

i=1
(ti)

m + (N − G)ts
m

G
)

m−1

(4)

where N was the total number of installs in batches of electricity meters, G was the number
of failures within the observation time, the corresponding time of each failure was ti(i = 1,
2, . . . , G), and ts was the observation time.

The above two equations were maximum likelihood estimates of Weibull parameters.
The two parameters were also necessary parameters of the following failure number
prediction equation and failure number interval prediction equation, so the estimation
results of the two parameters played a crucial role in predicting failure number and failure
number interval.

2.4. Failure Number Predictor

Combined with the engineering example data, the historical failure number G can be
obtained within the observation time, while the predicted failure number H is unknown.
Therefore, the cumulative fault probability g and h can be calculated first. Then, the point
estimate of the future interval failure number H can be obtained by the cumulative fault
probability from time ts to time te and the sample size.

Then, under the Weibull distribution, the cumulative failure probability of products at
ts and te was:

g = F(ts) = 1− e−(
ts
η )

m

(5)

F(te) = 1− e−(
te
η )

m

(6)

According to Equation (6), we can get:

k = 1− F(te) = e−(
te
η )

m

(7)

According to Equations (5) and (7) above, the cumulative fault probability within the
interval from time ts to time te can be obtained:

ĥ = 1− g− k (8)

Then, the point estimation of H was approximate as follows:

ĥ = e−(
ts
η )

m

− e−(
te
η )

m

(9)

Therefore, the point estimation of the failure number H within the future interval from
time ts to the time te under Weibull distribution can be approximated as:
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Ĥ = Nĥ (10)

In the above equation, N was the total installed amount of a batch of electricity meters.
The equation derived here was used in failure number prediction.

2.5. Construction of the Odds Ratio

The traditional method obtained the prediction results by multiplying the sample size
and the cumulative failure probability. It failed to give the prediction distribution of the
failure number, so the prediction risk was high. If the odds ratio is constructed using the
ratio of the cumulative fault probability in the observation interval to the future period,
and the point estimation and confidence limit of the odds ratio are calculated, then the
inverse operation of the odds ratio can be used.

To construct the odds ratio, (go, ho, ko) was set as the observed value of the random
variable (G, H, K) in Section 2.1, and the corresponding occurrence probability was (g, h, k),
then (G, H, K) followed a three-term distribution.

p(go, ho, ko) =
N!

g2
o !h2

o!k2
o!

ggo hho kko (11)

where G + H + K = N and g + h + k = 1.
The odds ratio was:

β = g/h (12)

where β was the odds ratio, then its point estimation was approximate:

β̂ = ĝ/ĥ (13)

When the confidence degree γ was given, the confidence interval of the parameter
β was: {

βL = G
H+1 F(1−γ)/2(2G, 2H + 1)

βU = G
H+1 F(1+γ)/2(2G + 2, 2H)

(14)

where F(1−γ)/2(2G, 2H + 1) and F(1+γ)/2(2G+ 2, 2H) were the quantile of the f-distribution
with the confidence of (1− γ)/2 and (1 + γ)/2. When the random variables G and H
are known, the confidence limits of the odds ratio can be obtained. This equation was
a necessary condition for constructing the following prediction intervals of the failure
number equation.

2.6. Prediction Intervals of Failure Number

To solve the problem of failure number interval prediction under Weibull distribution
and avoid the high risk of traditional prediction method, the prediction equation of failure
number interval was constructed.

According to Equation (13), the point estimation of the odds ratio under the Weibull
distribution is approximate:

β̂ = ĝ/ĥ =
1− e−(

ts
η )

m

e−(
ts
η )

m

− e−(
te
η )

m (15)

Given the confidence degree γ, Equation (13) can be used:{
β̂ ≥ G

HL+1 F(1−γ)/2(2G, 2HL + 2)

β̂ ≤ G+1
HU

F(1+γ)/2(2G + 2, 2HU)
(16)

The number of failure G in the observation time was known, and the point estimation
of the odds ratio β̂ was obtained according to Equation (15). It can be understood that both
ends of the inequality in Equation (16) are functions that take the number H of failure in
the future period as the variable and are monotonically decreasing. Therefore, let HL be the
minimum value for the left inequality to hold, i.e., let HL be the lower limit of H and let
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HU be the maximum value for the correct imbalance to have, i.e., let HU be the upper limit
of H, where the confidence γ in this paper is 0.9. The confidence limits of failure can be
obtained by iteration.

The equation derived in this subsection was applied to the prediction of ntervals of
failure number.

2.7. Bayes Estimate

For Weibull life distribution, where, λ = η−m, η was the scale parameter, m was
the shape parameter. Combining Equations (1) and (2), the probability density function
was updated:

f (t) = λmtm−1e(−λtm) (17)

The accumulated failure function was:

F(t) = 1− e(−λtm) (18)

the parameter λ was:
λ = − ln R/tm

R (19)

where R is the degree of reliability.
Suppose the parameters obey the gamma distribution λ ∼ Ga(a, b):

π(λ) = f (λ/a, b) =
baλa−1

Γ(a)
e(−λb) (20)

The reliable life of electricity meters has been increased from 8 years to 16 years, which
equates to for 2920 days and 5840 days, respectively. Therefore, the range of the parameter
λ was determined as [− ln R/5840m,− ln R/2920m], which represented the value of the
failure rate of the electricity meters.

According to the 3σ criterion, the value range of parameter λ was about 6σ:

6σ = (ln R/5840m − ln R/2920m) (21)

and the variance of failure rate was:

σ2 = (ln R/5840m − ln R/2920m)2/36 (22)

The mean value was:

va = (− ln R/5840m − ln R/2920m)/2 (23)

The moment estimation method was used to calculate the previous distribution pa-
rameters a and b:{

a/b = E(λ) = va = (− ln R/5840m − ln R/2920m)/2
a/b2 = D(λ) = (ln R/5840m − ln R/2920m)2/36

(24)

The previous distribution parameters can be obtained as:
a = 9(− ln R/5840m−ln R/2920m)2

(ln R/5840m−ln R/2920m)2

b = 18(− ln R/5840m−ln R/2920m)

(ln R/5840m−ln R/2920m)2

(25)

After obtaining the current test observation data, the posterior distribution of Weibull
distribution of the meter life model was:

p(λ, m/t) =
π(λ, m)L(t/λ, m)s

λ,m
π(λ, m)L(t/λ, m)dλdm

(26)
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where π(λ, m) was the previous distribution of the two parameters, which can be extracted
from the on-site fault data information, and L(t/λ, m) was the likelihood function of the
life observation value:

L(t/λ, m) =
G
∏
i=1

f (t) =
G
∏
i=1

(λmtm−1e(−λtm))

= λGmG
G
∏
i=1

ti
m−1e

(−λ
G
∑

i=1
tm
i )

(27)

If the parameter mb was initially estimated by the classical method, the posterior
density function distribution could be calculated as [25]:

p(λ/t) =
π(λ/a, b)L(t/λ)∫ ∞

0 π(λ/a, b)L(t/λ)dλ

(28)

Then, the Bayes estimate of the parameter λ was:

λ̂b =
G + a

b +
G
∑

i=1
ti

m
(29)

where a and b were the previous distribution parameters, the meter failure time was ti
(i = 1,2, . . . ,G), and G was the number of failures. The corresponding Bayesian cumulative
failure rate was:

ĝb = 1− e(−λ̂bts
m) (30)

Then, the cumulative failure rate from ts to te was estimated as:

ĥb = e(−λ̂bts
m) − e(−λ̂bte

m) (31)

Combined with Equation (10), the Bayes point estimation of the failure number of the
electricity meters can be obtained:

Ĥb = N(e(−λ̂bts
m) − e(−λ̂bte

m)) (32)

Combined with Equation (14), the Bayes estimated odds ratio was:

β̂b = ĝb/ĥb =
1− e(−λ̂bts

m)

e(−λ̂btsm) − e(−λ̂btem)
(33)

According to Equation (15), the Bayes confidence limits of the failure number of meters
can be obtained:  β̂b ≥ G

HLb+1 F(1−γ)/2(2G, 2HLb + 2)

β̂b ≤ G+1
HUb

F(1+γ)/2(2G + 2, 2HUb)
(34)

where F(1−γ)/2(2G, 2HLb + 1) and F(1+γ)/2(2G + 2, 2HUb) were the quantile of the
f-distribution with confidence of (1− γ)/2 and (1 + γ)/2. The number of failure G in
observation time was known, and the point estimation of the odds ratio β̂b was obtained
according to Equation (33). It can be understood that both ends of the inequality in
Equation (34) were functions that take the number H of failures in the future as the variable
and were monotonically decreasing. Therefore, let HLb be the minimum value for the left
inequality to hold, i.e., let HLb be the lower limit of Ĥb, and let HUb be the maximum value
for the correct imbalance to have, i.e., let HUb be the upper limit of H, where the confidence
γ in this paper was 0.9. The confidence limits of failure can be obtained by iteration.

2.8. Prediction Precision Analysis

The relative dispersion degree of the prediction results of the number of failure in the
future time interval can be expressed by the range coefficient E of the number of failures H,
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which reflected the relative dispersion ratio of the number of failures H in the future time
interval near its expected value.

E =
HU − HL

Ĥ
(35)

The value of E was to 1. The closer the failure number H was to its expected value,
the lower the relative dispersion degree was.

The corresponding Bayesian dispersion degree was:

Eb =
HUb − HLb

Ĥb
(36)

3. Replacement Strategies for Smart Electricity Meters

The decision-making procedure for electricity meter quantity is shown in Figure 2.
Firstly, the failure number of electricity meters in the future was predicted based on the
on-site failure data. Then, the number of spare parts can be expected based on the failure
number prediction of smart electricity meters. In addition, the accumulated failure number
of meters, the failure rate, and the proportion of failure meters to all the electricity meters in
the same batch can be predicted. At the same time, the operation time of the meter after the
prediction was obtained by adding the running time of the field data to the future prediction
interval. The batch electricity meters will be rotated if the failure proportion exceeds the
threshold RD,rotate or the operation time is longer than the specified time TD,rotate.
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3.1. Decision-Making on Spare Parts Quantity of Smart Electricity Meters

The number of installed meters in the lth month was zl (l = 1,2, . . . ,12). After T years
of operation, rl failed meters were observed. The operation time was tl,j (j = 1, 2, . . . , rl),
sl meters continued to work, the operation time was tl,q (q = rl + 1, rl + 2, . . . , zl), and the
total number of installed meters in a year was Z = sum (zl).

The failure number of meters installed in the lth month in the next year rl ,YF can be
predicted. According to Equation (10), the total failed meters in the next year is:

rYF = sum(rl ,YF) (37)

According to Equation (28), the Bayesian estimate of the total failure number in the
next year was estimated:

rYFb = sumb(rl ,YF) (38)

Therefore, the decision that rYF smart electricity meters need to be reserved can be
made for the following year.

3.2. Decision-Making on Rotation Time of Batch Smart Electricity Meters

The cumulated failure number of meters in the next year was:

rAccu = sum(rl) + rYF (39)

The corresponding Bayesian estimate of the accumulated failure number of electricity
meters in the next year was:

rAccu = sum(rl) + rYF (40)

The proportion of failed meters to all meters RF/ALL was computed:

RF/ALL = rAccu/Z (41)

The Bayesian estimation was:

RF/ALLb = rAccub/Z (42)

Decision making:
If the failure proportion exceeded the threshold RD,rotate,

RF/ALL ≥ RD,rotate (43)

or
RF/ALLb ≥ RD,rotate (44)

or the operation time was longer than the specified time TD,rotate:

tOperation ≥ TD,rotate (45)

The batch of electricity meters was rotated. The quantity of rotated smart electricity
meters Nrotate was:

Nrotate = Z− rAccu (46)

The Bayes quantity of rotated smart electricity meters was:

Nrotateb = Z− rAccub (47)

The equations derived in this subsection are applied to the rotation of electricity meters.

4. Example Analysis
4.1. Data Source

In August 2017, 578 electricity meters were installed, and the field operation data
between 2017 and February 2022 were collected. The failure time and cumulative failure
rate of 35 failed electricity meters by the end of 2019 are shown in Table 1.
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Table 1. Fault data of electricity meters from August 2017 to December 2019.

n(t) t N−n(t) F(t) n(t) t N−n(t) F(t)

1 11 577 0.001730 19 375 559 0.03287197
2 12 576 0.003460 20 382 558 0.03460207
3 57 575 0.005190 21 390 557 0.03633217
4 81 574 0.006920 22 403 556 0.03806228
5 140 573 0.008651 23 415 555 0.03979238
6 149 572 0.010381 24 416 554 0.04152249
7 154 571 0.012111 25 428 553 0.04325259
8 184 570 0.013841 26 492 552 0.04498269
9 200 569 0.015571 27 607 551 0.04671280
10 211 568 0.017301 28 622 550 0.04844291
11 215 567 0.019031 29 647 549 0.05017301
12 245 566 0.020761 30 667 548 0.05190310
13 253 565 0.022491 31 681 547 0.05363322
14 253 564 0.024221 32 738 546 0.05536332
15 267 563 0.025952 33 756 545 0.05709343
16 336 562 0.027681 34 782 544 0.05882353
17 341 561 0.029411 35 827 543 0.06055363
18 353 560 0.031142

Combined with the data in the table above, scale parameters η and shape parameters
m can be calculated according to Equations (3) and (4). According to Equations (9) and (10),
the failure rate h and the failure number H of each future prediction time interval4t can be
obtained. The confidence interval of H can be calculated by Equation (16), and the relative
dispersion degree of failure number H can be calculated according to Equation (35). The
future prediction time interval4t in the table below represented 365 days from the end
of 2019 to the end of 2020, 730 days from the end of 2019 to the end of 2021, and 790 days
from the end of 2019 to the end of February 2022, respectively. The responding calculation
results are shown in Tables 2 and 3 below.

Table 2. Estimation of distribution parameters and number of failures.

η = 16,995.978 m = 0.91697

4t 365 730 790
h 0.023 0.0449 0.0475
H 13.310 25.965 27.783

The actual failure of electricity meters was 9, 23, and 27 in the following 365 days,
730 days, and 790 days, respectively.

Table 3. Prediction interval and relative dispersion ratio.

4t Bilateral Interval E

365 [7.295, 19.48] 0.9151
730 [16.66, 35.34] 0.7193
790 [18.18, 37.86] 0.7027

where4t was the future prediction time interval,4t = te − ts, and the unit was days.

As seen from the above table, among the three future time intervals, when the future
time interval was 365 days, the relative dispersion ratio was the largest and close to 1. The
relative dispersion ratio was the smallest when4t was 790 days.

4.2. Analysis of the Failure Number of Prediction Results

The distribution parameters were calculated with failure from the data from August
2017 to December 2018, August 2017 to December 2019, and August 2017 to December
2020, respectively. The calculated results are shown in Table 4.
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Table 4. Estimation of distribution parameters and number of failures.

Time August 2017–Decemeber 2018 August 2017–Decemeber 2019 August 2017–Decemeber 2020

m 1.11963 0.91697 0.82748
η 7689.025 16,995.97 26,513.455

4.3. Analysis of Relative Dispersion Degree of Prediction Results

The observation time was 487 days, 852 days, and 1217 days, respectively. The
relationship between the prediction failure number H and the future prediction time
interval4t was analyzed, as shown in Figure 3.
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Figure 3. The relationship between the number of failures and the future interval.

As shown in the figure above, H increased with the growth of 4t, and went into
a stable trend in the later stage gradually. With the continuous increase of 4t, all the
electricity meters would finally fail. On the whole, as the time4t increases, more meters
need to be replaced, and we should increase the storage of meters accordingly.

According to the parameters of the calculation of the data in three observations,
the relationship between the prediction failure number H in the next 365 days and the
observation time ts was analyzed, as shown in the following figure.

As shown in Figure 4, H in the next 365 days decreased with the increase in ts, and H
predicted by the observed time of the previous 487 days was a temporary increase by the
time of ts, and then decreased with the rise of ts, and the decline was faster than the other
two. On the whole, we can see that the number of electricity meters to be replaced in the
next year decreased with the increase in the observation time.

The observation time was 487 days, 852 days, and 1217 days, respectively. The
relationship between the number of the predicted failure in the next 365 days and the total
batch quantity N was analyzed, as shown in Figure 5.

The figure above shows that H in the next 365 days increased with the increase in
N when ts and 4t were unchanged, and H in the prediction of the data in the longer
observed period increased more slowly with the rise in N. Therefore, as the number of
meters installed in batches increases, the number of meters to be replaced in the next year
will also increase, and we will need to reserve more meters accordingly.



Sensors 2022, 22, 9804 12 of 19

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

According to the parameters of the calculation of the data in three observations, the 

relationship between the prediction failure number H  in the next 365 days and the 

observation time st  was analyzed, as shown in the following figure. 

As shown in Figure 4, H  in the next 365 days decreased with the increase in st , 

and H  predicted by the observed time of the previous 487 days was a temporary in-

crease by the time of st , and then decreased with the rise of st , and the decline was 

faster than the other two. On the whole, we can see that the number of electricity meters 

to be replaced in the next year decreased with the increase in the observation time. 

 

Figure 4. The relationship between the number of failures and the observation time. 

The observation time was 487 days, 852 days, and 1217 days, respectively. The rela-

tionship between the number of the predicted failure in the next 365 days and the total 

batch quantity N  was analyzed, as shown in Figure 5. 

 

Figure 5. The relationship between the number of failures and the total batch quantity. 

H
(p

cs
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

N(pcs)

50

100

150

200

250

300

350

400

H
(p

cs
)

487d

852d

1217d

Figure 4. The relationship between the number of failures and the observation time.
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Figure 5. The relationship between the number of failures and the total batch quantity.

The relationship between the relative dispersion ratio E and the future prediction time
interval4t was analyzed, as shown in Figure 6.

As shown in the figure above, E decreased with 4t and finally exhibited a stable
trend. It can be seen that the value of E was first close to 1 and then away from 1 with the
increase in4t, which indicated that the dispersion degree of the number of meter failure
H decreased first and then increased.

The observation time was 487 days, 852 days, and 1217 days, respectively. The
relationship between the relative dispersion ratio E in the next 365 days and the total
quantity N was analyzed, as shown in Figure 7.
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Figure 7. The relationship between the relative dispersion ratio and the total batch quantity.

As shown in the figure above, E decreased with the increase of N when the time of ts
and4t were all unchanged, and finally exhibited a stable trend. It can be seen that the value
of dispersion ratio E first approached 1 and then moved away from 1 with the increase in
the total number of electricity meters in batches, which indicated that the dispersion degree
of the number of electricity meter failure decreased first and then increased.

4.4. Bayesian Fault Point Estimation and Interval Estimation Case Analysis

After multisource data fusion, the reliability life was 2920 days to 5840 days when the
reliability R was 0.9. Since the data used for Bayesian prediction in this chapter were the
field data from August 2017 to the end of 2019 in Table 1, the parameter mb was 0.91697
calculated from August 2017 to the end of 2019 without previous information.

The previous distribution parameters were obtained according to Equations (25) and (29):
a = 95.17269, b = 1778004.98, and λ̂b = 0.0000728898. The corresponding Bayes point esti-
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mates and interval estimates of failure number were obtained according to Equations (31),
(32) and (34), as shown in Tables 5 and 6 below.

Table 5. Bayesian estimation of failure rate and number of failures.

λ̂b = 0.0000728898 mb = 0.91697

4t 365 730 790
hb 0.01342 0.02634 0.02843
Hb 7.75923 15.227 16.430

After verification, the Bayesian prediction result of the number of failures in this
example was slightly less than the actual number of on-site failures.

Table 6. Bayesian interval prediction and relative dispersion ratio.

4t Bayes Bilateral Interval Eb

365 [7.496, 19.828] 1.589
730 [17.180, 36.204] 1.249
790 [18.765, 38.820] 1.222

where4t is the future time interval, and the unit is days.

In this example, the Bayesian interval estimation results were consistent with the
prediction results without previous information fusion.

The prediction results of the Bayes method and those without fusion of previous
information change over time, as shown in the following figures (Figures 8–11).
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Figure 8. The relationship between Bayesian and classical prediction of failure times and future
interval variation.

Above, the prediction results of H were increased with the increase in 4t, and the
failure number prediction results of the Bayes failure were smaller than those that do not
merge the prior information. As4t was increasing, the final two kinds of failure number
were expected to be close to the number of batches. Based on the Bayesian prediction results,
the number of meters to be replaced in the predicted time interval4t was relatively small.
Corresponding to the Bayesian prediction case, we only need to reserve fewer meters.

Based on the data of the previous 852 days of observation time, the relationship
between the prediction failure number H of the next 365 days and the observation time
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ts was analyzed by using no prior information fusion and the Bayes method, as shown in
Figure 9.
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Figure 9. The relationship between Bayesian and classical prediction of failure times and the observa-
tion time variation.

Above, according to the data in the previous 852 days of observation time, H predicted
by the two methods decreased with the increase in ts when the prediction period4t was
the coming 365 days. The expected number of failures H by the Bayesian method decreased
more slowly with the increase in ts. In the end, H indicated by the two methods was stable
with increasing observation time. With the rise in observation time, compared with the
number of electricity meters to be replaced in the next year without prior information
prediction, the number of electricity meters to be replaced in the next year under Bayesian
prediction is first small and then large.

Based on the data of the previous 852 days of observation time, the relationship
between the prediction failure number H of failures of the next 365 days and the total batch
quantity N were analyzed using no prior information fusion and the Bayes method, as
shown in Figure 10.
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quantity variation.
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As seen from the above figure, H in the next 365 days increased with the increase
in the number of batches when the time ts and the future prediction time interval 4t
were all unchanged, and H predicted by the Bayesian method increased more slowly with
the increase in N. As the total number of meters installed in the same batch increases,
the number of meters that will need to be replaced in the next year under the Bayesian
prediction is less than that under the prediction without prior information.

Based on the data of the previous 852 days’ observation time, the relationship between
the relative dispersion ratio E of the next 365 days and the prediction time interval4t was
analyzed using no prior information fusion and the Bayes method, as shown in Figure 11.
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Figure 11. Bayesian and classical methods predict the relative dispersion of results with future
time intervals.

As seen from the above figure, E decreased with the increase in4t and finally exhibited
a stable trend, and the Bayesian dispersion ratio prediction result was more significant than
the dispersion ratio prediction result without prior information. On the whole, it can be
seen that the dispersion ratio of Bayesian prediction results was closer to 1, which indicated
that the dispersion degree of Bayesian prediction results was lower.

Based on the data of the previous 852 days of observation time, the relationship
between the relative dispersion ratio E of the next 365 days and the total batch quantity N
was analyzed using no prior information fusion and the Bayes method, as shown in the
following figure.

As seen from Figure 12, the Bayes prediction dispersion ratio curve was initially higher
than the dispersion ratio curve without prior information, and then slowly approached
consistency. The value of E calculated by the two methods decreased with the increase
in N when the time of observation and the prediction time interval were all unchanged,
and finally exhibited a stable trend. On the whole, it can be seen that the dispersion
degree of Bayesian prediction results was consistent with that of prediction results without
prior information.

It can be seen from the above figures that the Bayes prediction of the number of electric
meter faults after information fusion was consistent with that without previous information
fusion. In the prediction of the relative dispersion ratio, the relative dispersion degree of
Bayesian prediction was lower and the effect was better.



Sensors 2022, 22, 9804 17 of 19

Sensors 2022, 22, x FOR PEER REVIEW 19 of 21 
 

 

 

Figure 12. Bayesian and classical methods predict the relative dispersion of results with the total 

quantity variation. 

It can be seen from the above figures that the Bayes prediction of the number of 

electric meter faults after information fusion was consistent with that without previous 

information fusion. In the prediction of the relative dispersion ratio, the relative disper-

sion degree of Bayesian prediction was lower and the effect was better. 

4.5. Replacement Strategies for Smart Electricity Meters 

There were 578 million installed in August 2017, and 56 million had broken down 

by the end of 2021. According to Equations (37), (39), and (41), the cumulated failure 

number of meters in the next year rYF , the total failed meters in the next year rAccu , and 

the proportion of failed meters to all meters 
/RF ALL  was predicted. According to Equa-

tions (38), (40), and (42), the corresponding Bayesian estimation can be obtained, and the 

prediction results are shown in Table 7. 

Table 7. Prediction results of failure number and failure ratio by Bayesian and classical methods. 

The Next Year  rYF  rAccu  
/RF ALL  

2022 
Classical 10.39 66.39 0.11486 

Bayesian 7.23 63.23 0.109395 

The threshold ,D rotateR  was set to 0.20, and the specified rotation time ,D rotateT  was 

eight years. According to the results in Table 5, the proportion of failed meters to all me-

ters /RF ALL  was 0.11486, and the corresponding Bayes estimate was 0.109395, which was 

less than ,D rotateR  = 0.20. The operation time of the meters was less than eight years. 

Therefore, the smart electricity meters did not need to be rotated. 

5. Conclusions 

A failure number prediction method for smart electricity meters based on Weibull 

distribution and odds ratio was proposed, and then strategies for electricity meter re-

placement and reserve were developed. The odds ratio was used to compute the distri-

bution of failure number of meters, then the confidence intervals of distribution param-

eters and failure number in the future time interval were provided. Combined with the 

Bayes method and previous information, the number of meter failures was predicted. For 

the sake of application, replacement strategies, including replacement quantity, rotation 

time, and rotation criteria were developed, and a procedure for meter replacement was 

given. A case study validated the proposed methods. After verification, combined with 

E

Figure 12. Bayesian and classical methods predict the relative dispersion of results with the total
quantity variation.

4.5. Replacement Strategies for Smart Electricity Meters

There were 578 million installed in August 2017, and 56 million had broken down
by the end of 2021. According to Equations (37), (39) and (41), the cumulated failure
number of meters in the next year rYF, the total failed meters in the next year rAccu,
and the proportion of failed meters to all meters RF/ALL was predicted. According to
Equations (38), (40) and (42), the corresponding Bayesian estimation can be obtained, and
the prediction results are shown in Table 7.

Table 7. Prediction results of failure number and failure ratio by Bayesian and classical methods.

The Next Year rYF rAccu RF/ALL

2022
Classical 10.39 66.39 0.11486

Bayesian 7.23 63.23 0.109395

The threshold RD,rotate was set to 0.20, and the specified rotation time TD,rotate was
eight years. According to the results in Table 5, the proportion of failed meters to all meters
RF/ALL was 0.11486, and the corresponding Bayes estimate was 0.109395, which was less
than RD,rotate = 0.20. The operation time of the meters was less than eight years. Therefore,
the smart electricity meters did not need to be rotated.

5. Conclusions

A failure number prediction method for smart electricity meters based on Weibull dis-
tribution and odds ratio was proposed, and then strategies for electricity meter replacement
and reserve were developed. The odds ratio was used to compute the distribution of failure
number of meters, then the confidence intervals of distribution parameters and failure
number in the future time interval were provided. Combined with the Bayes method and
previous information, the number of meter failures was predicted. For the sake of applica-
tion, replacement strategies, including replacement quantity, rotation time, and rotation
criteria were developed, and a procedure for meter replacement was given. A case study
validated the proposed methods. After verification, combined with field data, the method
in this paper is effective and valuable for solving related problems. The data sources used
in this paper are reliable and the method is novel. At the same time, the research results
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of this paper have been recognized bypartners, so the possibility of implementing the
solution is beyond doubt. Next, we will continue to study methods predicting the number
of failures based on historical data in the following year. We will explore ways to solve the
problem of prediction and rotation of the failure number of smart electricity meters, and
discuss the advantages and disadvantages of various methods.
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