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Abstract: Human bio-signal fusion is considered a critical technological solution that needs to be
advanced to enable modern and secure digital health and well-being applications in the metaverse.
To support such efforts, we propose a new data-driven digital twin (DT) system to fuse three human
physiological bio-signals: heart rate (HR), breathing rate (BR), and blood oxygen saturation level
(SpO2). To accomplish this goal, we design a computer vision technology based on the non-invasive
photoplethysmography (PPG) technique to extract raw time-series bio-signal data from facial video
frames. Then, we implement machine learning (ML) technology to model and measure the bio-signals.
We accurately demonstrate the digital twin capability in the modelling and measuring of three human
bio-signals, HR, BR, and SpO2, and achieve strong performance compared to the ground-truth values.
This research sets the foundation and the path forward for realizing a holistic human health and
well-being DT model for real-world medical applications.

Keywords: bio-signal fusion; computer vision; digital health; digital twin; machine learning; metaverse

1. Introduction

A Digital Twin (DT) is the virtual representation of a living entity (e.g., human beings,
animals, plants, etc.) or nonliving entity (e.g., business model, product, process, system,
event, machine, building, etc.) that allows real-time interaction and communication be-
tween both the real twin and the digital twin to help with the modelling, monitoring,
understanding, and optimization of the functions and behaviour of the real twin [1].

The development of high-fidelity virtual models (i.e., digital twins) is a critical step
so that the behaviours and characteristics of the real twin can be simulated. DT can be
developed using data-driven approaches, mathematical modelling approaches, or hybrid
approaches (data and mathematical modelling).

DT technology, which we consider one of the primary technologies required to build
and advance the metaverse, has already been used extensively in the manufacturing
industry, but it is still in its infancy in the domain of human health and well-being [2,3].

For example, in the industrial manufacturing context, a state-of-the-art open-source
framework and software tools for designing DTs (the IoTwins platform) have been proposed
to enable users to develop, configure, and run DTs using distributed DT infrastructures
based on the IoT, edge computing, and industrial cloud technologies [4]. The DT IoTwins
architecture is composed of three main computing infrastructure interactive layers; the IoT
layer, the edge layer and the cloud layer. The IoT layer assists the DT with configuring and
conducting computing/processing activities on the IoT device’s sensory data. The edge
layer is responsible for data processing configuration, bulk data processing, data stream
processing, and machine learning model execution. The cloud layer can perform the same
functions as the edge layer, but the user can configure and run computing operations on
data streams from the IoT or edge devices, as well as data stored in the cloud [4].
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Two recent surveys reviewed recent research with an emphasis on building DTs
within the context of Industry 4.0. The first survey focused on covering and summarizing
the methodological approaches used for designing, modelling, and implementing DTs,
including details on how to synchronize real-time data between a DT’s physical and
virtual components, as well as the current progress of providing DT implementation tools
and an experimental testbed [5]. The second survey presented a generic DT application
architecture consisting of five layers to describe and specify the basic design requirements,
related technologies, and integration interlayer process, with an emphasis on how to
upgrade the legacy system in Industry 4.0 technologies to improve productivity, reduce
costs, and upgrade the industrial process devices [6].

Human DT is a new research area and has started attracting more attention recently.
The human DT concept is mainly based on the collection of real twin (human) data and
modelling it using machine learning (ML), a sub-field of Artificial Intelligence (AI), with
the goal of extracting information pertaining to the real twin (human)’s health and well-
being [1,7,8]. This data collection in the domain of human health generally translates into a
challenge for the individual to use and/or wear cumbersome health-sensing devices, which
may cause discomfort to individuals and create an additional risk of disease transition.

Understating the concept of the digital twin and how it is implemented in the human
DT domain is a challenging new research area, and there is a clear gap in the demonstra-
tion of how to design and implement DT technology for human health and well-being
applications at the granular level.

Bio-signals, such as heart rate (HR), breathing rate (BR), blood oxygen saturation
level (SpO2), and blood pressure (BP), can be used to diagnose human physical and
psychological health states such as emotions, fatigue, heart rate variability, mental stress,
and sleep patterns [9]. These bio-signals are becoming crucial to accelerating the adaptation
of virtual health and telemedicine services in the healthcare system, which have gained
huge momentum in the post-pandemic era.

The authors of another more recent comprehensive survey [10] revealed several gaps
in the area of the remote measurement of heart rate using machine learning methods
outside the context and area of human DT. These gaps are that (a) the literature focuses
on a single vital sign and there is a need to fuse other bio-signals such as SpO2, (b) the
proposed solutions are complex and cannot be applied in a real-time practical application,
and (c) there is a need for diverse datasets that contain skin-tone variations.

To address all above mentioned gaps and to establish the groundwork and path
forward for achieving a holistic human health and well-being DT model for practical
virtual healthcare services in the metaverse, we propose building a data-driven digital twin
solution capable of sensing and fusing human bio-signals remotely using modern computer
vision/image processing and remote photoplethysmography (rPPG) technologies.

rPPG is considered a low-cost and accessible optical sensing technique that can detect
tiny colour intensity changes caused by changes in facial blood flow due to cardiovascular
activities under an ambient light environment. Such changes are invisible to the human
eye but can be captured directly by a regular colour digital camera sensor. By capturing
video and analyzing the data in red, green, and blue (RGB) channels, multiple bio-signals
can be extracted from a distance [11].

Our proposed DT technology has the potential to be applied to real-world applications,
e.g., (a) in the emergency room in a hospital for quick bio-signal pre-screening processes,
and (b) in long-term health units to monitor and detect elderly patients’ health and well-
being signs remotely, and act as a diagnostic support tool that can raise the alarm as soon as
an anomaly (i.e., abnormal health pattern) is detected to prevent further chronic problems
and degradation in patients’ health.

The structure of this paper is as follows. Section 2 describes the methods and mate-
rials used, and Section 3 highlights our proposed DT system design and the developed
framework utilized to perform offline ML experimentation, development, and testing on
ML models required for multi-bio-signal modelling. Section 4 presents the achieved results
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and the discussion presented in Section 5, along with limitations and future work. Finally,
Section 6 presents the conclusion.

2. Materials and Methods

This section describes the dataset engineering; applied machine learning algorithms;
proposed DT system architecture including a framework for ML offline experimentation,
development, and testing; and evaluation metrics used to demonstrate the performance of
our proposed DT system.

2.1. Datasets

We used three biometric datasets, two from the public domain (VIPL and COHFACE)
and one from our lab as detailed below.

2.1.1. VIPL Public Dataset

The VIPL dataset was developed by the Key Laboratory of Intelligent Information
Processing of the Chinese Academy of Sciences [12] and is considered a large-scale multi-
modal dataset that contains 2378 visible-light video clips and 752 near-infrared video clips
of 107 participants (subjects), with a female-to-male gender ratio of about 30% to 70%. Only
the visible-light videos and their corresponding heart-rate and SpO2 biological data are
used in this research. Unfortunately, this dataset does not contain any BR data.

2.1.2. COHFACE Public Dataset

Portions of the research in this paper used the COHFACE dataset. This dataset was
developed by IDIAP Research Institute in Switzerland and contains 160 one-minute-long
RGB video sequences of 40 participants, including 12 females and 28 males. The dataset
includes synchronized data on blood volume pulse (BVP) and BR. However, by now, the
original recorded video files have become highly compressed and noisy.

2.1.3. Our Lab Dataset

We collected and engineered our lab dataset, which includes 197 video clips for
18 participants varying in gender, race, and age with synchronized heart-rate and breathing-
rate biological data. The video clips were collected using a regular colour camcorder at
a frame rate of 30 FPS (frames per second). Compared to the other datasets used, it
is noteworthy to mention that our physical data collection contains an extended heart-
rate range. The recordings of the subjects were made in both sitting-still and exercising
states [13].

The purpose of adding our dataset is to enrich the training, validation, and testing
datasets with heart-rate and breathing-rate (which was not available in the previous two
public datasets) data and to address the gaps in the most recent literature survey [10]
regarding the need for a diverse dataset with more skin-tone variations.

2.2. ML Algorithms

In this research, the bio-signal measurement technique is formulated as an ML regres-
sion modelling problem and we address it by investigating the following three advanced
supervised ML algorithms using the Python TensorFlow open-source library.

2.2.1. Multilayer Perceptron Algorithm

The multilayer perceptron (MLP) neural network is a supervised deep learning algo-
rithm that can learn a nonlinear function that maps input features to the target outputs.
Classical MLP networks consist of an input layer, a hidden layer(s), and an output layer.

In our research, we extended the classical MLP and utilized additional layers such
as batch normalization and regularization layers. The objective behind this was to design
a robust learning-based DT system capable of performing an optimal real-time fusion of
multiple bio-signals from a single input feature space.
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From an implementation perspective, our MLP neural network consists of the follow-
ing fully connected sequential layers [14]:

1. The input (dense) layer is designed to consume all the input features for each bio-
signal, as defined by our problem in the upcoming sections.

2. The batch normalization layer is fitted right after the input layer and performs a
scaling/normalizing of the raw input features instead of manual data preprocessing.
This layer provides us with two major advantages: (i) the achievement of faster
training convergence because it enables the network to use higher learning rates and
reduces the effect of initialization, and (ii) the ability to use regularization services
as a bonus through a reduction in generalization errors, i.e., improving network
performance generalization to unseen data [15].

3. The activation layer refers to adding a nonlinear activation function to the outputs
of the batch normalization layer. The selection of the activation function is crucial
since it helps the network to learn the complex nonlinear relationship between the
input and output features. It improves the capability of MLP generalization during
testing/operations on new data. We employed a simple, well-known, computationally
efficient activation function called a rectified linear unit (ReLU) in all dense layers,
except for the output layer. Proper network weight initialization is a very important
step to prevent activation function outputs from vanishing or exploding during
training. We applied weight initialization in the input, hidden, and output layers.

4. The regularization layer is implemented using the dropout technique. Regularization
helps the neural network to learn from training data and generalize well on the test
data rather than memorize the training data and fail to generalize on the test data
(which is called overfitting). Dropout improves the network training performance
and minimizes overfitting by removing (dropping out) the contributions of a random
number of neurons in the next layer by a certain dropout rate. Dropout can be used
after an input or hidden layer but not after an output layer [16].

5. Dense (hidden) layers with different sizes.
6. One output layer with one neuron and the linear activation function to measure

the actual value of each bio-signal since we are implementing a regression solution
in this research. We train the above MLP neural network using a state-of-the-art
stochastic gradient-based optimization algorithm called “Adam”. The advantages of
this algorithm are that it provides (i) computational efficiency through significant fast
convergence compared to standard gradient-based descent algorithms, (ii) efficient
memory requirements, and (iii) scalability to a large dataset and large ML models [17].
These advantages enable the MLP to perform online (real-time) learning capabilities
and are what motivated us to consider MLP in our research since one of the main DT
system requirements is the ability to have real-time interaction/communication with
the real twin.

2.2.2. Long Short-Term Memory Algorithm

The long short-term memory (LSTM) algorithm is a special type of recurrent neural
network (RNN). RNNs cannot store information for a long time or learn long-term temporal
dependencies between inputs and outputs when delays exist. RNNs’ short-term mem-
ory creates two major challenges for the recurrent backpropagation training algorithm’s
gradient: vanishing and exploding gradients. A memory unit was introduced to address
these RNN challenges. The memory unit helped to memorize inputs for a long time and
learn the long “short-term” dependency between the input and the output [18]. Such an
architecture enabled this special RNN to demonstrate outstanding performance in solving
sequence modelling problems in audio and video analytic domains, which motivated us to
investigate such a network.

Our research extended the classical LSTM network and utilized additional layers: a
batch normalization layer, MLP dense layers, and regularization layers. From an imple-
mentation perspective, the following sequential architecture was considered:
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1. The LSTM layer. The function of this layer is to perform point-wise multiplica-
tion/addition operations to smooth the gradient flow over long sequences and learn
the long-term time-series and sequence data dependencies during training. This layer
consists of shaped input features, the dimensionality of the output space, activation,
initialization, and internal dropout attributes.

2. The batch normalization layer. This layer comes right after the LSTM layer. It per-
forms the scaling/normalizing of the output of the LSTM layer, which has the same
advantages as those stated earlier in the MLP section.

3. Multiple MLP cascaded down dense layers. The dense layers help us to further
integrate the output from the batch normalization/LSTM layer. A leaky rectified
linear unit (LeakyReLU) was added after each dense layer as an activation function.
We applied weight initialization in the input, hidden, and output layers.

4. The regularization layer. This layer is implemented using the dropout technique and
has the same advantages as those stated earlier in the MLP section.

5. The output layer. One output layer with one unit is equipped with a linear activation
function to measure the actual value of each bio-signal since we are implementing a
regression solution in this research.

2.2.3. Extreme Gradient Boosting Algorithm

The extreme gradient-boosting algorithm (XGBoost) is based on the traditional en-
semble technique. When solving the regression problem, additive models (i.e., decision
trees) are sequentially added until the minimized loss by the gradient descent algorithm
stops improving. XGBoost was developed originally by Chen Tianqi [19]. The simplicity
of its implementation and its exceptional performance in speed and accuracy, especially
in winning ML competitions, have motivated us to use it in our research. We utilized the
simple algorithm of XGBoost.

2.3. Evaluation Metrics

We implemented four performance evaluation metrics in our experiments to evaluate
the training, validation, and testing performance of the developed ML models. These
metrics are:

Mean absolute error (MAE) =
1
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where yg
i is the ground truth bio-signal values, yp

i is the predicted (measured) bio-signal
values, n is the number of data points, and STD is the standard deviation.

3. Digital Twin System Design

This work’s scientific contribution focuses on leveraging data-driven digital twin
technology and how to implement it in the human digital twin domain for health and
well-being applications, which is a very new area in the literature at this granular level.

We designed our DT system using a simple architecture that consists of three integrated
modules, as illustrated in Figure 1. The bio-signal data extraction module is responsible for
converting raw video frames into time-series data.
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The bio-signal measurement module is responsible for processing the raw time-series
data and producing each bio-signal using optimized ML-trained models. The bio-signal
visualization and interaction module represents the last part of the DT system and should
have the ability to provide real-time updates to all three bio-signal readings on a device
screen.

The communication between the DT system’s modules is executed using Bluetooth, Wi-
Fi/5G networks, or conventional communications services. We implemented the integrated
modules using a Python-integrated development environment (PyCharm). The upcoming
sub-sections provide an in-depth look at the processes of the mechanics of each module.

Figure 1. System Architecture of the Machine Learning-based Digital Twin for Non-Invasive Human
Bio-Signal Fusion.

3.1. Bio-Signal Raw Data Acquisition and Extraction Module

This module is responsible for the sensing, preprocessing, and extraction of bio-signal
raw data from video images taken either directly from a digital camera (real-time mode)
or pre-recorded (offline mode) and generates a single time-series output (e.g., 150 green-
channel AC-component data points). The inputs of this module are raw video frames
(e.g., 150 frames) acquired from a set of short video clips, with synchronized bio-signal
ground-truth data taken from each dataset (e.g., a total of 2378 video clips from the VIPL
dataset).

The outputs are time-series data per region of interest (ROI) per image (e.g., 150 green-
channel AC-component data points) stored in a set of files in “csv” format with essential
formatted information (e.g., a total of 7134 files for all three ROIs were generated from the
VIPL dataset). Each file contains the participant numbers and physical ground truth for the
applicable bio-signal, and 150 points of buffered data are extracted and synchronized with
each physical ground truth. The steps we executed during this stage are discussed below.

3.1.1. Video Source (Camera) Initialization and Video Frame Acquisition

There are two types of inputs that can be used as video sources: (i) image frames
collected in real-time from a computer webcam, or (ii) image frames collected from pre-
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recorded offline video files. The system takes one frame from the source until the video-
capturing or file-reading process ends.

3.1.2. Face Detection and Tracking

The OpenCV Haar cascade classifier, an open-source Python library, well-known for
its effectiveness in real-time object detection applications in computer vision, is applied
to detect a human face in the currently processed frame. If an OpenCV facial detector
identifies the face on the input video frame, a face frame is tracked and cropped. If the
detected face is not correctly positioned in the face frame, we apply an open-source Python
facial alignment library (Imutils) to straighten up the face pose before the cropping (i.e.,
minimize the impact of the head/face pose on the accuracy of dlib for landmark placement).
The tracking algorithm resets when the designed buffer is filled or the face is no longer
detectable. The motivation behind using the OpenCV Haar cascade classifier in our DT
system design research is driven by its proven capability to provide real-time face detection
and its availability as a highly optimized open-source Python library.

3.1.3. Facial Landmark Detection and System Authorization

In this stage, we employed a 68-point facial landmark detection open-source Python
library (DLib). The DLib pre-trained model uses the regression trees technique to measure
68 facial landmarks based on pixel intensities instead of facial features, producing high-
quality face detection in real time (See Figure 2). After the video frame acquisition and face
detection, the locations of the facial landmarks are identified and extracted.

Figure 2. Captured ROIs using Dlib 68-point facial landmarks.

3.1.4. Region of Interest (ROI) Cropping and Selection

The DLib 68-point version was used to identify three ROIs on the face frame, such as
two on the left and right cheeks and one on the forehead; this is because the signals related
to the absorption bands for oxy- and de-oxy hemoglobin had the strongest signal-to-noise
ratio (SNR) corresponding to blood volume changes in these facial skin regions [20].

3.1.5. Colour Channel Decomposition and Green-Channel Selection

Previous research [21] indicates that the green-channel data in the RGB colour space
remain the most robust for bio-signal extraction (e.g., heart-rate signal extraction). Hence,
the green channel is selected as our choice for implementation in the scope of our research
due to the presence of the highest signal-to-noise ratio on bio-signal data in this channel.
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3.1.6. Pixel Value Averaging and Buffer Data Generation

This step transforms the large sizes of 2D image sequences into a 1D time-series data
array and has the advantage of reducing computational expense, despite the reduced size
of the input data. The average colour-intensity values based on the green channel and its
corresponding ROI images are calculated and stored temporarily in the data buffers.

Each buffer is designed to accept a maximum of 150 data values so it is full when
150 ROI image frames have been successfully received and processed. This takes five
seconds at a frame rate of 30 FPS with 0% overlapping between each pair of adjacent
windows. The processing time is calculated by dividing the buffer size by the camera frame
rate. A frame rate of 30 FPS is the most common frame rate found in many commercial-
grade webcams. The sample video clips in all datasets that we utilized in this research were
also collected at a frame rate of 30 FPS.

The buffer length was designed after performing a massive number of experiments to
achieve optimal performance of the DT real-time system by providing enough data samples
and retaining accuracy while updating the bio-signal measurements in nearly real time. By
choosing 150-point data as the size of the buffer window, the DT system could run and
update bio-signal readings efficiently in real time and retain at least one cycle of the BR and
usually five cycles of the HR. This is a crucial factor for the design of an accurate system
running in real time, even with hardware constraints.

In addition, from a signal-processing perspective, the sampling rate needs to be fast
enough to enable the detection of the heart rate at its maximum possible frequency, which
we have set at 180 BPM or 3Hz. According to the Nyquist limit, the highest frequency
component that can be accurately reconstructed should be equal to or less than half of the
sampling rate [22].

A frame rate of 30 FPS is not a mandatory camera speed since our system sampling
rate is determined by how fast our data buffer is filled during the digital camera video
recording in real time. Therefore, a minimum of 6 FPS (or 6 Hz) as a frame acquisition
speed should be maintained to perform accurate bio-signal measurements for obtaining an
HR at a detection mode of 180 BPM or less.

3.2. Bio-Signal Data Measurement Module

This module represents the ML inference engine, which we consider the core of the
DT, and has two main functions: (i) perform data and ML model engineering in offline
experimentation setting to produce optimized, trained ML models, as indicated in Figure 1
by the red dotted communication lines and boxes, and (ii) consume the raw time-series-
shaped buffer data (e.g., 150 green-channel AC-component data points) and produce three
bio-signal measurements simultaneously in real time using the optimized trained ML
models. Each step of the process is explained in more depth below.

3.2.1. Data Engineering and Analysis

The input of this stage is a set of raw time-series data files in “csv” format and the
outputs are three engineered raw datasets (i.e., VIPL, COHFACE, and our lab dataset).
The steps of the data engineering and analysis stage are (i) aggregating all the generated
raw time-series data (green-channel AC-component data) from the previous stage for each
dataset; before data aggregation, empty files that resulted from no face detection are sorted
and filtered; (ii) performing exploratory data analysis (EDA) to analyze and understand
the statistical characteristics of each bio-signal dataset and identify potential outliers before
model experimentation; and (iii) producing three engineered datasets: the VIPL dataset that
contains HR and SpO2 bio-signal data, our lab dataset that contains HR and BR bio-signal
data, and COHFACE that contains HR and BR bio-signal data.

3.2.2. Data Validation and Preparation

The inputs of this stage are three datasets (i.e., VIPL, COHFACE, and our lab datasets)
and the outputs are three clean (training, validation, and testing) datasets for each bio-signal
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(i.e., HR, BR, and SpO2). The steps of the data preparation stage are (i) performing dataset
cleaning based on the observations highlighted in the previous stage, as well as ensuring
all three datasets are free of rows with zero values if any; (ii) splitting each vital dataset
into training (60%), validation (20%), and testing (20%); the data split should include all the
subject data in the respected dataset to avoid data leakage (i.e., a case where the participant
data are split among the training, validation, and testing datasets). Data leak prevention
is essential for producing an accurate model parameter capable of providing predictive
power once we deploy them in the production environment; and (iii) aggregating and
creating three separate datasets for training, validation, and testing purposes (e.g., the final
training dataset is an aggregation of 60% of VIPL dataset, 60% of our lab dataset, and 60%
of COHFACE dataset)

The data split was performed by applying filters in Panda’s Python package to main-
tain proper dataset partitioning, where each participant’s data are present in one dataset
and do not appear in other datasets to avoid the leakage of any single participant in the
training, validation, and testing datasets. The 60/20/20 division of the data samples gener-
ated from all subjects was chosen since the length of each participant video was variable
and the generated data samples were not equal among all participants. The percentage
refers to the split in the data samples across all samples for each dataset.

3.2.3. ML Model Training and Validation

The input of this stage is a clean training dataset ready to perform experimentation
on three ML algorithms (i.e., XGBoost, MLP, and LSTM) and the outputs are three trained
models prepared for testing.

The steps of the ML model training and validation stage are (i) establishing a list of
potential ML regression algorithms for designing and developing various ML models capa-
ble of accurately detecting and estimating bio-signals; (ii) establishing model performance
evaluation metrics to assess model prediction quality; (iii) performing model training
experimentation based on the engineered training dataset from the previous stage; (iv)
performing model validation experimentation based on the engineered validation (holdout)
dataset from the previous stage; (v) visualizing the learning profile during training and
validation for each ML model per bio-signal; and (vi) performing hyperparameter tuning
and producing the best-trained ML models for the upcoming testing stage.

3.2.4. ML Model Testing, Selection, and Tuning

The input of this stage is nine trained ML models with three models per bio-signal
(i.e., MLP, LSTM, and XGBoost) and the outputs are the best-three performing models se-
lected for each bio-signal, saved in tuple format and ready for deployment in the operating
environment.

The steps of the ML model testing, selection, and tuning stage are (i) establishing
performance validation and selection metrics; (ii) analyzing and reporting each model’s test-
ing performance; and (iii) selecting, saving, and transferring the best-performing model’s
parameters/weights in tuple format for the system design, deployment, and operation
phases.

3.3. Bio-Signal Visualization Module

This module represents the last part of the DT twin system and facilitates the output’s
visualization and interaction with the real twin through Bluetooth, Wi-Fi/5G networks, or
conventional communications services. In our proposed system, the ML-based bio-signal
DT model’s output interface should have the capability to provide real-time updates to all
three bio-signal readings on a device screen.
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4. Results
4.1. Dataset Engineering and Analysis

The EDA was achieved by visualizing the extracted green-channel AC-component
data on each bio-signal using both histograms and box plots and producing a statistical
data profile. The figures and tables refer to the original datasets before data cleaning. The
entire data engineering and analysis process for each bio-signal was executed using the
following sequential steps:

4.1.1. HR Dataset

Our analysis based on the HR data shown in Table 1 and the HR histogram and box
plot shown in Figure 3 indicates that (i) the majority of the aggregated physical HR data
ranged between 62 and 87 beats per minute (BPM), which means that the trained ML
models should perform better within this range. This is in line with the average heart rate
for a healthy adult (ranges from 60 to 100 beats per minute). Actual heart rates in real-time
applications, however, may increase with exercise, illness, injury, and emotions [23]. Thus,
there is likely to be a higher error margin for our models when estimating bio-signals
beyond this range, which also dictated the testing criteria for our developed HR ML models
in the next stage; (ii) the COHFACE dataset provided the fewest contributions to the overall
HR dataset; and (iii) any HR data value greater than 180 BPM was considered an outlier
and was cleaned in the next stage before performing ML model training.

Table 1. Statistical Summary of the HR Engineered Datasets Based on the Extracted Green-Channel Data.

Dataset Count Mean STD Min 25% 50% 75% Max

VIPL 36,291 80.8 14.8 47.0 72.0 79.0 87.5 255
Our Lab 18,425 78.1 23.7 52.2 63.6 70.4 78.4 165

COHFACE 4180 74.0 14.8 48.7 62.6 71.2 84.1 153

(a)

Figure 3. Cont.
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(b)

Figure 3. Histogram (a) and box plot (b) of HR engineered datasets from the extracted green-channel
AC-component data.

4.1.2. BR Dataset

Our analysis based on the BR data shown in Table 2 and the BR histogram and box plot
shown in Figure 4 indicates that (i) the majority of the aggregated physical BR data ranged
between 11 and 20 breaths per minute (BPM), which indicates that the trained ML models
should perform better within this range (the normal breathing rate for healthy adults
ranges from 12 to 16 breaths per minute). The BR can increase with fever, illness, and other
medical conditions, thus becoming an important indicator of breathing difficulties [23]).
There is likely to be a higher error margin for our models when estimating bio-signals
beyond this range, which also dictated the testing criteria for our developed BR ML models
in the next stage; (ii) the COHFACE dataset provided the fewest contributions to the overall
HR dataset; (iii) any BR data with values greater than 27 BPM and less than 10 BPM were
considered anomalies to be cleaned before performing ML model training; and (iv) the VIPL
dataset did not contain any BR physical data and thus was excluded from this analysis.

(a)

Figure 4. Cont.



Sensors 2022, 22, 9747 12 of 22

(b)

Figure 4. Histogram (a) and box plot (b) of BR engineered datasets from the extracted green-channel
AC-component data.

Table 2. Statistical Summary of the BR Engineered Datasets Based on the Extracted Green-Channel Data.

Dataset Count Mean STD Min 25% 50% 75% Max

Our Lab 18,425 18.0 5.5 3.0 14.7 17.4 19.9 55
COHFACE 4180 713.2 3.4 5.1 10.8 12.7 15.9 21

4.1.3. SpO2 Dataset

Our analysis based on the SpO2 data shown in Table 3 and the SpO2 histogram and
box plot shown in Figure 5 indicates that (i) only the VIPL dataset contained SpO2 physical
data and the remaining datasets were excluded from this analysis; (ii) the majority of the
aggregated physical SpO2 data ranged between 96% and 97%, which indicates that the
trained ML models should perform better within this range (the normal SpO2 level for
healthy adults ranges from 95% to 100%). Low oxygen levels can be an early warning
sign that requires medical intervention [23]. There is likely to be a higher error margin
for our models when estimating bio-signals beyond this range, which also dictated the
testing criteria for our developed SpO2 ML models in the next stage; (iii) any SpO2 data
with values greater than 100% and less than 90% were considered anomalies to be cleaned
before performing ML model training.
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(a)

(b)

Figure 5. Histogram (a) and box plot (b) of SpO2 engineered datasets from the extracted green-
channel AC-component data.

Table 3. Statistical Summary of the SpO2 Engineered Datasets Based on the Extracted Green-
Channel Data.

Dataset Count Mean STD Min 25% 50% 75% Max

VIPL 36,291 96.6 5.6 43.7 96.0 97.0 98.0 127

4.2. Training and Validation Results

This research was carried out based on three datasets, i.e., our ML model training, val-
idation, and testing were conducted using data from all three datasets based on the proper
allocation per bio-signal and an accurate split. The data engineering stage showed that our
dataset (18 participants and 197 videos; HR and BR data) produced 18,425 signals/samples
and each signal/sample contained 150 data points, which was half of the data generated
from the VIPL dataset (36,291 signals/samples, 107 participants and 2378 video clips, HR
and SpO2 data) and almost 4 times the volume of data generated from the COHFACE
dataset (40 participants and 160 videos, no HR or BR data).

In this stage, we produced two types of learning curves per ML model on each bio-
signal: (i) a training learning curve to visualize the model’s learning experience; and
(ii) a validating learning curve to visualize the model’s generalizing experience. Such
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learning curves help us to assess the quality of (a) each model’s learning and generalizing
capabilities; and (b) the relative statistical characteristics of the training and validation
datasets (diagnosing the problem of unrepresentative datasets).

We used the previously explained four metrics (MAE, MAPE, RMSE, and Pearson
correlation coefficient) to evaluate the training and validation performance of the developed
ML models. We implemented the “early stopping” technique to stop the model training
when the validation loss performance metric stopped improving to prevent overfitting.

4.2.1. HR ML Model Training and Validation

Figure 6 shows the profiles of the MLP, LSTM, and XGBoost ML models during the
HR model training and validation experiments. Our analysis showed that the HR XGBoost
model provided the best learning and validation performance in comparison with the MLP
and LSTM models.

(a)

(b)

(c)

Figure 6. Heart rate ML models’ performance curves during the learning and validation of the
(a) MLP, (b) LSTM, and (c) XGBoost models.
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4.2.2. BR ML Model Training and Validation

Figure 7 shows the profile of the MLP, LSTM, and XGBoost ML models during the
BR model training and validation experiments. Our analysis showed that the BR XGBoost
model provided the best learning and validation performance in comparison with the MLP
and LSTM models.

(a)

(b)

(c)

Figure 7. Breathing rate ML models’ performance curves during learning and validation of (a) MLP
(b) LSTM and (c) XGBoost models.
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4.2.3. SpO2 ML Model Training and Validation

Figure 8 shows the profile of MLP, LSTM, and XGBoost ML models during SpO2
model training and validation experiments. Our analysis shows that the SpO2 XGBoost
model provides the best learning and validation performance in comparison to MLP and
LSTM models.

(a)

(b)

(c)

Figure 8. SpO2 level ML models’ performance curves during the learning and validation of the
(a) MLP, (b) LSTM, and (c) XGBoost models.
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4.3. Testing Results
4.3.1. HR ML Model Testing

Table 4 shows the performance of the tested HR ML models. Our analysis showed
that the XGBoost model provided the lowest testing performance error rate (9.5%) in
comparison with the MLP and LSTM models. XGBoost showed excellent performance in
terms of high correlation (0.73) between the ground-truth signal and the estimated output
signal from the HR XGBoost model than the estimated HR signals obtained from the MLP
and LSTM models.

Table 4. Testing Performance Results of the HR ML Models.

HR ML Model MAE RMSE MAPE % Pearson Correlation

MLP 7.5 9.5 12.0 0.66
LSTM 114.1 17.6 19.6 0.55

XGBoost 7.0 8.8 9.5 0.73

4.3.2. BR ML Model Testing

Table 5 demonstrates the performance of the tested BR ML models. Our analysis
showed that the XGBoost model provided the lowest testing performance error rate (13.4%)
in comparison with the MLP and LSTM models. XGBoost showed a higher correlation (0.59)
between the ground-truth signal and the estimated output signal from the BR XGBoost
model than the estimated BR signals obtained from MLP and LSTM models

Table 5. Testing Performance Results of the BR ML Models.

BR ML Model MAE RMSE MAPE % Pearson Correlation

MLP 2.6 3.2 13.9 0.42
LSTM 3.3 3.8 17.5 0.09

XGBoost 2.5 2.9 13.4 0.59

4.3.3. SpO2 ML Model Testing

Table 6 highlights the performance of the tested SpO2 ML models. Our analysis
showed that the XGBoost model provided the best performance (lower testing performance
error rate (1.1%) and a higher correlation (0.54) between the ground-truth signal and the
estimated output signal from the BR XGBoost model) than the MLP and LSTM models

Table 6. Testing Performance Results of the SpO2 ML Models.

BR ML Model MAE RMSE MAPE % Pearson Correlation

MLP 2.9 3.2 3 0.01
LSTM 1 1.3 1.1 0.06

XGBoost 1 1.4 1.1 0.54

5. Discussion
5.1. System Runtime

The ML-based bio-signal DT model’s output interface is shown in Figure 9. The
real-time window updates the bio-signal readings every 30 frames (i.e., every second if
the camera recording speed is 30 FPS). The system takes 40–60 milliseconds to process all
stages of the bio-signal data extraction module and takes 64–66 milliseconds to measure
all bio-signals in real time. This computational measurement is based on the hardware
specification stated in Appendix A. Figure 9a shows the system’s output interface using a
video camera as a real-time input source, where HR denotes the heart rate, BR denotes the
breathing rate, and SpO2 denotes the blood oxygen level.
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(a)

(b)

Figure 9. Demonstration of the ML-based multi-bio-signal DT model results: (a) real-time demo,
(b) offline demo.

Figure 9b shows the system’s output interface based on an offline video input source.
The remotely measured HR, BR, and SpO2 are published on the screen. The system reads
and updates the ground-truth values for the heart rate and breathing rate (HR GT and BR
GT), respectively, from pre-synchronized data files for easy comparison purposes.

The DT system showed great performance in modelling and measuring the HR, BR,
and SpO2 bio-signals because the testing environment conditions were identical or close
to those of the lab environment during the dataset collections. This is because machine
learning theory only deals with generalizations within the same distribution between the
training and validation/testing datasets, i.e., independent and identically distributed (i.i.d.)
assumptions.

Two measures were considered during the DT system design to manage system
sensitivity to noise: (i) we used the green-channel data in the RGB colour space due to its
robustness to bio-signal extraction (the presence of the highest signal-to-noise ratio (SNR)
on the bio-signal data was in this channel); (ii) we used three regions of interest (ROI) on
the face frame (left and right cheeks and the forehead) because the signals related to the
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absorption bands for oxy- and de-oxy hemoglobin had the strongest SNR corresponding to
blood volume changes in these facial skin regions.

The merits of this initial system are that it (1) demonstrates a simple DT architecture
that uses a shared common (bio-signal data extraction) module that takes a single input
(raw video frames), processes it using a light-weight pre-trained ML model for each bio-
signal and produces multiple outputs (three estimated outputs: heart rate, respiratory
rate, and blood oxygen saturation level); (2) demonstrates promising modelling and fusion
performance; (3) engineers light-weighted ML DT models capable of working in both
real-time and offline modes and enables rapid deployment in the production environment
due to its fast processing time and efficient hardware requirements, which establishes
our pioneering research work as a new milestone for adapting ML-based DT technology
solutions to real-time metaverse digital health applications; and (4) enables potential digital
health data security through computer vision and biometrics with the data fusion of
multiple bio-signals.

Our XGBoost model showed consistently outstanding performance in estimating all
three bio-signals. The advantages of XGBoost over the MLP and LSTM models are that
(1) it has immunity and robustness against anomalies and outliers; this is because it is a
tree-based ensemble learning technique that uses the boosting method to build each tree on
previous tree residuals/errors. Outliers will have much larger residuals than non-outliers,
will not be considered during tree splitting, and will not contribute to the overall model
error value during training; (2) it is built on a simple architecture with a small number of
parameters for optimization; (3) it can be configured, trained, and tested quickly; and (4)
it does not require input data normalization; (5) it generates a small, trained model size,
which is light enough (less than 700 KB) to enable rapid deployment in future production
environments.

The XGBoost model performance was optimized after tuning three hyperparame-
ters (learning rate, no. of estimators (number of trees), and maximum depth (depth of
trees)). In addition, we fixed the random state value to enable reproducible results. We
applied the early stopping technique to prevent the model from overfitting the training
data (e.g., stopping the model training when the validation loss stopped improving after
50 iterations for the HR model). The full design parameters of the best-performing XGBoost
regression models used in our DT system are shown in Table 7.

Table 7. Design parameters of the best-performing XGBoost regression models

Parameter HR Model BR Model SpO2 Model

Learning rate 0.05 0.05 0.01
No. of estimators 350 300 100
Maximum depth 4 5 6

Random state 99 99 99
Early stopping rounds 50 200 5

Evaluation metric MAE MAE MAE

5.2. Limitations and Future Work

The limitations we experienced during this work were as follows: (a) Since most of the
heart rate data we collected were within the 65–85 BPM spectrum, heart rate data beyond
this spectrum are highly desired for further model refinement, particularly for detecting
heart rates at an exercising level; (b) Some datasets, for example, the COHFACE dataset,
came with highly compressed video files and the original recordings were noisy. These
could not contribute to the model training because weak signals representing blood volume
changes were already filtered during the video compression process; (c) The hardware
variations, such as different webcam specifications and real-time light conditions, can all
contribute to reducing accuracy in the performance; and (d) We noticed that the COHFACE
dataset provided raw blood volume pulse (BVP) and breathing recordings and we needed
to convert them into HR and BR data in the frequency domain using BioSPPy (Python
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bio-signal processing library) before we could use them as ground truths. However, this
introduced a slight delay in the video physical data synchronization as every processed
HR/BR data required a set of raw inputs before making calculations.

Although light and vibration/motion are factors that are involved in ML models’
robustness, our research focused on the accuracy of the DT system itself. Studying the
impact of such factors, including quality index analysis, is a potential area of future research.

Therefore, to tackle these challenges, our future work will focus on (i) using generative
models to enrich each bio-signal dataset with more data and features such as age, gender,
and skin colour; (ii) adding a motion-based feature to improve the accuracy of the BR
model; and (iii) developing advanced hybrid ML ensemble model architectures with
transfer learning (e.g., autoencoder with MLP or XGBoost).

6. Conclusions

The contribution of this research paper focused on addressing an important gap in
the literature. This gap involved the need to demonstrate how to develop and implement
DT technology concept for modern human health and well-being applications in the
metaverse at a granular level. To the best of the authors’ knowledge, no previous work has
demonstrated a fully functional human DT prototype that integrates machine learning and
computer vision/rPPG technologies, capable of detecting tiny colour-intensity changes
directly from human facial video frames without making physical contact, and then fusing
three human physiological bio-signals in real time concurrently (heart rate, breathing rate,
and blood oxygen saturation level) using simple ML regression models with minimum
pre-processing/processing time and very efficient memory hardware requirements.

Understanding the concept of the DT and how it is implemented in the human DT
domain is a challenging research area. To address this challenge, we presented the novelty
of our work simply and comprehensively. The engineered solution was experimented with
and validated under both real-time and offline configurations. The system performances
under our testing achieved strong accuracy in the modeling and measuring of HR, BR, and
SpO2 bio-signals. The HR ML model’s testing results showed that the XGBoost model
provided the lowest testing performance error rate (9.5%) in comparison with the MLP and
LSTM models, which meant a 91% accuracy in modeling and measuring the HR bio-signal;
the BR XGBoost model provided the lowest testing performance error rate (13.4%, i.e., 87%
accuracy); and the SpO2 XGBoost model provided the lowest testing performance error
rate (1.1%, i.e., 99% accuracy).

We consider our pioneering research work a new milestone in establishing the founda-
tion and path forward for realizing a holistic human health and well-being DT model for
real-world personalized health applications and virtual telemedicine services.
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Abbreviations
The following abbreviations are used in this manuscript:

HR Heart Rate
BR Breathing Rate
DT Digital Twin
MLP Multilayer Perceptron
EDA Exploratory Data Analysis
LSTM Long Short-Term Memory
RNN Recurrent Neural Networks
XGBoost eXtreme Gradient Boosting
FPS Frames Per Second
DL Deep Learning
ReLU Rectified Linear Unit

Appendix A. DT System Hardware and Software Configuration

Our DT model implementation is compatible with laptop and desktop computer
configurations equipped with regular webcam hardware. A fast CPU and a large RAM size
are preferred for speeding up the camera frame rate. For an ideal bio-signal measurement,
the user should have clean facial skin exposed without makeup or sunscreen, and the light
on the face should be equally bright.

The user needs to breathe normally and maintain a stable sitting-still or standing pose
in front of the camera and within 0.5 to 1.5 m.

We implemented our system and research experimentation using Python (ver. 3.5),
Microsoft Windows 10 (ver. 2004), PyCharm IDE (ver. 2020.1.2), and Anaconda3 (ver. 4.8.3).
The hardware specifications of our system and research experimentation are based on two
configurations: (i) Asus Laptop (Intel Core i5 8440U 1.7Ghz CPU, NVIDIA MX150 GPU,
16GB RAM, 512GB SSD Hard drive), and (ii) Desktop PC (Intel Core i7 8700K 3.7Ghz CPU,
NVIDIA Geforce 1070 GPU, 32GB RAM, 1TB SSD Hard drive).
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