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Abstract: This paper presents an impedance learning-based adaptive control strategy for series
elastic actuator (SEA)-driven compliant robots without the measurement of the robot–environment
interaction force. The adaptive controller is designed based on the command filter-based adaptive
backstepping approach, where a command filter is used to decrease computational complexity and
avoid the requirement of high derivatives of the robot position. In the controller, environmental
impedance profiles and robotic parameter uncertainties are estimated using adaptive learning laws.
Through a Lyapunov-based theoretical analysis, the tracking error and estimation errors are proven
to be semiglobally uniformly ultimately bounded. The control effectiveness is illustrated through
simulations on a compliant robot arm.
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1. Introduction

Safety in robot–environment interaction is of significant value and can be improved
by passive compliant devices. As a popular compliant device, a series elastic actuator
(SEA) is developed by introducing elastic elements between the motor and the load and
can bring some benefits including low output impedance, tolerance to shocks, and energy
efficiency [1–3]. The introduction of SEAs in robots improves interaction compliance to
some extent but (1) it cannot root out the conflict between high robot stiffness and the
requirement of high compliance, and (2) the compliant actuators have bad adaptability
and limited applications since SEAs make robots behave only in a certain impedance. The
compliance of SEA-driven robots should be further improved by the regulation of robot
impedance using active compliance control.

As one of the most popular compliance control approaches, impedance control pro-
posed by Hogan in the 1980s [4] provides interaction compliance through a dynamical
relationship between the position and interaction force. To date, extensive impedance con-
trol strategies for rigid-link robots have been developed based on adaptive learning [5–7],
sliding mode [8], neural networks [9–11], and so on. For impedance control implementation,
one significant problem to be solved is the determination of the desired robot impedance,
which is highly dependent on environmental impedance. Although a variety of meth-
ods, including least-squares techniques and programming by demonstration [12–14], were
developed for impedance learning, the impedance controllers based on these impedance
learning methods were usually designed without stability guarantees. Recently, model-
based impedance learning control strategies [15–17] were developed for robot–environment
interactions and validated in repetitive tasks with stability guarantees. The control ap-
proach can provide variable impedance regulations for robots without the requirement
of interaction force sensing. However, the existing model-based impedance learning
controllers mainly focus on rigid-link robots. The extension of model-based impedance
learning control to SEA-driven compliant robots is not direct since the introduction of an
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SEA significantly increases control design complexity and turns the control system into a
fourth-order underactuated system from a second-order fully actuated system.

Based on the above analysis, designing model-based impedance learning control for
SEA-driven robots can exploit the advantages of passive compliant devices and active
compliance control to improve robot–environment interaction performance, but to date, no
results on this topic have been produced.

In this paper, stability-guaranteed adaptive control using model-based impedance
learning is proposed for SEA-driven robots with fourth-order underactuated systems.
Impedance parameters of interaction forces and model uncertainty parameters are esti-
mated using differential adaptation laws updated by tracking errors. In the control design,
the command filter-based adaptive backstepping approach is used to decrease computa-
tional complexity and avoid the requirement of the high derivatives of the robot position in
the backstepping control of SEA-driven robots. We prove the semiglobal stability of the
closed-loop control system theoretically and illustrate the control effectiveness through
simulations on a SEA-driven robot arm. The proposed control strategy can be applied
to categories of robot–environment interactions including robot-assisted rehabilitation,
exoskeletons, and polishing. Compared to related results, the contribution of this paper
lies in the design of the adaptive impedance learning controller for SEA-driven compliant
robots to obtain variable impedance regulations without interactive force sensing.

2. Robot Dynamics

The considered compliant robot has the following dynamics:

M(q)q̈ + C(q, q̇)q̇ + G(q) = K(θ − q) + τen,

Bθ̈ + K(θ − q) = τ (1)

where q ∈ Rn and θ ∈ Rn denote the positions of the rigid-link robot and the SEA,
respectively; M(q) and B denote the inertial matrices; C(q, q̇) denotes the Coriolis and
centrifugal matrix; G(q) is the gravity torque; K is the stiffness matrix for the SEA; τen
denotes the interaction force between the robot and its environment; and τ is the system
control input.

Property 1. M(q) and B are symmetric and positive definite matrices that satisfy

σ1 I ≤ M(q) ≤ σ2 I (2)

where σ1 and σ2 are positive constants.

Property 2. Ṁ(q)− 2C(q, q̇) is a skew symmetric, i.e.,

ξT(Ṁ(q)− 2C(q, q̇))ξ = 0, ∀ξ ∈ Rn. (3)

Property 3. The robot dynamics have the following parameterized form

M(q)φ1 + C(q, q̇)φ2 + G(q) = Y(φ1, φ2, q, q̇)W (4)

where W is a constant vector and contains unknown parameters.

Remark 1. The model in (1) derived by Spong [18] takes a balance between the complexity and
physical validity by neglecting the inertial coupling between the link-side dynamics and the motor.
The viability of the model in (1) has been demonstrated for compliant robots with SEAs [19].
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Denote qd as the desired trajectory of the robot in the interaction. Define the tracking
error e as

e1 = qd − q. (5)

As proven and presented in [17], the robot–environment interaction force can be ex-
panded as

τen =Kse1 + Kd ė1 (6)

where Ks = diag{Ksi}, and Kd = diag{Kdi} denote the stiffness and damping terms in the interac-
tion, respectively. Denote Qe = [−diag{e},−diag{ė}] and V = [Ks1, · · · , Ksn, Kd1, · · · , Kdn]

T .
Then, the force τen can be expressed as

−τen =QeV. (7)

The objective of this paper is to design model-based adaptive impedance learning
control using differential adaptation to estimate the impedance profiles in Qe so that the
tracking error e1 and impedance estimation errors are uniformly ultimately bounded (UUB)
without the measurement of the interactive force τen.

3. Impedance Learning-Based Interaction Control

This section presents an impedance learning-based adaptive interaction control strat-
egy for the considered compliant robot using the CFAB approach. The control design
procedure is stated as follows:

Step 1: Define the error e2 as

e2 = ė1 + k1e1 (8)

where k1 is a positive parameter. Based on (1), the dynamics of e2 can be stated as

M(q)ė2 =− C(q, q̇)e2 + M(q)(q̈d + k1 ė1) + C(q, q̇)(q̇ + e2)

+ G(q)− K(θ − q)− τen

=− C(q, q̇)e2 + YeW + QeV − K(θ − q)− τ (9)

where Ye , Y(q̈d + k1 ė1, q̇ + e2, q, q̇).
Design the virtual control α1 as

α1 = K−1(Kq + k2e2 + YeŴ + QeV̂) (10)

where k2 is a positive control gain and Ŵ and V̂ are the estimators of W and V, respectively.
The estimators are updated by

˙̂W = γ1YT
e e2,

˙̂V = γ2QT
e e2 (11)

where γ1 and γ2 are the positive learning rates.
Pass α1 through the following command filter[

δ̇1
δ̇2

]
=

[
0 I
−ω2 I −2ξωI

][
δ1
δ2

]
+

[
0

ω2α1

]
(12)

where ω and ξ ∈ R are the frequency and the damping ratio, respectively.
Define αc

1 = δ1, α̇c
1 = δ2, and

α̃1 = αc
1 − α1. (13)
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Substituting (10) and (13) into (9) yields

M(q)ė2 =− C(q, q̇)e2 − k2e2 + Kα̃1 + YeW̃ + QeṼ (14)

where W̃ = W − Ŵ and Ṽ = V − V̂.
Step 2: For the SEA, define the errors e3 and e4 as

e3 = αc
1 − θ,

e4 = ė3 + k3e3. (15)

From (1), the dynamics of e4 can be presented as

Bė4 = K(θ − q)− τ + B(δ̇2 + k3 ė3). (16)

Design the control input τ as

τ = K(θ − q) + k4e4 − B(δ̇2 + k3 ė3) (17)

where k4 > 0. Then,

Bė4 = −k4e4. (18)

Remark 2. The use of the command filter in (12) can decrease computational complexity and can
avoid the requirement of the high derivatives of positions in conventional backstepping control of
SEA-driven robots.

Lemma 1 ([20]). Consider the command filter in (12) on t ∈ [0, T), with T being a finite value.
Given a small ε ∈ R+, there exists a sufficiently large ω such that ||α̃1|| ≤ ε on t ∈ [0, T).

Theorem 1. Design the impedance learning-based adaptive interaction controller in (17) with the
learning law in (11) for the considered compliant robot dynamics in (1). The tracking error e1 and
the estimation errors Ṽ and θ̃ are semiglobally uniformly ultimately bounded (SUUB).

Proof. Consider the following Lyapunov function candidate

L =
1
2

eT
2 M(q)e2 +

1
2

eT
4 Be4 +

1
2γ1

W̃TW̃ +
1

2γ2
ṼTṼ. (19)

Taking the time derivative of L and substituting (14) and (16), one can obtain

L̇ = −k2eT
2 e2 −

1
2

eT
2 (Ṁ(q)− 2C(q, q̇))e2 + eT

2 Kα̃1

+ eT
2 YeW̃ + eT

2 QeṼ − k4eT
4 e4 − W̃Tγ1

˙̂W − ṼTγ2
˙̂V (20)

From Property 2 and the update laws in (11),

L̇ = −k2eT
2 e2 − k4eT

4 e4 + eT
2 Kα̃1. (21)

According to Lemma 1, if the parameter ω chosen is sufficiently large, ||α̃1|| ≤ ε on
[0, T). Using Young’s inequality,

eT
2 Kα̃1 ≤

k2

2
eT

2 e2 +
1

2k2
α̃T

1 KTKα̃1

≤ k2

2
eT

2 e2 +
ε2kd
2k2

(22)

where kd = λmax(KTK).
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Based on (21) and (22), one can obtain

L̇ ≤ − k2

2
eT

2 e2 − k4eT
4 e4 +

ε2kd
2k2

, ∀t ∈ [0, T) (23)

which implies

L(t) ≤ L(0) +
ε2kd
2k2

, ∀t ∈ [0, T). (24)

Based on Lemma 1 and (24), we can conclude that ||α̃1|| ≤ ε can be satisfied for
t ∈ [0, ∞) if the parameter ω chosen is sufficiently large. Given the initial values for
the closed-loop control system, the inequality in (23) is satisfied for t ∈ [0, ∞) if the
control parameters are properly chosen. Therefore, the proposed impedance learning-
based adaptive controller makes the closed-loop control system SUUB.

4. Simulation Results

Simulations are implemented on the compliant robot arm in (1) with

Ye = [q̈d + k1 ė1, sin(q), q̇], Qe = [−e1,−ė1], (25)

W = [1,−4.9, 1]T , V = [−10,−3], K = 20. (26)

For the considered robot, the initial value is chosen as q(0) = q̇ = θ(0) = θ̇ = 0, and
the control parameters for the proposed impedance learning-based robot adaptive control
in (17) are chosen as k1 = 2, k2 = 5, k3 = 3, k4 = 6, ω = 15, ξ = 0.8, and γ1 = 12, γ2 = 10.

In the simulation, a regulation problem and a tracking problem are considered as two
cases, where qd = 0.7 rad for Case 1 and qd = 0.2+ 0.3 cos(πt/6) for Case 2. The simulation
results in Case 1 and Case 2 are presented in Figures 1–3 and Figures 4–6, respectively.

In Case 1, by using the proposed controller shown in Figure 3, the regulation error e1
in Figure 1 is very close to zero after 10 s. In Figure 2, it can be seen that although W̃ and Ṽ
are not close to zero owing to not enough excitation and the coupling between the robotic
parameters’ uncertainties and the impedance’s uncertainties, the robotic parameters’ esti-
mation error W̃ and the impedance profiles’ estimation error Ṽ are significantly decreased
after 5 s and the force estimation errors YeW̃ and QeṼ are very close to zero after 10 s.

Figure 1. The performance of the tracking error e1 in Case 1.

In Case 2, the proposed impedance learning controller shown in Figure 6 renders
the tracking error e1 in Figure 4 ultimately close to zero. In Figure 5, it can be seen that
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the robotic parameter estimation error W̃ and the impedance profile estimation error Ṽ are
highly decreased, QeṼ is close to zero, and YeW̃ is bounded but not close to zero. The reason
is that QeṼ plays a more important role in e1 than YeW̃ and Ṽ receives more excitation.

The above simulation results illustrate the effectiveness of the proposed impedance
learning-based controller in (17) and the adaptive impedance learning in (11). The pro-
posed controller can ensure that robot impedance is more close to human impedance than
impedance control with constant impedance profiles.

Figure 2. Cont.
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Figure 2. The estimation errors W̃, YeW̃, Ṽ, and QeṼ in Case 1.

Figure 3. The control input of (17) in Case 1.

Figure 4. The performance of the tracking error e1 in Case 2.
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Figure 5. The estimation errors W̃, YeW̃, Ṽ, and QeṼ in Case 2.
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Figure 6. The control input of (17) in Case 2.

5. Conclusions

The variable impedance control of robots can improve human–robot interaction per-
formance through the regulation of the impedance of robots to adjust the motions of
human limbs. However, impedance variation affects the control stability of robots. Based
on impedance learning, this paper has designed an adaptive controller of SEA-driven
robots for human–robot interaction using the command filter-based adaptive backstepping
approach. Adaptive estimators have been designed to approximate the robot modeling
uncertainty and impedance parameters of interaction force. We have validated the practical
control stability through theoretical analysis and showed the control effectiveness through
simulations. The designed impedance learning control provides variable robot impedance
regulation without interactive force sensing. By exploiting the advantages of impedance
learning control and compliance actuators, this paper improves the safety and compliance
of robot–environment interactions. In this paper, we only guarantee that the control system
is SUUB. Guaranteeing that the impedance learning-based control is asymptotically stable
and improving impedance estimation performance are our future research directions.
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