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Abstract: Rope jumping, as a fitness exercise recommended by many sports medicine practitioners,
can improve cardiorespiratory capacity and physical coordination. Existing rope jump monitoring
systems have limitations in terms of convenience, comfort, and exercise intensity evaluation. This
paper presents a rope jump monitoring system using passive acoustic sensing. Our system exploits
the off-the-shelf smartphone and headphones to capture the user’s rope-jumping sound and breathing
sound after exercise. Given the captured acoustic data, the system uses a short-time energy-based
approach and the high correlation between rope jumping cycles to detect the rope-jumping sound
frames, then applies a dual-threshold endpoint detection algorithm to calculate the number of rope
jumps. Finally, our system performs regression predictions of exercise intensity based on features
extracted from the jumping speed and the mel spectrograms of the user’s breathing sound. The
significant advantage of the system lies in the solution of the problem of poorly characterized mel
spectrograms. We employ an attentive mechanism-based GAN to generate optimized breathing
sound mel spectrograms and apply domain adversarial adaptive in the network to improve the
migration capability of the system. Through extensive experiments, our system achieves (on average)
0.32 and 2.3% error rates for the rope jumping count and exercise intensity evaluation, respectively.

Keywords: acoustic sensing; domain adversarial adaptation; generative adversarial network; passive
rope jump monitoring; short-term energy

1. Introduction

Nowadays, with the increasing pressures of life and work, maintaining physical
health and improving physical fitness have become hot topics of widespread concern.
Some medical experts say that rope jumping can improve cardiorespiratory functions [1],
enhance physical fitness, and soothe emotions [2]. Studies have confirmed that rope
jumping could prevent diseases, such as diabetes, arthritis, osteoporosis, hypertension,
depression, and many others. This is the reason why doctors recommend rope jumping
as a form of daily exercise. However, most rope jumpers do not know their own exercise
intensities and lack the reference of the training load in the actual exercise [3,4], so they
cannot scientifically monitor and evaluate their own rope-jumping exercises. Improper
exercise intensity may damage one’s health and even result in unnecessary injuries or death
in some specific cases [5]. In addition, over-training can lead to excessive fatigue and loss
of motivation for exercise. Thus, the awareness of exercise intensity is of great importance
to achieve optimal training outcomes. To facilitate exercise health monitoring, researchers
have come up with various solutions. Fitness monitoring based on acoustic signals is
preferred over vision-based solutions [6–8] with lighting requirements and privacy as risks.
Wearable device-based fitness monitoring systems [9–13] allow for accurate classification
and counting of fitness movements. However, these systems require the user to wear
additional equipment when exercising, which places additional physical burdens on the
user, and these systems do not monitor the intensity of the user’s exercise. Therefore,
researchers are beginning to investigate device-free fitness monitoring systems.
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Smart speaker-based acoustic sensing technology [14] turns smart speakers into active
sonars for fitness monitoring, but it can only monitor in an indoor environment with a
smart speaker and the users cannot change their positions while using it. The Wi-Fi-based
approaches [15,16] cannot be performed outdoors where there is no Wi-Fi signal or a
weak Wi-Fi signal, and the Wi-Fi signal is susceptible to interference from the surrounding
environment. Furthermore, all of the systems/products mentioned above mainly focus
on recognizing the type of exercise being performed or counting the number of exercise
repetitions and do not have the capability to perform exercise intensity monitoring.

Unlike the aforementioned work, we aim to perform jump rope counting and ex-
ercise intensity monitoring by leveraging the user’s rope-jumping sound and breathing
sound captured by the headphone, which is readily available with almost all smartphones.
Our proposed system does not require special rope-jumping equipment or rope jumping
environment and it has strong anti-interference capabilities.

In order to achieve this aim, we propose a system that uses headphones to capture
acoustic signals for jump rope counting and exercise intensity monitoring. Our system
adopts headphones to capture the sound of the user’s foot hitting the ground when rope
jumping (the rope-jumping sound), as shown in Figure 1a, and then relies on the rope-
jumping sound to count jump ropes, and captures the user’s breathing sound after rope
jumping to evaluate the user’s exercise intensity, as shown in Figure 1b. Smartphone
headphones are used extensively during exercises [17]. Although existing rope jump
monitoring systems can rely on the Apple Watch, according to the market researcher
Counterpoint Research, only about 1.42% of the world’s population is equipped with
an Apple Watch, while close to 80% of people use headphones in their daily lives. It
is, thus, possible for us to explore utilizing the smartphone’s headphones to monitor
rope jumping. The key idea of this system is to use the high correlation between rope
jumping cycles to count the rope jumping and to evaluate the intensity of the rope jumping
exercise based on the difference in the user’s breathing after the exercise. However, there are
multiple challenges to implementing the system. First, due to the fact that the rope-jumping
sound is intermittent, the collected acoustic signal usually contains many other sounds
or silent fragments. The system should be able to accurately identify the sound segment
corresponding to the rope-jumping sound. Second, the presence of ambient noise causes
part of the breathing sound to be captured unclearly, resulting in a poorly characterized mel
spectrum generated from the breathing sound. Third, because of the diversity of users and
usage scenarios, the system needs to have some migration capability to adapt to different
users and environments.

(a) (b)

Figure 1. Application scenarios. (a) Capturing the rope jumping sound for rope jumping counting.
(b) Capturing the breathing sound for evaluating exercise intensity.
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To address the above challenges, we first pre-process the captured signal to remove
most of the ambient noise. We then apply a short-time energy-based method to detect the
rope-jumping sounds and leverage the high correlation between rope jumping cycles to
further improve the accuracy of the rope-jumping sound detection. We implement jump
rope counting based on a dual-threshold endpoint detection algorithm and calculate the
rope jumping speed. In the evaluation phase of exercise intensity, we design an attentive
mechanism-based GAN to generate optimized breathing mel spectrograms and then take
the optimized breathing mel spectrograms and rope jumping speed as inputs to extract
features for regression prediction of exercise intensity. To enable the system to adapt to
different users and environments, domain-adaptive adaptation is incorporated into the
network, which allows the system to extract a rich set of domain-independent features.
Our contributions are summarized as follows:

• We propose a rope jump monitoring system; this is the first work that successfully
introduces attentive mechanism-based GAN to acoustic sensing. Such an optimization
strategy improves the utilization of the collected data so that some audio data that are
not recorded clearly can also be fully utilized and effectively improve the prediction
accuracy of the system. It also avoids the over-reliance on rope-jumping equipment
and environments (as conducted in previous works), and adds exercise intensity eval-
uation to the basic counting function; hence, it significantly broadens the scope of
real-world applications.

• We designed a robust method for the detection of the rope-jumping sound by exploiting
the properties of the high short-time energy of the rope-jumping sound and the high
correlation between the rope jumping cycles.

• We designed a neural network that incorporates an attentive mechanism-based GAN
and domain-adaptive adaptation to improve the prediction accuracy of the rope jumping
exercise intensity and migration capability of the system.

• We conducted extensive experiments with eight volunteers in different environments
to evaluate our system. The results show that the system can perform rope jump
monitoring with, on average, 0.32 and 2.3% error rates for rope jumping count and
exercise intensity evaluation, respectively.

2. Related Work

Based on recent works, we summarize related work in the following four aspects.

2.1. Research in Fitness Movement Monitoring

Many researchers monitor fitness movements by leveraging various devices. FEMO [11]
applies the Doppler shift to monitor exercise by attaching passive RFID tags on the dumb-
bells. RecoFit [12] can automatically track repetitive exercises via an arm-worn inertial
sensor. MiLift [13] uses commercial off-the-shelf smartwatches to accurately track both
cardio and weightlifting workouts. However, these methods require the user to wear
additional equipment, which places an additional burden on the user and only allows for
the classification and counting of fitness movements, not for fine-grained assessment of
exercise intensity.

2.2. Research in Exercise Intensity Monitoring

There are some works dedicated to exercise intensity monitoring. Wu et al. [8] propose
to monitor sports training intensity based on a camera-based heart rate detection algorithm
and a fatigue expression feature extractor. However, such camera-based methods require
high lighting conditions and have privacy issues. Pernek et al. [18] leverage the smart-
phone’s acceleration stream to detect individual resistance training repetitions and provide
feedback about the quality of exercises based on the duration of an individual repetition.
However, using this method requires the user to wear the phone on their arm or attach it to
gym equipment, which places an additional burden on the user and allows the system to
be used only in fixed situations. Calorie Map [16] utilizes wireless signals to infer calories
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burned while exercising and monitors activity intensity. However, this method requires
the user to work out within the Wi-Fi signal coverage and the Wi-Fi signal can easily be
interfered with.

2.3. Research in Adversarial Learning

Our system utilizes attentive mechanism-based GAN for spectrogram optimization.
Recently, various GAN models have been used for compositing and translating images.
When applying GANs to image restoration and enhancement, most existing works use
paired training data as well, SRGAN [19] leverage GAN for image super-resolution (SR)
and propose a perceptual loss function, which consists of an adversarial loss and a content
loss to recover photo-realistic textures. Shuai Yang et al. [20] present shape-matching GAN
to transfer text styles, with a scale-controllable module designed to allow for adjusting the
stylistic degree of the glyph with a continuous parameter as user input and generating
diversified artistic text in real-time. However, all of these approaches require paired training
data, and it is impractical to simultaneously capture pairs of image data of the same visual
scene. Several unsupervised GANs are proposed to learn inter-domain mappings using
adversarial learning and are adopted for many other tasks. Jun-Yan Zhu et al. [21] adopted
a two-way GAN to translate between two different domains by using a cycle-consistent
loss with unpaired data. A handful of the latest works followed their methodology and
applied unpaired training with cycle consistency to several low-level vision tasks, e.g.,
mobile photo enhancement. Our system is different as it adopts a lightweight one-path
GAN structure, which is stable and easy to train.

2.4. Research in Rope Jump Monitoring

Our system is a smartphone-based rope jump monitoring system. There have been
active studies on rope jump monitoring. Smart Rope [22] designed a smart jump rope that
has a sensor inside the handle to count the jump ropes. However, this method requires the
user to use a fixed jumping tool and can only record the number of jumps without assessing
the intensity of the exercise. YaoYao [23] uses the motion sensor in the Apple Watch to
count jump ropes, measure the speed of the jump, and give the user a heart rate record.
However, this method can only be used with the Apple Watch and the system only gives
a record of the user’s heart rate; there is often a time delay of several tens of seconds [24]
between the change in heart rate and the actual intensity of the exercise, making it difficult
for the users to assess their exercise intensities based on their heart rate. TianTian [25] is a
vision-based method that requires the user to use a camera to record the entire movement
for jump rope counting. However, this method is heavily influenced by lighting and does
not have the ability to monitor exercise intensity.

Unlike the above works, we aim to perform rope jumping intensity monitoring by
leveraging the user’s rope-jumping sound captured by the headphone, which almost all
smartphones are equipped with. Our system is not limited by environmental conditions
and is also easy to use without the need to wear any additional sensors.

3. System Overview

The basic idea of our system is to use headphones to collect the rope-jumping sound
and breathing sounds for the rope jumping intensity assessment.

Figure 2 shows the architecture of our system. The system consists of six parts, which
are data pre-processing, rope-jumping sound detection, rope jumping count, breathing
profile construction, spectrogram optimization, and effect evaluation. We use wireless
headsets to collect the sound while rope jumping and then pre-process the sampled acoustic
signal. Specifically, we adopt a band-pass filter on the sampled signal and frame the signal.
Once the high-frequency noise is removed, the system performs rope-jumping sound
detection. We divide the signal into three segments. For each segment of the signal, the
short-time energy of each signal frame is calculated to detect the rope-jumping sound and
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we further improve the rope jumping detection accuracy by exploiting the high correlation
between rope jumping cycles.

Figure 2. System architecture.

Regarding the rope jumping count, we applied the dual-threshold endpoint detection
algorithm to calculate the number of rope jumping counts and further calculate the average
rope jumping speed. We collect the user’s breathing sound after rope jumping, then
generate mel spectrograms in the breathing profile construction and optimize the breathing
sound mel spectrograms in spectrogram optimization with an attentive mechanism-based
GAN. Finally, users usually care about exercise effects, to ensure that physical fitness is
improved. So the effect evaluation aims to assess the rope jumping strength. In detail, the
optimized mel spectrogram and the calculated average rope jumping speed are sent to the
network to extract features and regress the exercise intensity, which includes an adaptive
domain discriminator to adapt to different users and environments.

3.1. Data Pre-Processing

Data pre-processing aims to clean the recorded rope-jumping sound by removing
the noise components. In our work, we used headphones to capture the acoustic signal
and extract the rope-jumping sound to detect the user’s rope-jumping movement. When
rope jumping outdoors or at the gym, the rope-jumping sound is easily interfered with by
environmental noise (e.g., the sound of talking, walking, etc.). In addition, the equipment
used to collect the rope-jumping sound also produces a subtle equipment noise [26]. We
adopted a band-pass filter to remove the sound components with high or low frequencies
that are irrelevant to the rope jumping events. Specifically, the recorded sound signal was
segmented into multiple frames with equivalent lengths L = 800. Then we applied the
band-pass filter with lower and upper cutoff frequencies (at 500 Hz and 8000 Hz) to each
frame for noise reduction. The lower cutoff frequency of 500 Hz could filter the thermal
noise at a lower frequency band, while the upper cutoff frequency of 8000 Hz ensures that
most rope jumping-related sound components are included.

3.2. Rope-Jumping Sound Detection

After data pre-processing, our system aims to detect and separate the rope-jumping
sound from the acoustic signal for accurate jump rope counting. We find that when the user
skips with headphones on, the energy of the frames containing the rope-jumping sound is
higher than that of the other frames, so we calculate the short-time energy of each frame
and detect the rope-jumping sound rope based on the short-time energy.
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The short-time energy is often used as a basis for distinguishing between voiced
and unvoiced speech segments. Assuming that the signal is sampled into N samples,
which is X(n), 1 6 n 6 N, and then divided into f n frames, the signal of the i-th frame is
represented as:

yi(l) = X((i− 1)inc + l), 1 6 l 6 L, 1 6 i 6 f n, (1)

where L is the frame length and inc is the frame shift. We define the energy of the i-th
frame as:

E(i) =
1
L

L

∑
l=1

y2
i (l), 1 6 i 6 f n. (2)

Figure 3 shows the time domain diagram of the rope-jumping sound and the corre-
sponding short-time energy.

Figure 3. An example of the rope−jumping sound detection.

In order to extract the desired sound, we set a dynamic threshold based on the short-
time energy [27,28]. Specifically, the histogram of the short-time energy sequence is first
calculated, and then the histogram is smoothed. Finally, we detect the local maxima of the
histogram. Let H1 and H2 be the locations of the first and second largest local maxima,
respectively. The threshold h can be calculated as follows:

h =
ωH1 + H2

ω + 1
, (3)

ω is the weight parameter, the larger the ω is, the closer the threshold will be to H1. In this
system, through the experimental analysis, we chose ω = 6 to make the best results. Then
we made the parts of the signal energy below the threshold zero and obtain the processed
signal as X(n)′. Figure 3 shows the result of the threshold calculation; the black line in the
figure is the threshold.

The parts of the signal energy below the threshold are represented in the orange color
in Figure 3, we can see that the rope-jumping sound could be correctly identified.
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The detected segments are not directly representative of the rope-jumping sound as
there is also noise, as shown in Figure 4. To accurately count the number of rope jumps, it is
necessary to separate the reliable rope-jumping sounds. Figure 3 shows the signal collected
by the headset. We can observe that rope-jumping movements can be considered cyclical
over a short period of time. Based on this observation, we exploited the high correlation
between the sound of each skip to detect the rope-jumping sound.

Figure 4. An example of splitting signals.

Specifically, considering that the user’s rope jumping speed may change slightly, we
first split the collected signal into three segments, the points of division are A1 and A2,
respectively. To protect the desired sound from being split, if X(A1)

′ 6= 0, then it is traversed
from A1 until the a1 is obtained and X(a1)

′ = 0, a1 is used as the new segmentation point
for the signal; the same goes for A2. An example of splitting signals is shown in Figure 4. It
can be seen that A1 splits from the rope-jumping sound signal, which does not meet our
expectations, and a1 is the new split point.

We used the high correlation between two rope-jumping sounds to obtain the jumping
period and then generated a square wave sequence based on the period as a simulated
rope jumping sequence. We calculated the correlation between the simulated rope jumping
sequence and the real rope jumping sequence for different parameters; the simulated jump
rope sequence with the highest correlation is more representative of the user’s jump rope
rhythm [29].

Specifically, we used the time t corresponding to the first non-zero frame in each signal
segment as the start time of the square wave sequence. Let Tmin and Tmax be the minimum
and maximum values of the number of frames occupied by the user in the rope jumping
cycle, respectively. According to the experiment, Tmin = 6 frames and Tmax = 25 frames. We
define a function f (j) on the period of the rope jumping to measure the correlation between
two rope-jumping sounds at the period T = j:

f (j) =
N−LTmax

∑
i=1

(X(i)− X(i + j))2, LTmin 6 j 6 LTmax. (4)

A smaller value of f (j) indicates a higher correlation. We then find the value of j that
minimizes the value of f (j) as the user’s rope jumping period T:

T = arg min
j

f (j), LTmin 6 j 6 LTmax. (5)
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We generated the corresponding square wave sequence S = Sn, n = 1, ..., N based on
the detected rope-jumping sound X(n)′:

Sn =

{
0.3 X(n)′ 6= 0

0 X(n)′ = 0
, n=1,...,N, (6)

and generated a simulated rope jumping sequence S′n = S′n(tc) based on the derived t
and T; tc is the number of frames in a period of the square wave that is greater than zero.
Figure 5a shows the result of generating a sequence using the middle segment of the signal
as an example, the blue line is the signal-based-generated sequence and the orange line is
the simulated rope jumping sequence.

(a) (b)

Figure 5. An example of generating the simulated rope jumping sequence. (a) Comparison of two
generated sequences. (b) rope−jumping sound detection.

The correlation between the two square wave sequences Sn and S′n can be calculated as:

C = Corr{Sn, S′n(tc)}

=
∑N

n=1(Sn − Sn)(S′n(tc)− S′n(tc))√
∑N

n=1(Sn − Sn)2
√

∑N
n=1(S′n(tc)− S′n(tc))2

. (7)

We can calculate the value of tc that maximizes the value of C:

Tc = arg max
tc

C, 0 6 tc 6 T. (8)

Finally, based on the calculated t, T, Tc, we generate a square wave sequence S′n that
best represents the rhythm of the user’s rope jumping. Figure 5b shows the final generated
simulated rope jumping sequence. We can see that the simulated rope jumping sequence
basically corresponds to the rope-jumping sound.

We apply the above method to each segment of the signal, generating separately
the square wave sequence corresponding to that segment, and finally stitching the three
generated square wave sequences together.

The signal is then processed according to the spliced square wave sequence:

X(n)′′ =

{
X(n)′ S′n = 0.3

0 S′n = 0
, n = 1,...,N, (9)

If S′n = 0.3, the corresponding original signal is considered to contain the rope-jumping
sound, otherwise, the corresponding original signal is considered to be noise. X(n)′′ is the
separated rope-jumping sound.
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3.3. Rope Jumping Count

In order to accurately count the number of rope jumps and calculate rope jumping
speed, we segmented each rope-jumping sound. In other words, we needed to detect the
start and end of each rope-jumping sound. We used a dual-threshold endpoint detection
algorithm to segment each rope-jumping sound [30].

The algorithm uses a combination of short-time energy and short-time past zero rates,
using both short-time energy and short-time past zero rate thresholds to determine the
start and end points of the rope-jumping sound. Before starting the endpoint detection,
we first set a smaller start threshold and a larger start threshold for the short-time energy
and the short-time past zero rate, respectively. If the energy or over-zero rate of a frame
X(i) exceeds the low threshold, it is marked as the starting point, and if the energy or
over-zero rate of the signal in the next three frames exceeds the high threshold, then X(i) is
determined as the starting point of the signal.

We then search for the corresponding end point of the signal in the same way. Then
we continue to search for the start and end points of the next segment of the rope-jumping
sound until the end of the signal. Figure 6 shows the result of the separation; we can see
that all start and end points are correctly identified. The number of signal segments is
the number of rope jumps Njump. At the end of rope jumping, the user’s jump speed V is
calculated as follows:

V =
Njump

Tjump
, (10)

where Tjump is the time for rope jumping. If the user suddenly stops for more than two
jumping cycles, it is assumed that the user has made a mistake or taken a break, at which
point, the recording stops.

Figure 6. Separation result.

3.4. Breathing Profile Construction

To monitor the rope jumping intensity, we used headphones to capture the user’s
breathing sound within 30 s of the end of the exercise. Research has proven that breathing
is an effective indicator of a person’s level of fatigue during exercise and is closely related
to the intensity of the user’s exercise [31,32]. Figure 7 shows the spectrum of the user’s
breath at different exercise intensities. We can observe that the breathing sound lies mostly
in the low-frequency range and the breathing sound at a higher exercise intensity has
higher energy than that at lower exercise intensity. We then applied a band-pass filter with
upper and lower cutoff frequencies of 100 Hz and 3500 Hz, respectively, for noise reduction,
ensuring that most of the noise was removed while retaining most of the breath-related
sound. Research has shown that humans do not perceive frequencies linearly and are more
sensitive to low-frequency signals than high-frequency signals. For example, we can detect
the difference between 500 Hz and 1000 Hz easily, but it is difficult for us to detect the
difference between 7500 Hz and 8000 Hz. Thus, we use the mel spectrogram to capture
this characteristic. The mel spectrogram is a commonly used audio processing method and
is now widely used in speech recognition, audio denoising, and other fields. Specifically,
we first obtained the time-frequency spectrogram of the breathing sound signal using the
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short-time Fourier transform (STFT). STFT is essentially a windowed Fourier transform,
which is defined as follows:

STFTz =
∫ +∞

−∞
z(u)g(u− t)e−j2π f udu, (11)

where z is the breathing sound signal, f is the frequency, g(u-t) is the window function, and
u is the half window size of time t.

(a) (b)

Figure 7. Comparison of breathing sound spectrograms at different exercise intensities. (a) Low
exercise intensity. (b) High exercise intensity.

Because of the relatively large size of the spectrogram generated by the short-time
Fourier transform, in order to obtain the sound feature of the proper size, it is generally
transformed into a mel spectrogram by passing through a mel scale filter bank. To convert
the ordinary frequency scale into the mel frequency scale m, we use the following equation:

m = 2595 ∗ log10(1 +
f

700
). (12)

After the transformation, we obtain the breathing sound mel spectrogram.

3.5. Spectrogram Optimization

The existence of noise in the environment and the presence of an inhomogeneous
breathing sound result in the directly generated breathing mel spectrograms not being
distinctly characterized. To further improve the prediction accuracy, we optimized the
generated mel spectrograms using an attentive mechanism-based GAN. As shown in
Figure 8, the GAN consists of two main parts: a generator G and a discriminator D. The
generator consists of an attention-guided U-Net, and the discriminator part adopts a
combination of global and local discriminators for improving the problem of obscure global
and clear local features in the breathing mel spectrogram.

Figure 8. Network architecture.
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3.5.1. U-Net Generator

U-Net is a U-shape network that connects the encoding layer to the decoding layer and
helps information to flow correctly from the encoder to the decoder. U-Net has achieved
huge success in image restoration and enhancement [33]. We, thus, adopt U-Net as our
generator backbone. We further introduce the attention mechanism and add attention
modules to each layer of the encoder and decoder connection. In order to highlight the
features of the breathing mel spectrogram, we take the red channel Red of the input mel
spectrogram, normalize it to [0,1], and then use R as our attention map. We then resize the
attention map to fit each feature map and multiply it with all intermediate feature maps.

3.5.2. Global-Local Discriminators

Directly generated breathing sound mel spectrograms often suffer from poorly charac-
terized local areas, and the use of only one global discriminator is not capable of adaptively
optimizing local areas. Therefore, we used a combination of global and local discriminators,
both using PatchGAN for real/fake discrimination. PatchGAN can retain the detailed
information of the spectrogram well, and it consists of convolutional layers with a final
output matrix, for which the final true or false output is obtained by taking the mean
value. For the global discriminator, we utilize the relativistic discriminator structure, which
estimates the probability that real data are more realistic than fake data and also directs the
generator to synthesize a fake spectrogram that is more realistic than real spectrograms.
The function of a relativistic discriminator is:

DRa(xreal , x f ake) = σ(C(xreal)− Ex f ake∼Pf ake [C(x f ake)]), (13)

DRa(x f ake, xreal) = σ(C(x f ake)− Exreal∼Preal [C(xreal)]), (14)

where C denotes the network of the discriminator, xreal and x f ake are sampled from the real
and fake distributions, and σ represents the sigmoid function. We used the least-square
GAN (LSGAN) [34] loss to replace the sigmoid function in the relativistic discriminator.
Therefore, the loss functions for the global discriminator D and the generator G are:

LGlobal
D =Exreal∼Preal [(DRa(xreal , x f ake)− 1)2]+

Ex f ake∼Pf ake [(DRa(x f ake, xreal))
2],

(15)

LGlobal
G =Ex f ake∼Pf ake [(DRa(x f ake, xreal)− 1)2]+

Exreal∼Preal [(DRa(xreal , x f ake))
2].

(16)

The local discriminator learns to distinguish whether they are real (from real spec-
trograms) or fake (from optimized outputs) by taking randomly cropped local patches
from both the output and real spectrograms and adopting the original LSGAN as the
adversarial loss:

LLobal
D =Exreal∼Prealpatches [(D(xreal)− 1)2]+

Ex f ake∼Pf akepatches [(D(x f ake)− 0)2],
(17)

LLobal
G = Exreal∼Pf akepatches [(D(x f ake)− 1)2]. (18)

Most of the GAN-based image enhancement networks require paired data, i.e., unclear
breathing sound-transformed mel spectrograms and clear breathing sound-transformed
mel spectrograms for the same exercise intensities, but the realistic spectrograms obtained
often do not have the corresponding spectrogram data. In order to more effectively opti-
mize the breathing sound mel spectrogram, the training and testing of the spectrogram
optimization model (by taking unpaired spectrograms) require limiting the feature distance
between the input spectrogram and the optimized output spectrogram. In order to more
effectively optimize the breathing sound mel spectrogram, taking unpaired spectrograms
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for training and testing of the spectrogram optimization model, it is necessary to limit the
feature distance between the input spectrogram and the optimized output spectrogram to
preserve the spectrogram content features to itself, before and after the optimization. Thus,
the loss can be defined as:

LSFP(I) =
1

Wi,jHi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(Fi,j(I)− Fi,j(G(I)))2, (19)

where I denotes the input and G(I) denotes the output. Wi,j and Hi,j are the dimensions
of the extracted feature maps. Fi,j denotes the feature map extracted from the pre-trained
VGG model. i represents its i-th max pooling, and j represents its j-th convolutional layer
after the i-th max pooling layer.

Furthermore, a similar feature-preserving loss is used in the local patch of the local
discriminator. We added an instance normalization layer [35] after each feature map before
feeding into LSFP and LLocal

SFP in order to stabilize training. Thus, the training loss of the
GAN module can be expressed as:

LGAN = LLocal
SFP + LGlobal

SFP + LLocal
G + LGlobal

G . (20)

3.6. Effect Evaluation

The effect evaluation aims to provide the user with a reliable estimate of the exercise
intensity. We express the estimate of exercise intensity as a regression: given the breathing
sound, mel spectrogram m and corresponding rope jumping speed v, m ∈ M, v ∈ V, we
aim to learn a function G: M + V → R, where M and R denote the mel spectrogram and
exercise intensity spaces, respectively. Since m is determined by Q(z, r, s), z is the breathing
sound signal, r ∈ R, s ∈ S, and S contain domain characteristics of the current scene, such
as user diversity and environmental diversity. For the estimation of exercise intensity, only
the features induced by z and r are desired, while the features induced by s should be
removed. Therefore, we used a deep neural network to approximate G and combine it with
a domain adversarial adaptation to eliminate the effect of s.

Figure 8 illustrates the structure of our neural network, which consists of a feature
extractor, an exercise intensity estimator, and a domain discriminator. The feature extractor
transforms the input mel spectrogram and rope jumping speed into a feature vector [36],
the exercise intensity estimator uses the feature vector as the input to evaluate the user’s
exercise intensity, and the domain discriminator takes the weighted feature vector as input
to identify different domains. The weight is obtained from the exercise intensity estimator.
The network learns domain-independent features by jointly training a feature extractor
and a domain discriminator. Specifically, the domain discriminator is trained to determine
which domain each sample belongs to, while the feature extractor is trained to learn how
to trick the domain discriminator into not making the correct determination so that the
network can learn domain-independent features. It is because of the ability to obtain
domain-independent features that the network has a strong migration capability, allowing
it to adapt to different users and environments.

We trained the network using three sets of training data: (1) breathing sound mel
spectrogram and its corresponding rope jumping speed set D, D = M + V, (2) correspond-
ing ground truth exercise intensity set R, and (3) domain label set T. As exercise intensity
is difficult to assess subjectively, we need a reliable indicator of the ground truth of exer-
cise intensity. Heart rate is an ideal parameter for determining the intensity of exercise
loads [37] and it is physiologically argued that heart rate is a realistic reflection of exer-
cise intensity [38,39]. According to exercise physiology, exercise intensity is divided into
three levels: small, medium, and large, corresponding to heart rates of 120–140 beats/min,
141–160 beats/min, and 161–180 beats/min. According to this criteria, we calculate the
exercise intensity r as:

r =
h− hmin

hmax − hmin
∗ 100%, (21)
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where h is the post-exercise heart rate, hmin and hmin are the minimum and maximum heart
rates corresponding to the exercise intensity levels, respectively, as the exercise intensity
ground truth.

The feature extractor consists of a ResNet18 network that maps the input to a lower-
dimensional feature vector. The deep residual neural network (ResNet) can effectively avoid
the problem of gradient explosion and gradient disappearance when a neural network
reaches a certain number of layers, and can optimize the performance of the deep network,
which has been widely used [40]. The exercise intensity estimator consists of a fully
connected (FC) layer that infers the user’s exercise intensity based on the obtained feature
vector. The domain discriminator also consists of an FC layer with a weighted feature vector
as input [41]. This is because we expect the domain discriminator to recognize only different
users and scenes; however, different exercise intensities produce distinctive features of the
mel spectrogram. If we do not account for this feature, the domain discriminator may treat
the exercise intensity as a domain. Therefore in order to exclude feature information on
exercise intensity, the domain discriminator takes the weighted feature vector as input,
where the weight is the exercise intensity derived by the exercise intensity estimator.

The training phase of the network entails two tasks: (1) achieving accurate prediction
of the user’s exercise intensity and minimizing the estimation error of the exercise intensity
estimator, (2) maximizing the classification error of the domain discriminator enables
the network to extract domain-independent features. Therefore, the loss function of this
network consists of two parts, the regression prediction loss of the exercise intensity
estimator Lr and the classification loss of the domain discriminator Lt. The total loss
function of the network L can be expressed as:

L(θ f , θr, θt) = Lr(θ f , θr)− αLt(θ f , θt), (22)

where θ f , θr, θt are the parameters of the feature extractor, exercise intensity estimator, and
domain discriminator, respectively, and α is a positive hyperparameter used to control the
effect of the domain classifier on the optimized feature extractor. The exercise intensity
estimator is used to predict the user’s exercise intensity, which is a regression problem, so
we use the mean square error as its loss function Lr:

Lr(θ f , θr) =
1
R

R

∑
i=1

(hi − ĥi)
2, (23)

where hi and ĥi are the true and predicted exercise intensities of the i-th input sample,
respectively. The domain discriminator is used to classify different domains, so its loss
function Lt uses the categorical cross-entropy loss function:

Lt(θ f , θt) = −
1
D

D

∑
i=1

T

∑
j=1

log( ˆti,j), (24)

where ˆti,j is the predicted probability that the i-th sample belongs to the j-th domain.
During training, the objectives for θr and θt are to minimize Lr and Lt, respectively.

According to (14), it can be seen that their relationship is adversarial; θ f tricks the domain
discriminator by maximizing Lt so that L is minimized. This adversarial learning allows the
feature extractor to extract domain-independent features that can characterize the exercise
intensity well; thus, the network can easily adapt to different users and environments.

When a user completes a rope jumping workout, he/she can obtain his/her number
of jump ropes, rope jumping speed, and exercise intensity. Based on the data, users will be
able to further adjust their rope jumping schedule to achieve better workouts.
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4. Implementation and Evaluation

In this section, we present the implementation details and evaluate the performance
of our system.

4.1. Experiment Setup

We used two smartphones (i.e., Huawei Mate 40 Pro and iPhone 13 Pro Max) and two
Bluetooth headphones to collect the acoustic signal. The experiments were conducted in
three different environments: a quiet indoor area, a noisy indoor area with music, and a
noisy outdoor area with traffic noise. The indoor areas include three rooms with different
flooring materials (including wood, tile, and concrete floors). To evaluate the performance
of the system, we recruit 8 volunteers (5 males and 3 females, aged from 20 to 40) for the
experiment, each volunteer has 3 different choices in footwear (including rubber-soled
sneakers, foam-soled sneakers, and slippers). Details of the volunteers’ data are given in
Table 1. Eight volunteers are also typical for exercise monitoring studies [42]. In addition,
we divided the subjects into three categories according to their self-report information,
i.e., novice: volunteers who barely exercised (average exercise time per month was less
than half an hour), normal: volunteers who exercised occasionally (average exercise time
per month was more than half an hour and less than two hours), master: volunteers who
exercised regularly (average exercise time per week was at least one hour). To obtain the
ground truth of exercise intensity, each volunteer needed to wear a heart rate bracelet while
rope jumping.

Table 1. Demographics of Volunteer.

ID Gender Age Proficiency

1 Female 20–25 Master
2 Female 20–25 Normal
3 Male 20–25 Master
4 Male 25–30 Novice
5 Female 25–30 Normal
6 Male 25–30 Novice
7 Female 30–35 Novice
8 Female 30–35 Novice

The researcher recorded the heart rate at the end of each rope jumping and calculated
the exercise intensity according to (21).

In the attentive mechanism-based GAN, we used Adam with a learning rate of 1 ×
10−4 for training until convergence. In order to perform the domain adversarial adaptation,
we needed two choices for each of the three factors defining an experiment’s setting (i.e.,
user, floor material, and footwear), so we used eight settings for training.

For each chosen setting, we further split the collected samples into training and testing
at a ratio of 3:1. The labels for the training and testing samples were made differently in
order to fairly evaluate the prediction performance.

Three sets of experiments were deployed. We first evaluated the performance of the
rope jumping count, considering the impacts of the rope jumping duration, environmental
noise, rope jumping conditions (e.g., footwear and floor materials), rope jumping methods,
and the diversity of users on the counting error, and compared the counting performance of
our system with other existing jump rope counting systems. We then evaluated the perfor-
mance of the exercise intensity, taking into account the impacts of both the environment and
the user’s proficiency in rope jumping. Finally, we conducted several ablation experiments.

4.2. Performance of Rope Jumping Count
4.2.1. Impact of Rope Jumping Duration and Environmental Noise

In the first set of experiments, we evaluated the performance of our proposed rope
jumping intensity monitoring system with different rope jumping durations. Generally
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speaking, the length of a group of rope jumping in 60 s or less, which is the length of time to
ensure the fitness effect and it will not cause damage to the body. Therefore, we evaluated
the performance of rope jumping counts at different rope jumping durations (including
15 s, 30 s, 45 s, and 60 s) within 60 s. The cumulative distribution functions (CDFs) of the
counting errors for different durations are plotted in Figure 9a. The mean count errors are
0.28, 0.27, 0.15, and 0.15, respectively. The error is greatest at a duration of 15 s, but 78%
of the data have errors of 0. It can be seen that the error decreases with increasing rope
jumping duration, this is because longer durations stabilize the rope jumping speed and the
detected rope-jumping sound becomes more accurate. Combined with this result, we fixed
a rope jumping duration of 30 s and tested the performances of the jump rope counting
in different environments (including a quiet indoor area, a noisy indoor area with music,
and a noisy outdoor area with traffic noise). Volunteers were required to perform 30 s rope-
jumping exercises in different environments. As shown in Figure 9b, the average errors for
the three environments were 0.25, 0.58, and 0.78, respectively. The results demonstrate the
robustness of the rope jumping count to environmental noises. This demonstrates that our
system can achieve a satisfactory performance even in noisy environments. Further, this
figure also shows that better counting accuracy can be achieved in a quiet environment.
This is natural because it is relatively easier to identify the rope-jumping sound from the
noise in a relatively quiet environment.

(a) (b)

Figure 9. CDF of counting error with varied durations (a) (Performances for different durations) and
environments (b) (Performance for different environments).

4.2.2. Impacts of Rope Jumping Conditions

We now explore the impacts of footwear and floor materials on the counting performance.
We conducted the experiment according to the three footwear and floor materials

explained in the experiment setup. Volunteers first wore three kinds of shoes to perform
30 s of rope-jumping exercises on the wood floor, then volunteers wore rubber-soled sports
shoes to perform the same rope-jumping exercises on three different flooring materials.
The results are shown in Figure 10b; footwear and floor materials virtually introduced
no impact on counting. This is because the shoes and floor materials mainly affected the
amplitude of the rope-jumping sound, while our system mainly uses the periodicity of
the rope-jumping sound for counting and could dynamically set the threshold for rope-
jumping sound detection according to the energy level of the acoustic signal; setting the
dynamic threshold significantly improves the performance of the system.
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(a) (b)

Figure 10. CDF of counting errors with various footwear (a) (Performances for different footwear)
and floor material (b) (Performances on different floor materials).

4.2.3. Impact of Rope Jumping Methods

Users may jump in different ways, e.g., alternate jumping on one foot and jumping on
both feet. Therefore, we designed three rope jumping schemes (i) only jumping on both
feet; (ii) alternate jumping on one foot; (iii) rope jumping with one foot alternating and
then both feet. Volunteers performed a 30 s rope jumping exercise according to different
schemes, where scheme iii required volunteers to rope jump with one foot for the first
10 s and then with both feet for the next 20 s. The CDFs of the average counting errors
under scheme i, scheme ii, and scheme iii are plotted in Figure 11. The average errors of
schemes i/ii/iii are 0.25, 0.86, and 0.54, respectively. It can be seen that our system has
good performance. In addition, the average errors of schemes ii and iii are relatively higher
than those of scheme i. The reason is that when rope jumping with one foot, the user’s
body has an unstable center of gravity and the user needs to balance the body by adjusting
the timing of the foot landing, resulting in a change in the jumping cycle.

Figure 11. CDF of the counting error with various rope jumping methods.

4.2.4. Impact of the Diversity of Users

Eight volunteers were involved in this experiment, with heights ranging from 1.6 to
1.88 m and weights ranging from 45 to 84 kg; it included people who rope jumped regularly,
people who rope jumped occasionally, and people who rarely rope jumped. We divide
them into three categories: master, normal, and novice. The average errors are shown in
Figure 12. We can see that our system has good performance on both master and normal
users. However, due to the fact that novices almost do not jump rope, they could not
maintain a steady jumping rhythm when rope jumping led to a slightly higher counting
error. On the whole, the system performs well under different rope jumping levels and
body types.
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Figure 12. Average counting error with varied user.

4.2.5. Average Counting Error Compared with Smart Rope, YaoYao, and TianTian

We compare the performances of existing jump rope counting systems. Volunteers
performed a 30 s rope jumping exercise in the same environment using different sys-
tems/products (Smart Rope, YaoYao, TianTian, and our system), respectively. The results
are shown in Table 2. Smart Rope and YaoYao performed well, with average errors of 1.8
and 2.6, respectively.

Both systems apply sensors for jump rope counting and some hand movements may
affect the counting results, which resulted in an error of about 1–3. TianTian had the
highest error, with an average error of 6.3. The reason is that TianTian uses a vision-based
method to count jump ropes by recording the user’s hand-raising movements, and is,
therefore, susceptible to interference from hand movements, the activities of surrounding
people, and lighting conditions. Our system performs the best with an average error of
0.32, outperforming Smart Rope, TianTian, and YaoYao.

Table 2. Results of the average counting errors for different systems.

Smart Rope YaoYao TianTian Our System

Average
counting error in

30 s (number)
1.8 2.6 6.3 0.32

4.3. Performance of Spectrogram Optimization and Effect Evaluation
4.3.1. Impact of Environmental Noise

We evaluated the performance of our proposed exercise intensity monitoring system
in different environments (i.e., the quiet indoor area, the noisy indoor area with music,
and the noisy outdoor area with traffic noise). The box-plot evaluation error is shown in
Figure 13. The evaluation error increases in noisy environments; in all cases, the average
error is less than 2.83%. The results demonstrate the robustness of our system to noise.
This advantage of our system is contributed to by, first, the band-pass filter eliminates high-
frequency noises, second, the attentive mechanism-based GAN can generate optimized
spectrograms that mitigate noise interference, and third, the domain adaptation can extract
environment-independent features.
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Figure 13. Box-plot evaluation error with varied situations. i: Only jumping on both feet; ii: Alternate
jumping on one foot; iii: Rope jumping with one foot alternating and then both feet.

4.3.2. Impact of the Diversity of Users

Figure 14 shows the average error for eight volunteers at different levels. We can see
that the system has good performance with both normal and master users, this is because
volunteers with exercise bases have more stable breathing after exercise. However, due to
the fact that novices hardly ever exercise, they breathe more sharply after exercise, leading
to higher errors. However, after a few training sessions, the evaluation errors of novice users
can reach normal levels. Overall, the system performs well for different levels of exercise.
The reasons are that domain adaptation can extract user-independent features and the
system uses the rope jumping speed and breathing sound for a joint evaluation, applying
data from multiple modalities, which allows for more robust predictions to be made.

Figure 14. Average evaluation error with varied user.

4.4. Ablation Study

To demonstrate the effectiveness of each component proposed in Section 3, we con-
ducted several ablation experiments [43]. Specifically, we designed three experiments by
removing the components of the attention mechanism, local discriminator, and domain
adaptation, respectively. The experimental results are shown in Table 3.
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Table 3. Results of ablation experiments.

Baseline
Network

Attention
Mechanism

Local
Discriminator

Domain
Adaptation

Average
Prediction Error

√
5.8%√ √ √
3.5%√ √ √
3.9%√ √ √
4.8%√ √ √ √
2.3%

It can be observed that, with the addition of the attention mechanism and local
discriminator, the performance of the algorithm is significantly improved, and the average
prediction error is reduced by 1%. In addition, the average error can reach 2.3% by adding
domain adaptation; without domain adaptation, the average prediction error would reach
5.8%. These results strongly confirm that our system network offers a robust cross-domain
exercise intensity prediction performance.

5. Conclusions and Future Work

In this paper, we propose a system for rope jumping exercise monitoring using a
smartphone and headphones. Our system utilizes headphones to capture the rope-jumping
sound to count the number of rope jumps, addressing the significant challenge of sepa-
rating the rope-jumping sounds, which is critical for jump rope counting. Furthermore,
our system extracts features from the rope jumping speed and the mel spectrograms of
the user’s breathing sound to predict the exercise intensity. The network utilizes attentive
mechanism-based GAN to optimize the breathing sound mel spectrogram to improve
prediction accuracy and employs domain adaptation to migrate to different users and
environments. The extensive experiments show that our proposed rope jump monitor-
ing system is robust under different conditions. Therefore, we deem it feasible to use
smartphones and headphones for rope jumping exercise monitoring.

Our system is suitable for single-person rope jumping. When multiple users perform
rope-jumping exercises at the same time, there may be a large counting error due to
the mutual influence of the rope-jumping sounds between users. As part of our future
work, we will explore more unique characteristics of the rope-jumping sound to identify
different rope-jumping rhythms of different users and use deep learning to identify multiple
users automatically.
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Abbreviations
The following abbreviations are used in this manuscript:

GAN generative adversarial network
LSGAN least-square generative adversarial network
ResNet residual neural network
FC fully connected
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