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Abstract: Hyperspectral imaging has been attracting considerable interest as it provides spectrally
rich acquisitions useful in several applications, such as remote sensing, agriculture, astronomy,
geology and medicine. Hyperspectral devices based on compressive acquisitions have appeared
recently as an alternative to conventional hyperspectral imaging systems and allow for data-sampling
with fewer acquisitions than classical imaging techniques, even under the Nyquist rate. However,
compressive hyperspectral imaging requires a reconstruction algorithm in order to recover all the
data from the raw compressed acquisition. The reconstruction process is one of the limiting factors for
the spread of these devices, as it is generally time-consuming and comes with a high computational
burden. Algorithmic and material acceleration with embedded and parallel architectures (e.g., GPUs
and FPGAs) can considerably speed up image reconstruction, making hyperspectral compressive
systems suitable for real-time applications. This paper provides an in-depth analysis of the required
performance in terms of computing power, data memory and bandwidth considering a compressive
hyperspectral imaging system and a state-of-the-art reconstruction algorithm as an example. The
results of the analysis show that real-time application is possible by combining several approaches,
namely, exploitation of system matrix sparsity and bandwidth reduction by appropriately tuning
data value encoding.

Keywords: compressive sensing; CGNE; DD CASSI; hyperspectral imaging; computation complexity;
embedded systems; remote sensing; field-programmable gate array (FPGA); graphics processing
unit (GPU)

1. Introduction

While traditional photography and human vision is based on the acquisition of three
spectral bands (i.e., red, green and blue), hyperspectral imaging delivers more precise
spectral information as it acquires several tens to hundreds of narrow (e.g., 10 nm-wide
spectrally) contiguous bands. Hence, for every sensed spectral band (corresponding to an
interval in the light spectrum), information is stored for each point of the scene. As a result,
we obtain a data structure called a “hyperspectral cube” or “data cube”. The fine spectral
information provided by hyperspectral (HS) imagery has been exploited in various fields
such as agronomy to spot crop diseases [1] and in geology to prospect ores [2,3], to cite
a few.

Linear scanning is a common acquisition technology for HS imaging [4]. It consists
of capturing consecutive slices of the datacube either in the spatial or spectral dimension.
However, the large amount of information provided by this imaging technology comes
with two major downsides:

– Acquisition time: As the whole HS cube is not captured at once, repeated acquisitions
are necessary. Depending on the image acquisition mode and the device, it might take
even more time to operate the device between every capture step (e.g., changing the
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filter for the spectral scanning method) than the image acquisition itself. In addition,
this acquisition modality cannot handle dynamic scenes.

– Data size: due to the high number of spectral bands measured for all spatial pixels,
the data cube size increases considerably as the dimensions increase. This amount
of data may present a challenge when the imaging device has a limited amount of
memory or the acquisitions have to be transmitted through a low-bandwidth channel.

Compressive imagers have been developed to avoid the exhaustive exploration of the
data cube required in linear scanning while compressing the data during the acquisition and,
thus, overcoming the aforementioned downsides. These devices exploit the Compressive
Sensing (CS) theory proposed by Candès et al. [5]. Based on this theory, multiple devices
have been developed, such as the Single Pixel Camera (SPC) [6,7] and the Coded Aperture
Snapshot Spectral Imager (CASSI) [8] with various variants, e.g., the Double-Disperser
Coded Aperture Snapshot Spectral Imager (DD CASSI) [9], the 3D-CASSI [10,11], the Coded
Aperture Compressive Temporal Imaging (CACTI) [12] and the Dual-Camera Compressive
Hyperspectral Imager (DCCHI) [13].

As scene scanning (either in the spatial or spectral domain) is avoided, the capture
time is greatly reduced. However, this reduction of the acquisition time is at the expense,
in general, of a loss of spatial or spectral resolution, which should be addressed by compu-
tational techniques. Indeed, the raw data acquired by the CASSI cannot be exploited as is,
and an inverse problem has to be solved. A large set of algorithms exist to address image
reconstruction and recover the data cube, including the Gradient Descent, Orthogonal
Matching Pursuit (OMP), Gradient Projection for Sparse Reconstruction (GPSR), Least
Absolute Shrinkage and Selection Operator (LASSO) and Iterative Shrinkage/Tresholding
(IST); see [14] for a review.

The unavoidable computational operation to reconstruct a datacube usually requires
heavy computations. Most of the works in the literature focus on exploring the performance
of reconstruction techniques in terms of accurate reconstructions instead of computational
analysis. This can be a limitation for applications where real-time hyperspectral analysis
is needed (e.g., distinguishing tissues during surgery, such as in [15]). Most of the works
in the literature addressing compressive hyperspectral cameras focus more on optical
design or on methods for image reconstruction rather than on analysis of the computational
complexity of these devices.

The objective of this work is to determine whether an embedded device is able to
perform real-time reconstruction. Here, we assume a remote sensor handled by an operator;
in this framework, for the definition of “real-time”, we intend a display rate of about
25 frames per second (fps). This rate corresponds to the Phase Alternating Line (PAL)
television standard and offers a video stream without noticeable flickering to the operator.

For this purpose, we perform an analysis based on “fast hyperspectral cube recon-
struction” technology proposed by Ardi et al. [16]. They exploit the DD CASSI and process
the data with the Conjugate Gradient for Normal Equation (CGNE), a convex relaxation
algorithm. We made this choice because even if the SPC is a compressive imager, it requires
multiple acquisitions, which can be troublesome for real-time applications. In addition,
as said in [8], the DD CASSI’s design allows block processing of captured data. Which is
beneficial for us since it allows further processing parallelism and may help to reduce the
total computation time. Also, it can be noted that the DD CASSI favors spatial information
over spectral information when compared to the CASSI but the latter one does not offer
block processing.

This paper is a prospective study that brings out ways to accelerate the hyperspectral
reconstruction method and determine its performance on an embedded device. This is
original in the field of HS imaging in embedded systems, since most of the literature
focuses on either HS data compression [17,18] or unmixing [19,20]. Our analysis presents
the computational complexity of the method but also includes an estimation of the memory
footprint and bandwidth, which are often overlooked in the literature but are crucial
when designing a device for real use. These help us outline the specifications of the
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aforementioned device and determine whether the performance using an state-of-the-art
FPGA or heavier computational devices (e.g., GPUs) might be needed or even sufficient
for real-time applications. On top of studying the performance, we propose approaches to
improve both software and hardware aspects.

This paper is organized as follows. Section 2 introduces the background by presenting
snapshot imagers, compressed sensing, and hardware accelerators. Then, Section 3 consists
of a theoretical analysis of the CGNE to investigate the expected performance. These
performances are presented by using a scene that serves as a study case in order to help
the reader understand the CGNE’s requirements. Following that, Section 4 proposes
optimizations to achieve real-time reconstruction. The system’s sparsity is first discussed;
then, these optimizations start by considering the software part of the CGNE; and finally,
we address the hardware implementation of the CGNE and, more notably, the memory and
bandwidth used by the CGNE. Section 5 presents experimental simulations on additional
study cases to perform a study of the CGNE and then an evaluation of the improvements
made by the method presented in this paper.

2. Background

This paper addresses the feasibility of a real-time embedded hyperspectral compres-
sive sensing imaging system. This section provides background information on the different
fields relevant to make this work self-contained and is organized as follows. First, some hy-
perspectral imaging devices are introduced to give an overview of some existing acquisition
techniques. Then, compressive sensing is discussed. Following that, the acquisition model
of the compressive imager used in this work is presented. Finally, hardware accelerators are
introduced, as they help speed up the computations thanks to their parallel architecture.

2.1. Hyperspectral Imagers

Different types of hyperspectral imagers are available and are based on different
acquisition principles [21]. We briefly introduce three different types of snapshot imagers
to give an idea of the existing concepts.

The first acquisition modality we present is Spectrally Resolving Detector Arrays
(SRDA), which are similar to a Bayer-filter camera. Like a Bayer-filter camera, SRDAs
use an array of sensors where each pixel has a filter laid on it. The filters are not limited
to green, blue and red but consist of the spectral bands sensed in the desired data cube.
This leads to a very compact design that requires less calibration than ones with more
optical components. However, the extension in spectral resolution is at the cost of a loss in
spatial resolution. Furthermore, such a system is not modular since it binds the spectral
resolution, as the filters cannot be modified and are limited to a small number of spectral
bands (usually up to around 30).

Another family of hyperspectral imagers is the Snapshot Hyperspectral Imaging
Fourier Transform Spectrometer (SHIFT) [22], which acquires an interferogram that can
be processed to obtain a hyperspectral image by applying an inverse Fourier transform.
The interferograms are produced by using a polarizer, a birefringent prism and a polariza-
tion analyzer. The addition of a lenslet array divides the observed scenes into subscenes
that go through the system onto the camera sensor. The sub-images undergo different
optical difference paths, which allows for a snapshot capture of the scene.

To perform hyperspectral imaging, Gehm et al. [9] proposed a different acquisition
scheme based on a device called a Double Disperser Coded Aperture Snapshot Spectral
Imager (DD CASSI) that has the particularity of exploiting Compressive Sensing (CS). In
order to reconstruct the hyperspectral cube, several acquisitions with different codes are
done. These acquisitions are then processed to recover the hyperspectral cube, and the
missing data are extrapolated thanks to an a priori model. This system is composed of
two dispersive elements (prisms) placed on both sides of a Digital Micromirror Device
(DMD). (A Digital Micromirror Device is a microoptoelectromechanical system composed
of a matrix of configurable mirrors. Each mirror can be either in a transmission state or a
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rejection state. In the transmission state, the incoming light is redirected to another part of
the optical system, while in the rejection state, the incoming light is redirected to a light
absorber or elsewhere.) This also includes a coded aperture and finally a detector (CCD)
to capture the two-dimensional multiplexed signals of the three-dimensional data of the
scene. The second prism (see Figure 1) balances out the shearing (dispersion and shifting of
the light rays) caused by the first prism. This results in measurements that spatially match
those of the scene. The data cube projected onto the detector is not sheared; this means that
the spectral components of a spatial point in the data cube end up in the same position
on the sensor. A pixel of the sensor acquires a mix of the spectral information. A DMD
configuration of the coded aperture defines a multiplexing combination. Then, a set of
predefined codes enable capturing a subset of mixed spectral information.

Data cube from
the observed scene

Input
aperture

Relay lens

Dispertive 
element

Relay lens

Coded
aperture

Relay lens

Dispertive 
element

Relay lens

Detector

Figure 1. Principle of the DD CASSI system. Arrows represent the light rays that go through the
system. Notice that because of the spectral multiplexing induced by the first dispersive element, light
components from different light rays can be blocked by the same digit of the coded aperture. Hence,
the figuratively yellow and indigo rays formed after the second dispersive element are missing some
spectral components.

2.2. Compressive Sensing

Compressive Sensing (CS) is a technique used in signal processing that allows recon-
structing of a signal from fewer samples than required by Nyquist–Shannon sampling
theorem. Its principle is based on exploiting sparsity in a suitable representation domain for
the signal X we seek to recover. The signal X ∈ RN can be represented in an orthonormal
basis Ψ of dimension N with S coefficients, where S << N.

In practice, the set of M measurements is made in a second basis Φ that should not be
correlated with Ψ. The measurements Y are then obtained as:

Y = ΦX = ΦΨθ = Φ
S

∑
s=1

θsψs (1)

where Y is a vector of size M and Φ the measurement matrix of size M× N, where M < N.
Ψ is of size N × N with ψs as columns, and θ is an N vector with S non-zero elements that
form the coefficients. X is then a linear combination of S vectors.

By encoding X in Φ, we obtain compressed data of this signal. This compression
reduces transmission and storage requirements. CS can be understood as the acquisition of
a subset of mixtures of a signal X, and reconstruction is equivalent to untangling the mixed
signals to recover X. The missing information is recovered thanks to the prior knowledge
encoded as a regularization function, for instance. Recovering from (1), and since M < N,
gives us an inverse problem that can be solved as an `1-optimization problem:

θ̂ = arg min
θ
‖θ‖1 such that Y = ΦΨθ̂ (2)

To solve the optimization problem (2), several algorithms have been presented (see [23]).
Among these, convex relaxation algorithms and greedy pursuit are the most popular in
the literature due to their implementation simplicity while being quite efficient. Regarding
convex relaxation algorithms, well-known algorithms are the Gradient Descent, the Basis
Pursuit [24] and the Least Absolute Shrinkage and Selection Operator [25]. For greedy
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pursuit, Orthogonal Matching Pursuit [26], Stage-wise Orthogonal Matching Pursuit [27],
Iterative Hard Tresholding [28] and Fast Iterative Shrinkage/Thresholding Algorithm
(FISTA) [29] are often mentioned in the literature.

More specific to the hyperspectral compressive sensing framework, Total Variation
(TV), Gradient Projection for Sparse Reconstruction (GPSR) [30], the Two-Step Iterative
Shrinkage/Thresholding (TwIST) [31] and Alternating Direction Method of Multipliers
(ADMM) [32] are widely used.

Alongside the aforementioned image reconstruction techniques, the recent emergence
of artificial intelligence has led to deep-learning-based algorithms offering a novel alterna-
tive to reconstruct the data cube. See [33] for a discussion of both the optimization and deep
learning approaches. These deep learning algorithms offer satisfying performance; e.g., [34]
reported 30 frames per second for a 256× 256× 24 scene, but they require a training phase
that can last hours or even days and needs a training dataset.

Finally, when reconstructing the data cube, the algorithm is not the only parameter
to consider. For example Liu et al. [35] incorporate rank-minimization in their proposed
reconstruction method; similarly, Zha et al. [36] do the same with Group Sparse Represen-
tation (GSR) [37] but also combine both the FISTA and ADMM; Zhang et al. [38] choose to
mix ADMM and the TWiST while using a dual-camera, the DCCHI. Additionally, a domain
transform can also be used; e.g., Ma et al. [39] propose a deep-neural network to exploit the
Fourier Transform, the ADMM and low-rank tensors.

2.3. DD CASSI Matrix Model

In this section, we present the principle of the DD CASSI, which is the compressive
hyperspectral imaging device that we have chosen as the example to consider in this work.

We follow the work of Ardi et al. [16], who proposed a convex relaxation algorithm to
recover the HS data cube. Although the DD CASSI is a snapshot imager, Ardi et al. [16]
suggested performing the cube recovery based on multiple acquisitions. This improves the
reconstruction quality (see Section 5.2.2).

Matrix modeling of the DD CASSI acquisitions

The objective is to reconstruct the scene o from the acquired data d and the measure-
ment matrix H. Ardi et al. [16] modeled scene acquisition as:

d = Ho where d =

 I(1)
...

I(N)

 and H =

T(1)

...
T(N)

 (3)

where d is a concatenation of the N acquisitions I, T describes the DMD configurations for
each acquisition, H represents the optical transform and filtering induced by the system,
and o are the data of the observed scene.

Let R, C and W be the dimensions of o, i.e., R rows, C columns and W wavelengths.
Then, d is of size NRC, each acquisition I has a size of RC, each T is a matrix of dimension
RC× RCW and H is a matrix of size NRC× RCW.

Hyperspectral cube recovery

Reconstructing the scene o from (3) is an ill-posed problem since the solution is not
unique. To solve this problem, it is possible to resort to Tikhonov regularization. Hence,
the regularized reconstruction problem becomes:

ô = arg min
o
{‖d− Ho‖2 + Ω(o)} (4)

with ô as the estimation of o, Ω(o) = µx‖Dxo‖2 + µy‖Dyo‖2 + µλ‖Dλo‖2 as the penal-
ization function, where Dx, Dy and Dλ are, respectively, the finite differences along the
spatial dimensions x, y and the spectral dimension λ and their associated regularization
coefficients. Here, regularization favors continuous data.
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As the function in (4) is convex and differentiable, it admits an analytical solution:

ô = (H>H + µxD>x Dx + µyD>y Dy + µλD>λ Dλ)
−1H>d (5)

However, due to the size of the matrices, this solution is impractical to compute
directly in real scenarios of applications. Thus, to reconstruct the data cube, it is possible to
use an iterative method such as the Conjugate Gradient for Normal Equation (CGNE) [40],
given in Algorithm 1, and rewrite the problem as:

M>Mô = H>d (6)

with M = [H,
√

µxDx,√µyDy,
√

µλDλ]. The CGNE is used to solve problems of form
Ax = b. In our case, A = M>M and b = H>d.

Algorithm 1: CGNE algorithm. Convergence condition is reached when a certain
precision tol is met and can be evaluated as r>i ri < tol.

Compute r0 = b− Ax0, p0 = A>r0;
for i = 0, 1, ... until convergence do

αi = r>i ri/p>i pi;
xi+1 = xi + αi pi;
ri+1 = ri − αi Api;
βi = r>i+1ri+1/r>i ri;
pi+1 = A>ri+1 + βi pi

end

2.4. HW Accelerators

Since solving (2) can be a computationally demanding task, hardware (HW) accel-
erators can be used to achieve real-time reconstruction. Central Processing Units (CPUs)
are considered the brain of a computer, but they are not as efficient as specialized chips,
notably when parallelism and computing power are required. In this case, HW accelerators
such as Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs)
are better choices.

GPUs’ initial purpose is to render digital pictures and videos. They are very efficient
at executing a large number of arithmetic operations in parallel. This is done by having a
massive amount of computing units organized in repeated “grid” patterns along with mem-
ory caches to reduce the latency. This amount of resources comes with significant power
consumption (e.g., 350W for an Nvidia 3080 [41] and 230W for an AMD RX 6700XT [42]).

FPGAs are reprogrammable integrated circuits. They offer parallelism at a finer level,
and configuring them makes them versatile while being energy-efficient. They incorporate
memory components in their fabric, which minimizes the latency and makes FPGAs great
solutions for real-time applications.

Both GPUs and FPGAs are designed to perform a multiply–accumulate (MAC) op-
eration, which is the product of two variables added to an accumulator: a← a + (b× c).
Hence, they are very efficient at doing matrix–vector or vector–vector products since they
are composed of only MAC operations.

Regardless of the device, we can distinguish two types of memory: “work memory”
and “global memory”. Work memory is located closer to the computing units to offer fast
data access but is of a limited amount, whereas the role of the global memory is to store
all the required data but at the cost of reduced speed. When the data set is larger than
the work memory, the system swaps data and copies them from global to work memory
to perform computations. Hence, the size of the work memory is crucial regarding the
bandwidth since it determines whether swapping is needed or not.
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A description of GPU memory hierarchy is available at [43]. For GPUs, since L1 caches
get invalidated between each computation task, we will consider that the L2 cache acts as
work memory. Their global memory is made of memory chips located outside the GPU
die but on the same package. For FPGAs, the work memory is the embedded memory laid
between the circuit blocks, and the global memory is external to the device, and its access
must be done through a memory controller.

3. Naive CGNE Implementation: Performance and Limits

This section presents the motivation of this work. The contribution of this section
dwells in the theoretical analysis of the CGNE’s initial specifications regarding computing
power, memory footprint and data bandwidth. However, by estimating the performance
on an FPGA or a GPU, it is shown that a reconstruction would take several seconds at best.
Thus, optimization is required to achieve real-time reconstruction.

This section is organized as follows. First, we introduce the two reconstruction models
we considered during this paper. Then, we evaluate CGNE’s initial specifications. After that,
we introduce a model GPU and a model FPGA with their respective performance. This
will help the reader to get a better grasp of the magnitude of the CGNE’s specifications.
However, we see that they far exceed the capabilities of the computing devices.

3.1. Reconstruction Models

From the matrix model described in Section 2.3, two reconstruction models can
be used:

• Multi-row model (MR): from [16], the model described in Section 2.3. This model
takes into account correlation between x, y and λ.

• One-row model (OR): from [44]. Each row of the observed scene is reconstructed
one-by-one and then concatenated together to form the restored scene. During the
reconstruction, only correlations along x (pixels in the same row) or λ (different
wavelengths) can be taken into account through regularization parameters µx and µλ.

In the OR model, the reconstructions are performed on one row instead of on the
whole scene as in the MR model. This results in smaller dimensions (CW instead of RCW)
for the vectors and matrices; e.g., H now contains the DMD configuration of one row
instead of the whole scene. This reduces the memory footprint of the CGNE, which is
advantageous for implementations on embedded devices. In addition, the term µy‖Dyo‖2

is removed from Ω(o), µyD>y Dy is removed from 5, and √µyDy is removed from M.

3.2. CGNE Performance Study
3.2.1. CGNE Algorithm Computation Cost

Since the size of the matrices and vectors are known, we can determine the computing
cost of the CGNE (see Algorithm 1). We recall that A is RCW × RCW; then, xi, b, ri, pi are
RCW vectors; and finally, αi and βi are scalars. Note that for iteration i, computing r>i+1ri+1

and storing the result spares us the computation of r>i ri in Steps 3 and 6.
Let ITER be the total number of CGNE for-loop iterations. Then, the total computation

cost for a scene for the OR model is given by:

R[2(CW)2 + ITER(2(CW)2 + 5CW)] (7)

The total computation cost for a scene for the MR model is given by:

2(RCW)2 + ITER(2(RCW)2 + 5RCW) (8)

Using the MR model, the computation amount is multiplied by R compared to the OR
model. This difference is due to the fact that the y dimension has an exponential impact in
the MR model (directly incorporated in H; see Section 4.1.1).
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3.2.2. Memory and Bandwidth

Now that the required computation power has been calculated, we focus on the
memory footprint and bandwidth. We start by determining the memory footprint used by
running the CGNE algorithm then present a basic estimation of the bandwidth.

Memory footprint

Looking at the CGNE (see Algorithm 1), we have to store its variables along with
intermediate ones to run all the computations. When looking closely at the CGNE, we notice
that it is not necessary to store all these variables. Indeed, xi+1, pi+1 and ri can be stored
in the same memory unit used by xi, pi and b, respectively, since xi and pi are not used
after xi+1 and pi+1 affectations, and b is only used to initialize r0. Additionally, regarding
intermediate variables, allocating an RCW vector is sufficient. We recall that we also store
r>i+1ri+1, just as discussed in the previous section. Hence, in total, we have to store

(RCW)2 + 4RCW + 3 values (9)

Since the video consists of multiple reconstructions per second, the memory footprint
turns into bandwidth. Without memory swapping, the bandwidth for a video is obtained
by multiplying the memory required for the inputs and outputs of the CGNE by the target
number of frames per second. When swapping is required, the worst case consists of
storing and loading from the global memory every variable for every iteration of the CGNE,
since they do not fit into the work memory. Hence, swapping might tremendously increase
the bandwidth.

3.2.3. Theoretical CGNE Performance in a Study Case

Since we know the theoretical specifications of the CGNE, we compare them with
the specifications of a GPU and an FPGA in order to determine the reconstruction rate
in a naive setting. For the GPU, we chose the NVIDIA RTX 3090 Ti [45], and Xilinx
Ultrascale + VU13P [46] is the FPGA. They are both (at the time of writing) very powerful
devices in their respective categories. Their specifications are given in Table 1. The perfor-
mance of the CGNE is evaluated for the scene depicted in Figure 5a. This is a 30× 150× 31
scene. Although its dimensions are quite modest, the specifications of the CGNE for this
scene are already very demanding.

Table 1. Selected devices with their computing power, work memory and data bandwidth.

Device Nvidia RTX 3090 Ti Xilinx Ultrascale + VU13P

Computing power 20.00 TMAC/s (CUDA cores) 10.95 TMAC/s
Work memory 6.114 MB 56.875 MB
Global memory 24 GB 128 GB
Global memory bandwidth 1008 GB/s 85.2 GB/s [47]

Each reconstruction of our study case requires 1.99 TMAC for the OR model and
59.55 TMAC for the MR model (see (7) and (8)). (TMAC stands for TeraMAC and is equal
to 1012MAC. We recall the International System of Units prefixes: Peta (P: 1015), Tera
(T: 1012), Giga (G: 109), Mega (M: 106) and Kilo (k: 103).) Considering the computation
cost, the OR model would achieve 10 reconstructions per second for the RTX 3090 Ti and
5 reconstructions per second for the VU13P. Note that since the computation cost depends
on ITER, the number of CGNE for-loop iterations, we evaluated the total computation cost
for the average value we obtained during the simulations (see Section 5).

Regarding memory footprint, let us consider every value is stored in 64 bits; from (9),
we deduce that it reaches 173 MB per row of the OR model, 5.2 GB in total for the OR model
and 156 GB for the MR model. Since the memory footprint exceeds the work memory
for both devices, memory swapping is needed (see Section 4.3.3). Therefore, the memory
transfer for a reconstruction would be several TBs for the OR model and hundreds of TBs
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for the MR model. Because of this, reconstruction with the OR model would take around
15 s for the RTX 3090 Ti and 125 s the VU13P. These reconstruction times are not suitable
for real-time applications, and we have to find ways to reduce them.

As we saw through this section, the CGNE’s specifications far exceed the resources
provided by the selected computing devices, and no single device can fulfill these require-
ments. However, in the next sections, we describe the structure of the matrix A, especially
its sparsity, and then we explain how we will exploit it to improve the performance of the
CGNE and achieve real-time reconstruction.

4. CGNE Optimization for Real-Time

This section presents the techniques we used to reduce the CGNE specifications and
achieve real-time performance. This is done by using a sparse matrix format and finely
tuning the representation of data. The contribution is the study of the sparsity of matrix A
and the theoretical analysis of the improved computational cost, memory footprint and
data bandwidth.

In this section, we first explain how H is built; then, we determine where the non-zero
entries are in A, and, more importantly, we show that they amount less than 1% of A’s
entries. Then, a sparse matrix format is presented and is used in order to improve the
performance of the CGNE.

Following that we explain how to save both bandwidth and hardware resources
by finely tuning the representation of data. Thus, we briefly introduce fixed-point data
value encoding and explain how to determine the data format. In conclusion, we show
that several thousands reconstructions per second are possible for both devices with the
OR model. Regarding the MR model, the VU13P is capable of several thousands of
reconstructions per second, whereas the RTX 3090 Ti is limited to a dozen reconstructions
because of memory swapping.

4.1. System Sparsity
4.1.1. H Construction and Subsequent A Structure

One-row model

In order to exploit the sparsity of H and reduce the number of operations, we need to
identify the structure of its non-zero entries. For that, we rely on both the optical system
it models and on the multiple acquisition procedure incorporated in H. We recall that
d contains the concatenation of the set of acquisitions of the camera sensor. The matrix
H reproduces the co-location property of the optical system; that is, a pixel of the sensor
perceives a spectral mixture of components from the same spatial position. Hence for
each different wavelength that belongs to the datacube, H is composed of a diagonal line.
The diagonal lines are made of the DMD configurations. As we go through the wavelengths,
the diagonal is shifted along one direction or another to match the linear dispersion caused
by the prism. To model multiple acquisitions with different codes (DMD configuration), this
pattern is replicated and concatenated vertically for each acquisition, as shown in Figure 2a.

As a result, A is symmetric and shows diagonal entries that start at columns 0, 1 and
wC with 1 ≤ w ≤W; see Figure 2b. Thus, for our study case where W = 31, a given line of
A has at most 33 nonzero entries and 4617 zero values for a fully open DMD. Note that the
sparsity of A depends on the DMD configuration.

Now that the arrangement of nonzero entries in A is known, we can estimate their
number, which we denote as EOR. For a square matrix of size n, a diagonal at position i has
a length of n− i. We can deduce that:

EOR = CW + 2(CW − 1) + 2(
W−1

∑
i=w

CW − wC) = (W + 2)CW − 2 (10)
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{ w4

(a) (b)

Figure 2. Graphical representations of matrices (a) H and (b) A matrices in the OR model, with N = 2,
C = 5 and W = 4. The white dots represent the non-zero entries. Here, the DMD is entirely in
transmission mode to depict all the possible non-zero entries. The yellow dashed line separates
the acquisitions.

The matrix density (i.e., the number of nonzero entries) is related to the matrix size
and is expressed as EOR

(CW)2 . In our study case, it is equal to 0.7%.

Multi-row model

Because the MR model takes into account the relation between a set of rows to differen-
tiate the acquisitions, the different rows and the distinct wavelengths, the previous pattern
for the OR model is replicated and shifted along the horizontal and vertical axes, as shown
in Figure 3a. Then, in Figure 3b, we can see that A contains a repetition of OR’s A pattern
with additional diagonals. Generally speaking, diagonals are located at positions 0, ±1, ±RC,
and R distinct square submatrices of size CW are placed along the main diagonal. These
submatrices contain W − 2 diagonals placed at positions ±wC with 2 ≤ w < W. We can also
notice that in the diagonals at positions ±1, every iC-th entry with i ∈ [1, RW − 1] is a 0.

{Acquisition 1

{ {w2 w3

{row1

{row2

{row3

{w4{w1 { { {{ { { {{ { { {{ { { {{

{row4

{row5

{Acquisition 2

{row1

{row2

{row3

{row4

{row5

w2 w3 w4w1 w2 w3 w4w1 w2 w3 w4w1 w2 w3 w4w1

(a) (b)

Figure 3. Graphical representations of matrices (a) H and (b) A in OR, with N = 2, R = 5, C = 5 and
W = 4. The white dots represent the non-zero entries. DMD is entirely in transmission state to depict
all the possible non-zero entries. The yellow dashed line separates the acquisitions.

Following the same approach used to estimate the number of entries in OR’s A, we
conclude that EMR is, at most, equal to:

EMR = RCW + 2(RCW − 1) + 2(n− C) + 2(n− RC) + 2R(
W−1

∑
w=2

CW − wC)− 2(RW − 1)

= RCW2 + 2(2RCW − RW − C)

(11)

Density of A is EMR
(RCW)2 , which is equal to 0.003% for our study case.

4.1.2. Sparse Matrix Format

As discussed previously, the matrix A is very sparse (and especially in the MR model).
Exploiting this property will be beneficial, since a sparse matrix format improves both the
storing space and the computational cost of arithmetic operations. Furthermore, as the
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CGNE relies on matrix–vector multiplications, exploiting the sparse matrix formats advan-
tageously reduces the computing time.

Taking into account the patterns of entries in A and the matrix–vector multiplication
operation, two sparse matrix formats are of interest: Compressed Sparse Row (CSR) and
Diagonal format (DIA); both are described in [48]. However, because the DIA format stores
any diagonal having at least one nonzero entry and the potential sparsity of the diagonals
of A, the CSR format (described in Figure 4) might be more suitable to store the A matrix.

1 8

8

7 6

1

2 1 8 87 6 1val =

col =

row = 0 3 5 6 7

2 3 0 3 0 2

2

1

Figure 4. A dense matrix and its representation in CSR format. The row i is in the slice val[j : k],
where j = row[i] and k = row[i + 1]. The slice col[j : k] gives the column of the data.

The CSR format and its associated matrix–vector multiplication algorithm (cf. Algorithm 2)
guarantees that no iteration over zero entries will be done, and for each nonzero entry in A,
only addition and multiplication are performed.

By using this format, storing A uses E× (Nb + dlog2(RCW)e)+ (RCW + 1)×dlog2(E)e
bits, where Nb denotes the number of bits used to encode an entry of A (e.g., 3, 16, 19, 32 or
64 bits).

Algorithm 2: Matrix–vector multiplication using CSR format: y and x are, re-
spectively, the result vector and the operand vector.

for int i=0; i<n; i++ do
y[i] = 0.0;
for int j=row[i]; j<row[i+1]; j++ do

y[i] += val[j]*x[col[j]];
end

end

4.2. Software Acceleration of Compressed CGNE

In this section, we determine the computational cost of the CGNE exploiting the
sparsity of A. We reduce the number of computations by using a sparse matrix format,
which allows us to reach several hundreds of reconstructions per second.

Theoretical Performance Evaluation

As discussed in Section 4.1.2, the matrix A contains less than 1% nonzero entries,
favoring a significant improvement by using the CSR format and getting rid of unneces-
sary operations in matrix–vector products. We can then count the number of MAC and
arithmetic operations for each step of the CGNE, as shown in Table 2. Then, for the OR
model, the new computing cost COSTOR for a scene is:

COSTOR = R× {2EOR + ITER× [2EOR + 5CW]}
= R× {2((W + 2)CW − 2) + ITER× [2((W + 2)CW − 2) + 5CW]}
= R× {2(CW2 + 2CW − 2) + ITER× [2CW2 + 9CW − 4]}

(12)
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Table 2. Number of MAC and arithmetic operations needed for each step of Algorithm 1 considering
the CSR format for A: E denotes the number of nonzero entries in A; see Equations (10) and (11).

Step MAC Arithmetic

1: r0 = b− Ax0; p0 = A>r0 2E RCW
3: αi = r>i ri/p>i pi RCW 1
4: xi+1 = xi + αi pi; RCW 0
5: ri+1 = ri − αi Api; E + RCW 0
6: βi = r>i+1ri+1/r>i ri RCW 1
7: pi+1 = A>ri+1 + βi pi E + RCW 0

The computation cost of a scene with the MR model COSTMR is:

COSTMR = 2EMR + ITER× [2EMR + 5RCW]

= 2(RCW2 + 2(2RCW − RW − C))+

+ ITER× [2(RCW2 + 2(2RCW − RW − C)) + 5RCW]

= 2(RCW2 + 2(2RCW − RW − C)) + ITER× [2RCW2 + 13RCW − 4RW − 2C]

(13)

From Table 2, we can deduce the number of MAC per second required for a reconstruc-
tion and then the maximum reconstruction rate achievable. For our study case, we reported
these figures in Table 3. Note that scalar operations are ignored since they are negligible.
By using the CSR format, it is possible to reach several hundreds of reconstructions per
second, whereas the naive implementation only allows fewer than 10. We can also notice
that using the sparse matrix format makes the computational costs of the OR and MR
models quite similar, 15.15 GMAC and 16.00 GMAC, respectively, while it is 1.99 TMAC
and 59.55 TMAC for the naive implementation.

However, the computing power is not the only limiting factor, and memory footprint
and bandwidth still need to be considered. This will be the topic in the next section.

Table 3. Required computing power for one reconstruction and highest reconstruction rate depending
on the computing device.

Reconstructions per Second
Computational Cost per Scene Reconstruction RTX 3090 Ti VU13P

OR 15.15 GMAC 1320 723
MR 16.00 GMAC 1250 684

4.3. FPGA Hardware Implementation of Optimized CGNE
4.3.1. Fixed-Point Data Value Encoding

Fixed-point data value encoding uses a fixed number of bits for both the decimal and
fractional parts of values. In short, fixed-point offers some advantages over floating-point:
better flexibility in choosing the data size, well-supported by FPGAs, requires fewer logic
gates, and has lower latency and lower power consumption. However, the drawback is
the reduced precision, and since floating-point encoding uses an exponent, fixed-point’s
range is narrower than floating-point’s and the step between two values is also larger for
fixed-point. Further information on fixed-point encoding is available in [49].

4.3.2. Computational Noise and Memory Footprint

The precision losses and reiterating computations with inaccurate data leads to com-
putational noise and may affect the results of the CGNE. As we use fixed-point encoding to
minimize the memory footprint, we have to study the effect of computational noise, but this
also has to be studied with 32-bit floating-point (FP32) since the RTX 3090 Ti uses this en-
coding for its computing units. Then to study the effect of computational noise, the CGNE
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is run with different levels of precision, and the reconstruction quality is evaluated using
image-quality metrics.

Using this method, we determine the memory footprint of the CGNE using either
fixed-point or FP32 encoding. The results are summed up in Table 4. The experiment is
detailed in Section 5.3. As a conclusion, we can notice that it is possible to cut down the
memory footprint by half.

Considering data bandwidth, the performance depends on whether the memory
footprint fits into the work memory of the computing device. If not, memory swapping is
activated, which increases the data bandwidth. We go into detail in Section 4.3.3.

Table 4. CGNE’s memory footprint with fixed-point or 32-bit floating-point representation. “Single
row” denotes the memory footprint for only one row in the OR model, and v denotes the number of
bits for the fractional part of the fixed-point encoding.

64-bit Floating-Point Fixed-Point with v = 16 bits 32-bit Floating-Point

Single row 1.7 MB 0.76 MB 0.71 MB
OR 50.2 MB 22.8 MB 21.2 MB
MR 56.0 MB 27.2 MB 22.3 MB

4.3.3. Bandwidth Analysis

Non-swap approach

This case happens when the memory footprint does not exceed the work memory. This
is particularly the case of the OR model, since scene reconstruction is done row-per-row
and the variables use less memory.

Determining the required bandwidth in this case is straightforward. For each row, we
need to load the inputs (A and b) and then store the output (x) at the end of the CGNE.
The bandwidth is the product of the row’s footprint times the number of rows in the scene
and the video framerate (in our study case, 25). Considering the data encoding chosen
after computational noise of Section 5.3, we sum up in Table 5 the required bandwidth for
our study case, and the maximum rate of scene reconstruction we can attain based on the
devices’ bandwidths. Looking at these numbers, by using the OR, both the RTX 3090 Ti
and VU13P have the required bandwidth to perform 25 reconstructions per second. In
complement, their bandwidth allows attainment of several thousands of reconstructions
per second; in that case, the limit comes from the computing power.

Table 5. Bandwidth of a 25-fps video and maximum achievable fps with the OR model.

Bandwidth for 25 fps Max fps

RTX 3090 Ti 683 MB/s 36,890
VU13P 518 MB/s 4109

Swap approach

Memory swapping is activated when the memory footprint exceeds the work memory.
Variables are loaded into work memory when needed and unloaded afterwards to free up
memory space. This greatly increases the bandwidth, as a given variable can be loaded
multiple times during the CGNE. In our study case, swapping is activated for the MR model
with the RTX 3090 Ti, whereas the VU13P’s work memory is higher than the data footprint.

The bandwidth estimation depends on how many times a variable is used throughout
the CGNE and its memory size. Because of the iterative nature of CGNE, some data may be
re-used between the algorithm’s steps and do not require to be reloaded every time. This
results in the bandwidths and the associated maximum fps values given in Table 6.



Sensors 2022, 22, 9793 14 of 23

Table 6. Bandwidth of a 25-fps video and maximum achievable fps with the MR model.

Bandwidth for 25 fps Max fps

RTX 3090 Ti 2.06 TB/s 12
VU13P 626 MB/s 3402

Studying these numbers, we see the CGNE’s bandwidth running on the RTX 3090 Ti is
more than three times higher than on the VU13P, while the footprint is lower (see Table 4).
This is due to the lower amount of work memory available in the RTX 3090 Ti, which leads
to swap activation. However, the RTX 3090 Ti is able to perform 12 reconstructions per
second, and the VU13P reaches a few thousands reconstructions per second.

4.4. CGNE Feasibility

As a conclusion of this section, both appropriately tuned fixed-point and FP32 encod-
ings reduce the memory footprint by half without significantly affecting the reconstruction
quality (see the experiments presented in Section 5.3 for details). As a result, the RTX
3090 Ti and the VU13P both have enough bandwidth to perform several thousands of
reconstructions per second with the OR model. With the MR model, only the VU13P is still
able to attain real-time (25 fps); the RTX 3090 Ti can only achieve a dozen reconstructions
per second because of memory swapping.

5. Experiments

This section presents the experiments performed to evaluate the method we proposed
in previous sections. First, the method for the experiments is described. Then, an experi-
mental study of the CGNE itself explores the reconstruction quality, which has logarithmic
growth with regard to the number of acquisitions and the number of iterations. Afterwards,
through a simulation run on a CPU, we assess the improvement provided by sparse matrix
formats and show that the reconstruction time is reduced by several hundredfold. Finally,
simulations of computational noise are completed to confirm that reduced precision of data
encoding can be used without impacting the reconstruction quality. This asserts that the
CGNE can be run on both the RTX 3090 Ti and the VU13P, and, more generally, on GPUs
and FPGAs.

5.1. Method

In order to validate the reconstruction algorithm and evaluate the importance of
several of the parameters affecting the quality of the reconstruction, experiments are
conducted on the scenes presented in Figure 5.

Quality metrics to evaluate the reconstruction quality are mandatory since visual
inspection is not conclusive. Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) are used hereinafter. They are measured relative to the reference hyperspectral
data cube. We recall that the PSNR expresses the ratio between the maximum power of a
signal and the power of the error (or noise) after reconstruction. SSIM is used to measure
similarity between an image and its reference. A description of the PSNR and SSIM is given
in [50].

Note that since finding good regularization parameters µx, µλ and ptk can be tedious
for each scene, we started with the values provided in [16] and then found the ones
that provided the best reconstruction quality and the lowest number of CGNE iterations.
For each scene, the values of these parameters are given in Figure 5. Then, for the CGNE
convergence condition (cf. Algorithm 1), tol = 10−6.
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(a) (b) (c) (d)

Figure 5. Scenes used in the experiments along with their size, their source and the values of (µx

µλ, ptk). (a) “Toys” (30× 150× 31) [51]—(5, 0.5, 0.1). (b) “Brain” (100× 100× 100) [52]—(5, 0.5, 0.1).
(c) “Indian pine” (100× 100× 100) [53]—(5, 0.5, 0.1). (d) “Urban” (200× 200× 33) [54]—(5, 0.7, 0.7).

5.2. Analysis of CGNE Quality
5.2.1. Quality Evolution over Iterations

The evolution of the reconstructed image quality as a function of the number of
iterations of the CGNE algorithm is measured by the “Time to Quality” (TQ), that is, the
number of iterations to reach 95% of the best quality, i.e., the maximum value for a given
metric. We denote ITER the number of iterations before the CGNE reaches convergence
for a given line, and ITERmin is the lowest ITER for a given scene, i.e., the lowest ITER
among all lines. The quality is averaged over all the lines of the scene and measured at
each iteration of the CGNE. Since the CGNE converges in a different ITER for each line,
the evolution of the quality is depicted up to ITERmin. For all scenes, the evolution of the
quality is depicted in Figure 6 and we can see that TQ is reached at around 30% of ITERmin.
We can also notice that the reconstruction quality follows logarithmic growth: the CGNE
algorithm performs most of the reconstruction in the early iterations (i.e., the first 25% of
TQ), and then small improvements in quality are made in further iterations.

We can conclude that the CGNE does not perform linearly with regard to the number
of iterations but, more importantly, setting a strict tolerance condition can lead to high
computation times without significantly increasing the reconstruction quality. In other
words, it is possible to trade a slight reduction in image quality with a significant saving in
computation time.
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Figure 6. PSNR and SSIM for reconstructions of the CGNE over various iterations.

5.2.2. Impact of the Number of Acquisitions on Quality

The influence of the number of acquisitions, N, is studied by evaluating the PSNR and
SSIM for a set of values of N. As expected, the quality improves when N increases because
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there is more and more information from which to reconstruct the data cube. Since the
scenes have different spectral dimensions, we compared the measures while considering
the Ratio of Captured Information (RCI), i.e., N/W, rather than N solely.

Figure 7 shows that both the PSNR and SSIM do not increase linearly with regard to
N but have logarithmic growth instead.

The SSIM rises sharply and quickly stalls when RCI comes to about 0.25 but reaches a
high value in the end: for an RCI of 1, the worst SSIM is equal to 0.91 for the Brain scene
and the best is 0.99 for the Urban scene.

Regarding the PSNR, it does not show any stalling, but the maximum curvature is
reached at around an RCI of 0.25, which means that over this point, additional acquisitions
improve relatively less than previous ones.
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Figure 7. PSNR and SSIM depending on the quantity of captured information. N and W stand for
the number of acquisitions and the spectral dimensions of the scene, respectively.

5.3. Computational Noise Experiments

To simulate the computational noise in fixed-point encoding, the precision loss on
the fractional part of the data representation is estimated by converting numbers to their
equivalent fixed-point rounding of negative power of 2. For the fixed-point encoding,
the simulations are run with different numbers of bits for the fractional part. This number
is denoted v. Using different values of v helps us to determine the lowest threshold
of precision, and thus of memory footprint, that we can afford without degrading the
reconstruction quality.

In order to distinguish the computational noise from the intrinsic reconstruction noise,
reconstruction simulations are conducted for several numbers of acquisitions up to an RCI
of 1.0, as in Section 5.2.2. Because it offers the best precision, 64-bit floating-point encoding
(FP64) is used as the reference to compare the other encodings. In addition, to keep a fair
comparison between data representations, for a given line, the reconstructions are stopped
after a fixed number of iterations instead of the fulfillment of the convergence condition.
This limit is defined by the number of iterations reached during the FP64 reconstruction,
which is stopped when the convergence condition is fulfilled. The results are depicted
in Figure 8.

The FP64, 32-bit floating point (FP32) and fixed-point representations with v = {32, 24}
have the same reconstruction quality, since they overlap on Figure 8. So using any of these
number representations does not hinder the reconstruction quality.

We can also consider that v = 16 offers acceptable precision. Although its PSNR is
lower by 2.9 dB for the “Brain” scene at RCI = 0.05, the difference shrinks to less than 1 dB
for all scenes starting from RCI = 0.1, and then shows very little difference from FP64 for
higher values of RCI.

Regarding v = {8, 12}, they can definitively be discarded, as they do not offer decent
quality. For v = 12 and RCI = 1.0, the scenes “Brain”, “Indian pine” and “Urban” show a
difference of, respectively, 4.58, 8.47 and 10.68 dB.
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Figure 8. PSNR and SSIM depending on the quantity of captured information and data encoding.
FP64 and FP32 denote, respectively, 64- and 32-bit floating-point data encoding; v is the number of
bits of the the fixed-point’s fractional part.

5.4. Sparse Matrix Format Experiments on CPU

To assess the improvement of sparse matrix formats on A, the reconstruction times
when using them are compared with the reconstruction times when using the array format,
i.e., the default format. This comparison is made with the following sparse formats: Block
Sparse Row (BSR), COOrdinate (COO), Compressed Sparse Column (CSC), Compressed
Sparse Row (CSR) and DIAgonal (DIA). These formats are described in [48].

The comparison is based on the average improvement factor offered by the sparse
matrix formats. That is, for each row of a scene, on average, how much is the recon-
struction time divided when using a sparse matrix format. Figure 9 depicts the resulting
improvement factor for each scene.

We can see that the the CSR format offers the best improvement and reduces the
reconstruction time by several hundredfold. At worst, the DIA format reduces the recon-
struction time by several tenfold. This experiment confirms the gain from using sparse
matrix formats.
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Figure 9. Processing time for CGNE reconstructions in the one-row model.

5.5. Estimated Performance of Optimized CGNE

In this section, we present the computing power and bandwidth used by the CGNE
algorithms for 25-fps reconstructions. In order to give a broader view, we consider further
scene resolutions as well as the ones presented in Figure 5. As we focus on the OR, and for
readability reasons, the performances are given only for this model.



Sensors 2022, 22, 9793 18 of 23

We recall that performance depends on the number of CGNE iterations. We denote
ITERper f the number of iterations used to estimate the specifications and ITERsim the
number of iterations reached during the simulations. For scenes presented in Figure 5, their
performances were estimated while considering ITERper f equal to the average ITERsim.
For the additional resolutions, as we cannot run simulations for them, ITERper f is con-
sidered as 1

2 CW. This choice is made because 1
2 CW is half the dimension of the problem

we seek to solve with the CGNE (i.e., reconstruct x). Additionally, the simulations do not
provide any conclusions on the value of ITERsim with regard to the scene’s dimensions.

Figures 10 and 11 depict, respectively, the computing power and the bandwidth
for the Nvidia RTX 3090 Ti and Xilinx VU13P. In these figures, “Naive” refers to a basic
implementation of the CGNE, “Sparse” is the implementation with the sparse matrix format
(cf. Section 4.2), and “HW” enables fixed-point and 32-bit floating-point (cf. Section 4.3).
On each Figure, the filled areas depict the RTX 3090 Ti’s and the VU13P’s rated performances
regarding either the computing power or the bandwidth performance. Note that the “HW”
implementation is not present in Figure 10 since the total number of operations remains the
same. Further note that the scenes “Brain” and “Indian Pine” have close values regarding
ITERsim, and because these scenes have the same resolution, their specifications are nearly
identical and overlap in the aforementioned figures.

By studying the results, we see that implementing the SW acceleration with the sparse
matrix format divides both metrics by several hundredfold to a hundred thousandfold at
most. Such dramatic improvements are reached by careful exploitation of the sparsity of
the system matrix A, which enables us to skip huge amounts of multiplication by zero and
saves memory footprint by not storing 0 entries.

HW acceleration provides a similar magnitude of enhancement for the bandwidth
when the required memory footprint is just at the border between the “non-swap” and
“swap” modes (see Section 4.3.3). This is the case for the RTX 3090 Ti with scenes “Brain”
and “Indian pine”. In these cases, without the HW acceleration, the reconstruction rate
is lower than 1 fps because of the bandwidth limitation. When memory swapping is not
needed, HW acceleration halves the memory footprint and, thus, the bandwidth. Final
reconstruction rates for the simulated scenes are reported in Table 7.

As a brief comment regarding the MR, the reconstruction rate for the “Toys” scene
reaches a couple thousand fps with the RTX 3090 Ti and a couple hundred fps with the
VU13P while both devices are limited by their computatioal power. For the other scenes,
considering the amount of required memory to store all the variables, it is not possible to
reach 1 fps with either device because of their limited bandwidth.

This study shows that the OR (One-Row model) reconstruction, for which reconstruc-
tion is performed line-by-line for the resulting image, can reach 25 fps for scenes up to
80× 80× 100 data cube size, i.e., image size times the number of bands, for actual GPUs
and FPGA boards. However, the complexity of MR (Multi-Row model) is such that it
can only be used for a reduced number of lines to fit memory constraints and available
computing power.

Table 7. Final reconstruction rates in fps.

Scenes RTX 3090 Ti VU13P

Toys–(30× 150× 31) 1319.9 722.6
Brain–(100× 100× 100) 11.7 6.4
Indian pine–(100× 100× 100) 12.0 6.5
Urban–(200× 200× 33) 77.6 42.5
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Figure 10. Computational power for 25-fps related to the RTX 3090 Ti and VU13P rated performances
using the OR model.
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Figure 11. Bandwidth for 25-fps related to the RTX 3090 Ti and VU13P rated performances using the
OR model.

5.6. Limitations

It is worth recalling that the estimation of the system performance we presented in this
section is theoretical and assumes that we are able to exploit the computing devices at their
full capacity. However, from our experience, we can state that it is better to consider 80% of
the theoretical bounds as a conservative measure of performance due to the implementation
on real devices. This is mainly due to slow-downs induced by data transfer latency. These
slow-downs are difficult to evaluate without performing hardware simulations and are not
accounted for in this theoretical study. Still, even when considering a 20% decrease in the
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performance, 34 fps is still achievable for a 200× 200× 33 scene. This is an encouraging
result because state-of-the-art work proposed by Zhang et al. [38] achieved 6 fps for a
256× 256× 31 scene while using a dual camera, the DCCHI and a reconstruction method
that combines the ADMM and the TWiST on a GPU implementation.

A second factor of limitations is the assumption that we have done on the model of
the system matrix H. In this work, we assumed precise alignment of the optical system,
in which the matrix of micro mirrors in the DMD is aligned with the pixels of the detector.
When considering a real optical system, some misalignment might occur, or the information
of a pixel emerging from the second prism might be spread over two pixels on the sensor.
Correcting for these effects would require some further steps in the processing, leading to a
potentially more complex reconstruction algorithm.

6. Conclusions

This paper addressed the feasibility of real-time hyperspectral CASSI reconstruction.
From this perspective, two reconstruction methods [16,44] exploiting the compressed
sensing and the snapshot feature of the DD CASSI system, proposed by [9], were evaluated
from the criteria of quality of reconstruction, required computing power and required
bandwidth, with a careful understanding of available trade-offs between the former and the
others. These reconstruction methods, namely, the One-Row model and Multi-Row model,
require some adaptations in order to achieve a significant reconstruction rate and reach real-
time performance, both for a software target and a hardware custom-designed accelerator.

The first key aspect is to appropriately handle the very sparse nature of the system
matrix used for iterative CGNE reconstructions. Some generic and custom-made data
encodings are required to efficiently store the data to exploit their sparse structure and
skip useless computations. Secondly, to reduce the power dissipation and increase the
computing power, using fixed-point shows to be effective at a reasonable data format.
Indeed, on the one hand, modern GPUs do allow the use of various set data formats,
from 64-bit floating-point encoding down to some few-bit fixed points (4 bits), and on the
other hand, the use of low complexity and finely tuned fixed-point operators in FPGA
makes it possible to better exploit the available hardware and reach the highest performance.
The design of a specific chip is also a third alternative that could benefit these results,
although it was not deeply studied in this paper. Eventually, the balance in favor of one of
these technologies highly depends on other considerations, and the provided method is
expected to help a design team in its choices.

In conclusion, this paper proves that real-time reconstructions are possible, naturally
at different rates with regard to the data cube resolution and hardware specifications.
Simpler scenes can be reconstructed at a very satisfying rate, e.g., dozens of fps for a
200× 200× 33 scene, but increasing the spectral resolution is very demanding and puts a
strain on performance, e.g., a dozen fps for a 100× 100× 100 scene, but the reconstruction
rate can still be suitable for slower applications.

It is worth recalling that the analysis done in this study has been carried out con-
sidering the particular compressive hyperspectral camera DD-CASSI as a representative
example of the CASSI group and the image reconstruction technique based on CGNE,
which is a widely spread algorithm for solving inverse problems. Nevertheless, the general
conclusions drawn in this paper are meant to still be valid (in terms of orders of magnitude
for the performance and main trends) for other compressive devices (as they can be mod-
eled by linear operators with sparse transfer matrices [14]) and other image reconstruction
algorithms based on iterative variational approaches.

There are some possible further developments that would be interesting to tackle
starting from this work, which are listed in the following. (i) Reproducing this analysis
considering different CASSI devices; (ii) Considering alternative reconstruction algorithms
such as accelerated versions of CGNE based on pre-conditioners, domain transforms, tests
of different regularization terms and solvers based on deep learning; (iii) Designing an
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FPGA implementation of the CGNE by using high-level synthesis tools, which will give a
more accurate estimation of the performance of the system.
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ADMM Alternating Direction Method of Multipliers
CACTI Coded Aperture Compressive Temporal Imaging
CASSI Coded Aperture Snapshot Spectral Imager
CCD Charged-Coupled Device
CGNE Conjugate Gradient for Normal Equation
CS Compressive Sensing
DCCHI Dual-Camera Compressive Hyperspectral Imager
DD CASSI Double Disperser Coded Aperture Snapshot Spectral Imager
DMD Digital Micromirror Device
FPGA Field-Programmable Gate Array
FPS Frames per second
GPU Graphics Processing Unit
HS Hyperspectral
HD High Definition
HW Hardware
MAC Multiply–Accumulate operation
MR Multi-row model
OR One-row model
PAL Phase Alternating Line
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity index
SW Software
TV Total Variation
TwIST Two-Step Iterative Shrinkage/Thresholding
VGA Video Graphics Array

References
1. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early

onset of plant disease and stress. Plant Methods 2017, 13, 1–12. [CrossRef]
2. Zaini, N.; Van der Meer, F.; Van der Werff, H. Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral

Imagery. Remote Sens. 2014, 6, 4149–4172. [CrossRef]
3. van der Meer, F.D.; van der Werff, H.M.; van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.;

Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs.
Geoinf. 2012, 14, 112–128. [CrossRef]

4. Eismann, M. Hyperspectral Remote Sensing; SPIE: Bellingham, WA, USA, 2012 ; pp. 1–726. [CrossRef]
5. Candès, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007, 23, 969–985. [CrossRef]
6. Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive

sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [CrossRef]

http://doi.org/10.1186/s13007-017-0233-z
http://dx.doi.org/10.3390/rs6054149
http://dx.doi.org/10.1016/j.jag.2011.08.002
http://dx.doi.org/10.1117/3.899758
http://dx.doi.org/10.1088/0266-5611/23/3/008
http://dx.doi.org/10.1109/MSP.2007.914730


Sensors 2022, 22, 9793 22 of 23

7. Eason, D.T.; Andrews, M. Total Variation Regularization via Continuation to Recover Compressed Hyperspectral Images. IEEE
Trans. Image Process. 2015, 24, 284–293. [CrossRef]

8. Wagadarikar, A.; John, R.; Willett, R.; Brady, D. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt.
2008, 47, B44–B51. [CrossRef]

9. Gehm, M.E.; John, R.; Brady, D.J.; Willett, R.M.; Schulz, T.J. Single-shot compressive spectral imaging with a dual-disperser
architecture. Opt. Express 2007, 15, 14013–14027. [CrossRef]

10. Correa, C.V.; Arguello, H.; Arce, G.R. Snapshot colored compressive spectral imager. J. Opt. Soc. Am. A 2015, 32, 1754–1763.
[CrossRef]

11. Bacca, J.; Correa, C.V.; Arguello, H. Noniterative Hyperspectral Image Reconstruction From Compressive Fused Measurements.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1231–1239. [CrossRef]

12. Llull, P.; Liao, X.; Yuan, X.; Yang, J.; Kittle, D.; Carin, L.; Sapiro, G.; Brady, D.J. Coded aperture compressive temporal imaging.
Opt. Express 2013, 21, 10526–10545. [CrossRef]

13. Wang, L.; Xiong, Z.; Gao, D.; Shi, G.; Wu, F. Dual-camera design for coded aperture snapshot spectral imaging. Appl. Opt. 2015,
54, 848–858. [CrossRef]

14. García-Sánchez, I.; Fresnedo, O.; González-Coma, J.P.; Castedo, L. Coded Aperture Hyperspectral Image Reconstruction. Sensors
2021, 21, 6551. [CrossRef]

15. Panasyuk, S.V.; Yang, S.; Faller, D.V.; Ngo, D.; Lew, R.A.; Freeman, J.E.; Rogers, A.E. Medical hyperspectral imaging to facilitate
residual tumor identification during surgery. Cancer Biol. Ther. 2007, 6, 439–446.

16. Ardi, I.; Carfantan, H.; Lacroix, S.; Monmayrant, A. Fast hyperspectral cube reconstruction for a double disperser imager. In
Proceedings of the 26th European Signal Processing Conference (EUSIPCO 2018), Rome, Italy, 3–7 September 2018.

17. Nascimento, J.M.P.; Véstias, M.P.; Martín, G. Hyperspectral Compressive Sensing With a System-On-Chip FPGA. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2020, 13, 3701–3710. [CrossRef]

18. Báscones, D.; González, C.; Mozos, D. An FPGA Accelerator for Real-Time Lossy Compression of Hyperspectral Images. Remote
Sens. 2020, 12, 2563. [CrossRef]

19. Gonzalez, C.; Resano, J.; Plaza, A.; Mozos, D. FPGA Implementation of Abundance Estimation for Spectral Unmixing of
Hyperspectral Data Using the Image Space Reconstruction Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012,
5, 248–261. [CrossRef]

20. Sevilla, J.; Jiménez, L.I.; Plaza, A. Sparse Unmixing-Based Content Retrieval of Hyperspectral Images on Graphics Processing
Units. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2443–2447. [CrossRef]

21. Hagen, N.A.; Kudenov, M.W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 1–23. [CrossRef]
22. Kudenov, M.W.; Banerjee, B.; Chan, V.C.; Dereniak, E.L. Compact snapshot birefringent imaging Fourier transform spectrometer

for remote sensing and endoscopy. In Proceedings of the Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI;
Kamerman, G.W., Steinvall, O., Bishop, G.J., Gonglewski, J., Gruneisen, M.T., Dusek, M., Rarity, J.G., Lewis, K.L., Hollins, R.C.,
Merlet, T.J., Eds.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2012; Volume 8542, pp. 572–582.
[CrossRef]

23. Tropp, J.A.; Wright, S.J. Computational Methods for Sparse Solution of Linear Inverse Problems. Proc. IEEE 2010, 98, 948–958.
[CrossRef]

24. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61.
25. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B-Methodol. 1996, 58, 267–288. [CrossRef]
26. Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory

2007, 53, 4655–4666. [CrossRef]
27. Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L. Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise

Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [CrossRef]
28. Blumensath, T.; Davies, M.E. Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 2009, 27, 265–274.

[CrossRef]
29. Beck, A.; Teboulle, M. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems.

IEEE Trans. Image Process. 2009, 18, 2419–2434. [CrossRef]
30. Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing

and Other Inverse Problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [CrossRef]
31. Bioucas-Dias, J.M.; Figueiredo, M.A.T. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image

Restoration. IEEE Trans. Image Process. 2007, 16, 2992–3004. [CrossRef]
32. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating

Direction Method of Multipliers; Foundations and Trends in Machine Learning; Now Publishers: Hanover, MA, USA, 2011; Volume 3;
pp. 1–122. [CrossRef]

33. Yuan, X.; Brady, D.J.; Katsaggelos, A.K. Snapshot Compressive Imaging: Theory, Algorithms, and Applications. IEEE Signal
Process. Mag. 2021, 38, 65–88. [CrossRef]

34. Miao, X.; Yuan, X.; Pu, Y.; Athitsos, V. lambda-Net: Reconstruct Hyperspectral Images From a Snapshot Measurement. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2
November 2019; pp. 4058–4068. [CrossRef]

http://dx.doi.org/10.1109/TIP.2014.2376273
http://dx.doi.org/10.1364/AO.47.000B44
http://dx.doi.org/10.1364/OE.15.014013
http://dx.doi.org/10.1364/JOSAA.32.001754
http://dx.doi.org/10.1109/JSTARS.2019.2902332
http://dx.doi.org/10.1364/OE.21.010526
http://dx.doi.org/10.1364/AO.54.000848
http://dx.doi.org/10.3390/s21196551
http://dx.doi.org/10.1109/JSTARS.2020.2996679
http://dx.doi.org/10.3390/rs12162563
http://dx.doi.org/10.1109/JSTARS.2011.2171673
http://dx.doi.org/10.1109/LGRS.2015.2483679
http://dx.doi.org/10.1117/1.OE.52.9.090901
http://dx.doi.org/10.1117/12.945873
http://dx.doi.org/10.1109/JPROC.2010.2044010
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1109/TIT.2011.2173241
http://dx.doi.org/10.1016/j.acha.2009.04.002
http://dx.doi.org/10.1109/TIP.2009.2028250
http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1109/TIP.2007.909319
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/MSP.2020.3023869
http://dx.doi.org/10.1109/ICCV.2019.00416


Sensors 2022, 22, 9793 23 of 23

35. Liu, Y.; Yuan, X.; Suo, J.; Brady, D.J.; Dai, Q. Rank Minimization for Snapshot Compressive Imaging. IEEE Trans. Pattern Anal.
Mach. Intell. 2019, 41, 2990–3006. [CrossRef]

36. Zha, Z.; Yuan, X.; Wen, B.; Zhou, J.; Zhu, C. Group Sparsity Residual Constraint With Non-Local Priors for Image Restoration.
IEEE Trans. Image Process. 2020, 29, 8960–8975. [CrossRef] [PubMed]

37. Zhang, J.; Zhao, D.; Gao, W. Group-based Sparse Representation for Image Restoration. CoRR 2014, 23, 3336–3351. [CrossRef]
[PubMed]

38. Zhang, S.; Huang, H.; Fu, Y. Fast Parallel Implementation of Dual-Camera Compressive Hyperspectral Imaging System. IEEE
Trans. Circuits Syst. Video Technol. 2019, 29, 3404–3414. [CrossRef]

39. Ma, J.; Liu, X.Y.; Shou, Z.; Yuan, X. Deep Tensor ADMM-Net for Snapshot Compressive Imaging. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 10222–10231. [CrossRef]

40. Hanke, M. Conjugate Gradient Typer Methods for Ill-Posed Problems; CRC Press: Boca Raton, FL, USA, 2017.
41. NVIDIA. GeForce RTX 3080 Family of Graphics Cards|NVIDIA. Available online: https://www.nvidia.com/en-us/geforce/

graphics-cards/30-series/rtx-3080-3080ti/ (accessed on 16 February 2021).
42. AMD. AMD Radeon™ RX 6700 XT Graphics|AMD. Available online: https://www.amd.com/en/products/graphics/amd-

radeon-rx-6700-xt (accessed on 16 February 2021).
43. University, C. Cornell Virtual Workshop: Memory Levels. Available online: https://cvw.cac.cornell.edu/GPUarch/memory_

levels (accessed on 20 July 2021).
44. Ardi, I.; Carfantan, H.; Lacroix, S.; Monmayrant, A. Reconstruction d’images hyperspectrales à faible coût pour un imageur

pilotable à double dispersion. In Proceedings of the Colloque GRETSI sur le Traitement du Signal et des Images (GRETSI 2017),
Seoul, Republic of Korea, 27 October–2 November 2019; 4p.

45. NVIDIA. 3090 & 3090 Ti Graphics Cards|NVIDIA GeForce. Available online: https://www.nvidia.com/en-us/geforce/graphics-
cards/30-series/rtx-3090-3090ti/ (accessed on 20 July 2021).

46. Xilinx. UltraScale + FPGA Product Tables and Product Selection Guide. Available online: https://www.xilinx.com/
content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf (accessed on
14 September 2021).

47. Xilinx. Virtex UltraScale + HBM FPGA: A Revolutionary Increase in Memory Performance (WP485). Available online:
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf (accessed on 14 September 2021).

48. Saad, Y. SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations. 1994. Available online: https://ntrs.nasa.gov/citations/19
910023551 (accessed on 10 October 2022).

49. Yates, R. Fixed-Point Arithmetic: An Introduction. Available online: http://www.digitalsignallabs.com/fp.pdf (accessed on
30 March 2021).

50. Thung, K.H.; Raveendran, P. A survey of image quality measures. In Proceedings of the 2009 International Conference for Technical
Postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 7–8 December 2009; pp. 1–4. [CrossRef]

51. Nascimento, S.M.C.; Ferreira, F.P.; Foster, D.H. Statistics of spatial cone-excitation ratios in natural scenes. J. Opt. Soc. Am. A 2002,
19, 1484–1490. [CrossRef] [PubMed]

52. Fabelo, H.; Ortega, S.; Szolna, A.; Bulters, D.; Piñeiro, J.F.; Kabwama, S.; J-O’Shanahan, A.; Bulstrode, H.; Bisshopp, S.; Kiran,
B.R.; et al. In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection. IEEE Access 2019, 7, 39098–39116.
[CrossRef]

53. Marion F.B.; Larry L.B.; David A.L. 220 Band AVIRIS Hyperspectral Image Data Set: 12 June 1992 Indian Pine Test Site 3. 2015.
Available online: https://purr.purdue.edu/publications/1947/1 (accessed on 1 July 2022).

54. Foster, D.H.; Amano, K.; Nascimento, S.M.C.; Foster, M.J. Frequency of metamerism in natural scenes. J. Opt. Soc. Am. A 2006,
23, 2359–2372. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2018.2873587
http://dx.doi.org/10.1109/TIP.2020.3021291
http://www.ncbi.nlm.nih.gov/pubmed/32903181
http://dx.doi.org/10.1109/TIP.2014.2323127
http://www.ncbi.nlm.nih.gov/pubmed/24835225
http://dx.doi.org/10.1109/TCSVT.2018.2879983
http://dx.doi.org/10.1109/ICCV.2019.01032
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.amd.com/en/products/graphics/amd-radeon-rx-6700-xt
https://www.amd.com/en/products/graphics/amd-radeon-rx-6700-xt
https://cvw.cac.cornell.edu/GPUarch/memory_levels
https://cvw.cac.cornell.edu/GPUarch/memory_levels
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://ntrs.nasa.gov/citations/19910023551
https://ntrs.nasa.gov/citations/19910023551
http://www.digitalsignallabs.com/fp.pdf
http://dx.doi.org/10.1109/TECHPOS.2009.5412098
http://dx.doi.org/10.1364/JOSAA.19.001484
http://www.ncbi.nlm.nih.gov/pubmed/12152688
http://dx.doi.org/10.1109/ACCESS.2019.2904788
https://purr.purdue.edu/publications/1947/1
http://dx.doi.org/10.1364/JOSAA.23.002359

	Introduction
	Background
	Hyperspectral Imagers
	Compressive Sensing
	DD CASSI Matrix Model
	HW Accelerators

	Naive CGNE Implementation: Performance and Limits
	Reconstruction Models
	CGNE Performance Study
	CGNE Algorithm Computation Cost
	Memory and Bandwidth
	Theoretical CGNE Performance in a Study Case


	CGNE Optimization for Real-Time
	System Sparsity
	H Construction and Subsequent A Structure
	Sparse Matrix Format

	Software Acceleration of Compressed CGNE
	FPGA Hardware Implementation of Optimized CGNE
	Fixed-Point Data Value Encoding
	Computational Noise and Memory Footprint
	Bandwidth Analysis

	CGNE Feasibility

	Experiments
	Method
	Analysis of CGNE Quality
	Quality Evolution over Iterations
	Impact of the Number of Acquisitions on Quality

	Computational Noise Experiments
	Sparse Matrix Format Experiments on CPU
	Estimated Performance of Optimized CGNE
	Limitations

	Conclusions
	References

