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Abstract: The research on the electroencephalography (EEG)-based brain–computer interface (BCI) is
widely utilized for wheelchair control. The ability of the user is one factor of BCI efficiency. Therefore,
we focused on BCI tasks and protocols to yield high efficiency from the robust EEG features of
individual users. This study proposes a task-based brain activity to gain the power of the alpha
band, which included eyes closed for alpha response at the occipital area, attention to an upward
arrow for alpha response at the frontal area, and an imagined left/right motor for alpha event-related
desynchronization at the left/right motor cortex. An EPOC X neuroheadset was used to acquire the
EEG signals. We also proposed user proficiency in motor imagery sessions with limb movement
paradigms by recommending motor imagination tasks. Using the proposed system, we verified
the feature extraction algorithms and command translation. Twelve volunteers participated in the
experiment, and the conventional paradigm of motor imagery was used to compare the efficiencies.
With utilized user proficiency in motor imagery, an average accuracy of 83.7% across the left and
right commands was achieved. The recommended MI paradigm via user proficiency achieved an
approximately 4% higher accuracy than the conventional MI paradigm. Moreover, the real-time
control results of a simulated wheelchair revealed a high efficiency based on the time condition. The
time results for the same task as the joystick-based control were still approximately three times longer.
We suggest that user proficiency be used to recommend an individual MI paradigm for beginners.
Furthermore, the proposed BCI system can be used for electric wheelchair control by people with
severe disabilities.

Keywords: brain–computer interface; brain-controlled wheelchair; electroencephalography; alpha
power; motor imagery; EEG neuroheadset

1. Introduction

Human–computer interaction (HCI) is being researched and developed rapidly. The
brain–computer interface (BCI) [1] is an emerging technology that allows direct connections
between the brain and a computer. The BCI has been rapidly developed for medical
applications, such as rehabilitation, assistive technology, and treatment [2]. The primary
users are patients with physical movement disabilities, such as paralysis and spinal cord
injury (SCI). Many researchers have developed BCI systems to reduce inequalities and
improve the quality of life. The BCI is a beneficial assistive technology used for control and
communication by people with severe disabilities [3]. A brain-controlled wheelchair [4]
is a popular application for increasing the environmental access for the disabled. An
electroencephalogram (EEG) is an electrophysiological signal generated by millions of
neurons in the brain. Pulse signal transmission can be used to formulate an electric field
through the cerebral cortex, which can be noninvasively measured by placing electrodes
on the scalp. A portable EEG device with dry EEG electrodes [5] can yield new research
and applications in neurotechnology. Neuroheadsets are key to commercial BCI devices for
many applications, such as driver vigilance, education, and entertainment [6,7].
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Neurorehabilitation devices using BCI for motor function recovery in stroke patients
have been developed into commercial products by employing EEG signals while imagining
upper or lower limb movements without actual movement; this is called motor imagery
(MI) [8]. Event-related desynchronization/synchronization (ERD/ERS) patterns are usu-
ally employed for the left- or right-side motor-imagined detection of the brain regions
involved in motor planning and execution [9,10]. Visual evoked potential (VEPs)-based
BCI is also a popular and high-efficiency technique for assistive device control via visual
stimulation in the transient or steady state to generate P300 [11] and steady-state visual
evoked potential (SSVEP) [12], respectively. Moreover, hybrid BCI using a combination
of EEG and electrooculogram (EOG) or electromyogram (EMG) signals can be used to
build practical assistive devices for smart home applications [13–17]. However, it cannot
be used by all people with disabilities, such as ALS patients who have slight loss of muscle
function. Therefore, the development of BCI is challenging in terms of communication and
control enhancements. Nevertheless, mental and motor imagery have been improved for
practical use because the paradigm without stimulation is similar to natural actions. The
improvements in the motor imagery-based non-invasive BCI systems can be divided into
three methods: (1) a new approach and hybridization of paradigms [3,7,17,18]; (2) classi-
fication algorithm designs [19]; and (3) user training systems [20,21]. However, invasive
BCI with electrocorticography (ECoG) can yield a higher accuracy than noninvasive BCI.
Nevertheless, non-invasive methods can be alternatives in terms of cost and risk.

The research on brain-controlled wheelchairs has attracted attention, and many re-
searchers have proposed techniques and strategies to increase the system and user perfor-
mances [22–24]. Smart wheelchairs with robotic and navigation systems have cooperated
with BCI systems for practical systems [25,26]. The ability of a user with different levels
of disability or paralysis is a key factor for improving BCI. Some studies have focused
on mental tasks and user training protocols to yield high efficiency from the strong EEG
features of individual users [27]. Based on previous research, we assumed that the calibra-
tion and evaluation of individual users before implementation could be used to improve
user performance. Therefore, we propose a technique of command creation for a brain-
controlled wheelchair in people with severe paralysis. This study attempted to create an
EEG alpha power activity task based on the activated brain areas. The proposed method
was divided into two parts: (1) observation of user proficiency of motor imagery and
(2) motor imagery-based BCI for simulated wheelchair control. We also aimed to develop
a user-friendly BCI system using an EEG neuroheadset for assistive device control. We
designed the control creation and translation by utilizing EEG alpha power from three
tasks: spatial attention, closed eyes, and left/right motor imagery to control a simulated
power wheelchair. We added individual user calibration to seek suitable motor imagery
tasks from the limb and hand movements.

2. Materials and Methods

The development of MI-based BCI can be divided into three main parts: (1) opti-
mization of the system by developing algorithms to process and classify brain signals;
(2) presentation and development of a paradigm to help differentiate EEG signals; and
(3) training to enhance motor imagery of user movements. In this study, we propose a
system for exploring the personal paradigm of a user’s motor imagery to obtain a more
effective EEG, along with a training plan for medical applications. Previously, there was
only a system to train users. The research has increased to include the part examining the
efficiency of motor imagery under different positions of the arms and legs in each hemi-
sphere by conducting EEG analysis before performing BCI commands. An overview of the
real-time BCI system for simulated wheelchair control with the proposed user proficiency
session is shown in Figure 1.
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Figure 1. Proposed brain-controlled wheelchair using task-related EEG alpha power from an EEG
neuroheadset.

2.1. Proposed Paradigms and Commands

In this study, we propose a brain–machine interface system using EEG obtained
from an Emotiv EPOC X neuroheadset to generate commands from motor imagery tasks
to control the direction of a wheelchair. Four commands for direction control, consist-
ing of going forward, turning left, turning right, and reversing, were created using the
proposed command strategies, as shown in Table 1. We used attention to the green ar-
row to create a forward command. Left and right motor imagery with limb movement
paradigms were employed to create the turn left and right commands, respectively. Back-
ward commands were generated by closing the eyes for more than 2 s. In the idle state, the
wheelchair stopped.

Table 1. Proposed action for mental tasks mapping with output commands.

Commands Actions Output Commands

1 Attention to the arrow Forward
2 Imagined left limb movement Turn Left
3 Imagined right limb movement Turn Right
4 Closed eyes Stop and Backward

For investigating the user proficiency with motor imagery, there were left and right
sides of the upper and lower limb movement paradigms for the motor imagery. Three joint
movements of the upper and lower limbs were used, i.e., wrist flexion/extension, elbow
flexion/extension, and ankle flexion/extension. An example of the upper and lower limb
movement paradigms is shown in Figure 2.
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Figure 3. (a) 14-channel Emotiv EPOC X; (b) electrodes position. 

Figure 2. The example of left and right sides of upper and lower limb movement paradigms to
investigate user proficiency with motor imagery for paradigms recommendation: (a) the left wrist
flexion/extension; (b) right elbow flexion/extension; (c) right ankle flexion/extension.

2.2. EEG Acquisition and Preprocessing

In this study, we used the 14-channel Emotiv EPOC X neuroheadset (shown in
Figure 3a), which is a low-cost device which is both flexible and portable. Moreover, the EEG
neuroheadset was designed for research on the human brain to acquire professional-grade
brain data (https://www.emotiv.com, accessed on 20 September 2022). The electrode posi-
tions for EPOC X followed the international 10–20 system (Figure 3b). The 14 electrode posi-
tions cover the frontal and prefrontal lobes and the temporal, parietal, and occipital lobes on
both sides of the brain at AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The
M1 and M2 positions were reference electrodes. P3 and P4 are positioned on the parietal
lobe as alternative references for the 14-channel EEG acquisition. Emotiv EPOC X can record
EEG signal acquisition at a sampling rate of 256 Hz. During preprocessing, the recorded
signals were filtered for power line noise using a 50 Hz notch filter, and a 2 Hz–30 Hz
bandpass digital filter was used for motion artifact removal.
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Figure 3. (a) 14-channel Emotiv EPOC X; (b) electrodes position. Figure 3. (a) 14-channel Emotiv EPOC X; (b) electrodes position.

Emotiv developed the EmotivPRO software for brain–computer interfaces, neuro-
science research, and EEG application development. Moreover, the Cortex application
programming interface (API) was designed to stream the acquired data to create third-party
applications based on JavaScript object notation (JSON) and WebSocket. Hence, the Cortex
API can easily access several programming languages and platforms by EEG data in the
JSON format to implement the classification algorithm and commands translation in the
Python program for controlling the McGill immersive wheelchair simulator (miWE) [28].

https://www.emotiv.com
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2.3. Observations of EEG Alpha Power with Difference Task

Twelve healthy volunteers (six females and six males, aged 22–25) participated in the
experiments. To meet the inclusion criteria, all the participants were normal and without
disorders. All the participants were informed of the study and read the documentation
to participate in the investigation. All the participants signed consent forms (without
personal identification), which were kept confidential. All protocols involving human
participants were approved by the Office of the Human Research Ethics Committee of
Walailak University, which adopted the Ethical Declaration of Helsinki, the Council for In-
ternational Organizations of Medical Sciences (CIOMS), and the World Health Organization
(WHO) guidelines.

The participants performed the experiment using the task sequence illustrated in
Figure 4a. The volunteers completed the experiments according to their upper and lower
limb movement paradigms. They started by looking at the fixation “+” for 5 s to record
the EEG signal in the resting state. Subsequently, each movement paradigm was imagined
(Figure 2) for 5 s. The movements were randomly imagined 12 times on both the left and
right sides, for a total of 24 times for 125 s per session. Each participant performed ten trials
per experiment, twice per movement paradigm. The participants rested for 60 s before
moving to the next paradigm. The time the participants spent was approximately 30 min
in total. Each subject randomly performed left and right commands, with 20 trials per
stimulus pattern and 80 trials per subject. After finishing the motor imagery tasks, each
participant collected the EEG during the attention and eye closing stages for 5 s and five
times per paradigm.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 15 
 

 

2.3. Observations of EEG Alpha Power with Difference Task 

Twelve healthy volunteers (six females and six males, aged 22–25) participated in the 

experiments. To meet the inclusion criteria, all the participants were normal and without 

disorders. All the participants were informed of the study and read the documentation to 

participate in the investigation. All the participants signed consent forms (without per-

sonal identification), which were kept confidential. All protocols involving human partic-

ipants were approved by the Office of the Human Research Ethics Committee of Walailak 

University, which adopted the Ethical Declaration of Helsinki, the Council for Interna-

tional Organizations of Medical Sciences (CIOMS), and the World Health Organization 

(WHO) guidelines. 

The participants performed the experiment using the task sequence illustrated in Fig-

ure 4a. The volunteers completed the experiments according to their upper and lower 

limb movement paradigms. They started by looking at the fixation “+” for 5 s to record 

the EEG signal in the resting state. Subsequently, each movement paradigm was imagined 

(Figure 2) for 5 s. The movements were randomly imagined 12 times on both the left and 

right sides, for a total of 24 times for 125 s per session. Each participant performed ten 

trials per experiment, twice per movement paradigm. The participants rested for 60 s be-

fore moving to the next paradigm. The time the participants spent was approximately 30 

min in total. Each subject randomly performed left and right commands, with 20 trials per 

stimulus pattern and 80 trials per subject. After finishing the motor imagery tasks, each 

participant collected the EEG during the attention and eye closing stages for 5 s and five 

times per paradigm. 

 
 

(a) (b) 

Figure 4. (a) Task experiment for motor imagery via upper and lower limb movement paradigms; 

(b) the experimental setup. 

The recorded EEG signals were filtered using a bandpass FIR filter at 3–30 Hz. The 

filtered signals were segmented, and topographic brain maps were generated to observe 

the MI response. All processes were performed using MATLAB (MathWorks) [ver. 

R2019a], using the EEGLAB toolbox [29]. Based on the grand-averaged brain topographic 

mapping of the FFT absolute power for all the trials of each subject, we observed the fea-

ture pattern for each motor imagery task (Figure 5), spatial attention, and closed eyes (Fig-

ure 6). The brain areas of interest were the left–right frontal and occipital areas. 

Figure 5 shows examples of topographic brain maps of alpha ERD from EEG while 

subjects 1 and 2 imagined left/right limb movements. For the left motor imagery, we ob-

served that only the left central (FC5) exhibited a greater response in the alpha band (10–

12 Hz), as shown in Figure 5a,b for subjects 1 and 2, respectively. In contrast, the right 

central (FC6) regions exhibited a greater response from the left central (FC5) region that 

Figure 4. (a) Task experiment for motor imagery via upper and lower limb movement paradigms;
(b) the experimental setup.

The recorded EEG signals were filtered using a bandpass FIR filter at 3–30 Hz. The
filtered signals were segmented, and topographic brain maps were generated to observe
the MI response. All processes were performed using MATLAB (MathWorks) [ver. R2019a],
using the EEGLAB toolbox [29]. Based on the grand-averaged brain topographic mapping
of the FFT absolute power for all the trials of each subject, we observed the feature pattern
for each motor imagery task (Figure 5), spatial attention, and closed eyes (Figure 6). The
brain areas of interest were the left–right frontal and occipital areas.
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Figure 6. Examples of topographic brain maps of alpha power from EEG while subjects 1 and
2 performed spatial attention and closed eyes.

Figure 5 shows examples of topographic brain maps of alpha ERD from EEG while
subjects 1 and 2 imagined left/right limb movements. For the left motor imagery, we
observed that only the left central (FC5) exhibited a greater response in the alpha band
(10–12 Hz), as shown in Figure 5a,b for subjects 1 and 2, respectively. In contrast, the
right central (FC6) regions exhibited a greater response from the left central (FC5) re-
gion that imagined wrist and elbow movements, as shown in Figure 5a,b for subjects 1
and 2, respectively.

Attention to the green arrow: both sides of the frontal area (AF3 and AF4) exhibited
a greater response in the alpha band (8–12 Hz) than in the resting state, according to
topographic brain maps of subjects 1 and 2, as shown in Figure 6. For eye closing, the
left and right occipital regions (O1 and O2) exhibited a greater response in the alpha band
(8–12 Hz) than in the resting state, according to examples of the topographic brain maps of
subjects 1 and 2, as shown in Figure 6.

Figure 5 shows that each participant can exhibit a strong ERD response with dif-
ferent movement paradigms. Therefore, we tried to observe user proficiency for motor
imagery with various limb movements for the recommended MI paradigms of each user,
as shown in Table 2. Our aim was that the recommended MI paradigms could enhance the
MI-based BCI.
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Table 2. Recommended paradigms from user proficiency for motor imagery.

Subjects
Recommended Limb Movement Paradigm

Left Right

1 Elbow Wrist
2 Elbow Elbow
3 Elbow Ankle
4 Elbow Elbow
5 Wrist Elbow
6 Elbow Elbow
7 Elbow Elbow
8 Elbow Elbow
9 Ankle Elbow
10 Wrist Wrist
11 Wrist Ankle
12 Elbow Elbow

3. Proposed BCI for Simulated Wheelchair Control

According to the observations of the EEG alpha power in Section 2.3, the EEG signals
from channels AF3, AF4, FC5, FC6, O1, and O2 show strong features for attention, thinking,
and eye closing. The EEG signals from channels AF3 and AF4 reveal a prominent feature for
paying attention to the green arrow. The EEGs from FC5 and FC6 detected alpha ERD while
the user imagined upper and lower limb movements (Figure 3). The stop command can be
created by closing the eyes to modulate the alpha EEG signals at O1 and O2. The user can
generate a forward command by paying attention to the green arrow and a stop command
and reverse command by closing both eyes. The turn left command can be generated by
imagining moving the left limbs and the turn right command by imagining moving the
right limbs. The results in Section 2.3 recommend paradigms from user proficiency for the
motor imagery for left and right direction control, as shown in Table 2. The EEG signals
were used for real-time processing to detect actions (Table 1) every 2 s to create commands
for virtual wheelchair direction control. Conventional EEG alpha features using Welch’s
periodogram method and simple classification algorithms for action detection were used
for fast computations [30]. The processes of the feature extraction and classification are
as follows.

(1) Calibration: Before using the proposed system, baseline parameters were collected
while the user was relaxing for the first 5 s.

The threshold parameter (Te) was defined as the baseline relative alpha power in the
EEG channels (e), that is, AF3, AF4, FC5, FC6, O1, and O2, which were calculated using
Equations (1) and (2):

BRe(α) =
Pe(α)

(Pe(θ) + Pe(α) + Pe(β))
(1)

Te(α) = 1.25 ∗ Re(α) (2)

where Pe is the absolute power of the PSDs of the EEG channels (e) from AF3, AF4, FC5,
FC6, O1, and O2. We used three EEG bands: the theta band (θ) (4–7 Hz), alpha band (α)
(8–12 Hz), and beta band (β) (13–30 Hz), without the delta band (1–3 Hz), to avoid motion
artifacts. Based on our assumptions, the alpha band should be increased. Hence, the index
was defined to allow the difference level to be greater than 0.25 and to multiply Re(α) by
1.25 as the threshold for the alpha ERD detection.

(2) Feature Extraction: Of the EEG features acquired during stimulation, Re is the
relative power spectral density (PSD) of the alpha band of the EEG signals from all the EEG
channels, which are calculated using Equation (3), as follows:

Re(α) =
Pe(α)

(Pe(θ) + Pe(α) + Pe(β))
(3)
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where Pe(θ), Pe(α), and Pe(β) are the magnitudes of the PSDs of the real-time acquired
EEGs at e = AF3, AF4, FC5, FC6, O1, and O2, respectively.

The alpha ERD response (De), which is the difference of the Re(α) and Te(α) values
(Re(α) − Te(α)) at e = AF3, AF4, FC5, FC6, O1, and O2, can be calculated with Equation (4),
as follows:

De =

{
Re(α)− Te(α), Re(α)− Te(α) > 0

0 , Re(α)− Te(α) < 0
(4)

The output of the process can be obtained as the index of the maximum of De that is
returned from the argument max function (argmax) referring to the largest output, which
can be calculated with Equation (5), as follows:

i = argmax{DAF3 , DAF4, DFC5, DFC6DO1, DO2} (5)

(3) Decision Making: We used a simple decision rule to compare the Output values.
The four-class classification decision (Figure 7) was generated according to:

if i = 1 or i = 2, C = “Forward”
if i = 3, C = “Turn right”
if i = 4, C = “Turn left”
if i = 5 or i = 6, C = “Stop and Backward”
Otherwise, C = “Idle”
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We also employed a double-check method for command creation by comparing the
previous (Ct−1) and present commands (Ct) to avoid involuntary commands (true nega-
tive). When they are both the same commands, they are generated. The proposed algorithm
establishes a command every 1 s, which requires 2 s for the command output.

4. Experiments and Results
4.1. Experiment I: Performance of Using Recommended Paradigm

Before testing, each subject completed a training session of 10 min for each paradigm
(wrists, elbows, ankles, and the recommended paradigm) (Table 2) and then proceeded
with the experiment. Each subject was assigned to create commands for a virtual simulation
of the electric wheelchair movement direction (turning left and right), as shown in Table 3.
Each subject performed two trials per paradigm (24 commands). The subject started
with the wrists, then the elbow, ankles, and recommended movement paradigm. The
subjects took a five-minute break before changing to the next paradigm. Accuracy was
collected to verify the proposed user proficiency of the MI paradigm. The experimental
results in Table 4 show the average accuracy for each subject. The analysis mainly focused
on investigating user performance. The accuracy of each motor imagery paradigm was
collected and analyzed for studying between the traditional and recommended motor
imagery paradigms. The data were calculated as the mean values and their standard
deviation and were expressed as mean ± S.D.

Table 3. The experimental task of the real-time MI-based BCI.

Sequence No. 1 2 3 4 5 6 7 8 9 10 11 12

Commands Left Right Right Left Left Right Right Left Left Right Right Left

Table 4. Results of using various left/right motor imagery paradigms.

Subjects

Average Classification Accuracy (%)

Left and Right Sides of Motor Imagery Paradigms

Wrists Elbows Ankles Recommended (Table 2)

1 83.3 83.3 75.0 87.5
2 79.2 87.5 70.8 87.5
3 70.8 75.0 79.2 83.3
4 75.0 79.2 83.3 83.3
5 70.8 91.7 75.0 91.7
6 87.5 83.3 83.3 87.5
7 62.5 75.0 70.8 79.2
8 83.3 75.0 62.5 79.2
9 75.0 79.2 75.0 83.3
10 75.0 75.0 75.0 79.2
11 75.0 83.3 79.2 83.3
12 66.7 79.2 70.8 79.2

Mean ± S.D. 75.3 ± 7.20 80.6 ± 5.43 75.0 ± 5.89 83.7 ± 4.14

According to the results in Table 4, the maximum accuracy achieved using the elbow
and the recommended motor imagery paradigms (Table 2) was 91.7%. The average ac-
curacy of the motor imagery paradigms using wrist movements was 75.3%; using elbow
movements was 80.6%; using ankle movements was 75.0%; and using the recommended
paradigm was 83.7%. The recommended motor imagery paradigms can yield the highest
accuracy rate. The performance of the EEG neuroheadset for an MI-based BCI system was
similar to that of the previous MI–BCI systems [31]. The proposed MI–BCI could produce a
higher accuracy than the previous studies that used the same EEG devices [32]. Therefore,
we employed the subject’s proficiency in motor imagery as a recommended paradigm for
the turning left and right commands in a real-time system.
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4.2. Experiment II: Performance of the Proposed BCI System for Simulated Wheelchair Control

The same group of participants participated in experiment II. Normally, a user’s
proficiency level affects the results. Before starting the experiment, we tried to control the
participant’s confidence by achieving a greater than 80% accuracy for each command and
giving 20 min for a training session. We also recorded the time taken by each subject to
steer the simulated power wheelchair using a joystick for user and system evaluations.
Each participant was tested using three modalities to independently control the simulated
wheelchair, as shown in Figure 8a. The subject generated commands automatically by
the proposed algorithms and recorded the time spent steering the simulated wheelchairs
to complete routes 1 and 2 using our proposed face-machine interface (FMI) [33]. Each
subject performed two rounds for each route. The subject took a ten-minute break before
proceeding to the next round. The scenario during the experiment is illustrated in Figure 8b.
The time spent from start to stop was recorded to evaluate the proposed BCI system and
recommend the motor imagery paradigms. The average time required for each route
from two rounds was used to compare with the joystick and FMI control. The data
were processed as the mean values and their standard deviation and were expressed as
mean ± S.D.
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Figure 8. (a) Graphic user interface with simulated power wheelchair; (b) the example scenario of
the simulated wheelchair control during the experiment.

For route 1, the average time required by the joystick control was 54.4 s. The least
amount of time obtained using the joystick control was 45 s. The average time required by
the proposed MI-based BCI using the recommended paradigm was 211.92 s. The shortest
amount of time obtained was 158 s from round 2. For route 2, the average time required by
the joystick control was 57.25 s. The least amount of time obtained using the joystick control
was 47 s. The average time required by the proposed MI-based BCI using the recommended
paradigm was 218.08 s. The shortest amount of time obtained was 168 s from round 1.

After comparing the joystick and BCI controls, we found that the proposed BCI had a
lower efficiency than the joystick. The difference between the average times taken by the
proposed BCI modality and the joystick on route 1 was 157.54 s and that on route 2 was
160.83 s. All the subjects without BCI experience had difficulty performing and required
more training time. Efficiency comparisons with previous works in real-time continuous
control [34] showed that the proposed BCI system could produce an elapsed time and
command transfer rate similar to those of previous works.

In Figure 9, using the proposed algorithm, the average time required for individual
commands ranged from 173 to 278 s on route 1 and from 173 to 279 s on route 2. Com-
pared with the FMI method, the performance of using the EEG artifacts from the EEG
neuroheadsets via jaw chewing and eye winking to control the simulated wheelchair [33]
was in the range similar to that from the previous studies. As the features of the EEG
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signal of the FMI methods are different, this proposed MI-based BCI system required a
time of around 90 s on both routes 1 and 2, which is more than that using the FMI method.
Moreover, the time difference between the proposed BCI and joystick-based control was
approximately threefold.
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5. Discussion

According to the results in Table 2, most of the subjects could yield a strong ERD
using the elbow movement paradigm. From the results of experiment I, using the pro-
posed algorithm, the average classification accuracy of the proposed system for individual
commands ranged from 62.5% to 91.7%; maximum average accuracy was achieved by the
recommended paradigm; the average accuracy of the recommended paradigm was 83.7%;
the average accuracy of the wrist paradigm was 75.3%; the average accuracy of the elbow
paradigm was 80.6%; and the average accuracy was 75.0% for the ankle paradigm. We
also found that the recommended limb paradigm using the MI proficiency screening for
beginners could be used for user training and progression. Therefore, we employed the
recommended paradigm for the MI-based BCI for wheelchair control.

According to the results in Table 5, the proposed BCI system for simulated wheelchair
control using left/right motor imagery, attention, and eye closing paradigms translated to
the turn left, turn right, forward, and backward commands, respectively. All the subjects
produced more than 80% accuracy for each command before testing. The results reported
the time taken by all subjects to complete the routes. The time required for route 1 ranged
from 158 to 280 s, and the time required for route 2 ranged from 168 to 280 s. The aver-
age time taken using the proposed system was 211.92 s and 218.08 s for routes 1 and 2,
respectively. Compared to the joystick, the difference between the average times taken by
the proposed BCI and the joystick on route 1 was 157.5 s and that on route 2 was 160.6 s.
Compared to FMI, the difference between the average times taken by the proposed BCI
and the joystick on route 1 was 89.8 s and that on route 2 was 90.8 s, as shown in Figure 9.
Subjects 2, 5, and 10 with BCI experience demonstrated high efficiency when using the
proposed BCI and achieved an efficiency close to our proposed FMI system [33].
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Table 5. The average times taken by all subjects to complete routes 1 and 2.

Subjects

Time (s)

Route 1 Route 2

Joystick Round 1 Round 2 Avg. Joystick Round 1 Round2 Avg.

1 53 182 192 193 54 204 244 218
2 45 196 176 184 47 172 182 179
3 57 222 242 203 65 184 224 233
4 65 202 188 200 58 198 208 198
5 47 178 184 173 52 168 182 183
6 50 190 212 200 59 210 222 217
7 55 240 260 243 61 246 266 263
8 58 228 208 213 63 198 216 212
9 62 280 272 273 66 266 286 279

10 50 168 158 179 49 190 188 173
11 51 214 200 225 55 236 232 216
12 60 266 242 257 58 248 250 246

Mean± S.D. 54.40 ± 6.16 213.83 ± 35.00 211.17 ± 35.46 211.92 ± 31.62 57.25 ± 6.06 210.00 ± 31.85 225.00 ± 32.87 218.08 ± 32.98

However, some suggestions and limitations of real-time motor imagery-based BCI
systems using EEG headsets when controlling wheelchair should be reported.

(1) For EEG headset installation, it is necessary to check whether the electrodes are
located in the right area and have low impedance during use.

(2) The system still required training sessions for some participants who had trouble
with motor imagination in producing apparent features in a proposed BCI system.

(3) To avoid a significant mistake rate over an incredible duration, the system required
an auto-calibration system and a monitoring of user fatigue.

(4) For multi-command BCIs, the proposed system yielded lower efficiency than the
use of EEG artifacts from the neuroheadset.

6. Conclusions

In this study, we proposed the user proficiency of motor imagery via limb move-
ment paradigms for an EEG-based BCI system using the Emotiv EPOC X neuroheadset
for the control application. To investigate users’ motor imagery proficiency using brain
topographic maps for the limb paradigm recommendations, we verified the proposed
MI paradigm using a real-time MI-based BCI for the left/right commands. The recom-
mended paradigm can yield a higher efficiency than the conventional paradigm for the
same limb for the left and right paradigms. The proposed user proficiency of the motor
imagery method can be used in BCI systems. Moreover, we proposed a BCI system to
control a simulated wheelchair by employing the recommended motor imagery, attention,
and eye closing actions. The time results for the same task as a joystick-based control are
still approximately three times longer. We conclude that user proficiency can be used to
recommend an individual MI paradigm to beginners. The studies with healthy people
can be applied to investigate user proficiency in motor imagery and to design a training
program for patients using BCI-based assistive and rehabilitation systems. Furthermore,
the proposed BCI system can be employed for electric wheelchairs or electric devices. For
future work, we will implement and verify the proposed BCI system with real electric
wheelchairs for practical use by people with severe physical disabilities.
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