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Abstract: D-band (110–170 GHz) has received much attention in recent years due to its larger
bandwidth. However, analyzing the loss characteristics of the wireless channel is very complicated
at the millimeter-wave (MMW) band. Research on D-band wireless channels has been focused on
indoor short-distance transmissions, with few studies looking at outdoor long-distance wireless
channels. In this paper, we provide the design of the D-band outdoor long-distance transmission
system, propose the outdoor line-of-sight (LOS) propagation measurements, and study the outdoor
D-band propagation loss characteristics with distances up to 800 m. The path loss model uses the
Floating Intercept (FI) and the Close-In (CI) model is established based on the least square method.
In the CI model, the path loss exponent is greater than 2 and increases with frequency, while in the FI
model, the path loss exponent has no apparent frequency dependence. The results show that D-band
path loss in long-distance outdoor scenarios is greater than that in free space, indicating that the
propagation condition is worse than in free space. The results show that both models have similar
performance. Under this basis, the model with the smallest number of parameters would be the
optimal choice. In addition, these results prospectively provide a theoretical model for designing and
optimizing high frequency mm-wave propagation measurements at a distance of 200 m and beyond.

Keywords: D-band; path loss; outdoor channels; channel model

1. Introduction

With the advent of the era of Internet of Everything, more and more things, people,
and data are connected via the Internet, which has lead to increasing demand for more
authorized wireless spectrum or shared spectrum resource access. The millimeter-wave
(MMW) spectrum source is a critical device for a variety of application systems, such as
symbiotic sensing and communications, molecular imaging, atmospheric remote sensing
and detection, and scaled radar range systems. As a part of MMW resources, the D-band
spectrum with its broad bandwidth has become a research hotspot in recent years. Not
only do we see a growing attention to D-band as a potential spectrum resource, but there
is also a fast-growing number of related channel measurement experiments. D-band
radios operating at 110–170 GHz offer benefits, such as high capacities and high antenna
gains with a small footprint [1–4]. The narrower transmit beam makes it more accurate
when viewing smaller targets, and also reduces the risk of signal eavesdropping and inter-
user interference [5–10]. Moreover, it can be seen from Figure 1 that under the standard
environment, the atmospheric attenuation does not exceed 2 dB/km in the D-band, which
is acceptable for power control and can meet the 5G communication indicators to have an
excellent potential in future 5G and 6G communication [11].
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However, the poor transmissivity and large propagation attenuation of MMW bring
challenges to the research and utilization of MMW. For a better design of outdoor wireless
pico-cellular communication systems, the characteristics of propagation channels, espe-
cially regarding path loss, need to be modeled and explored in detail. D-band channel
characteristics are summarized in Table 1.

Table 1. Reference Review of Exploring Channel Characteristics.

Frequency Antennas Environment

New York University 142 GHz 27 dBi narrow-beam horn
antennas (TX and RX)

1–40 m Indoor offices, conference rooms,
classrooms, long hallways, open-plan cubicles,

elevators, and the factory building [12–15];
25–117 m

Outdoor Urban Microcell (UMi) area [16]

Aalto University 140 GHz 19 dBi horn (RX) and 2 dBi bicone
(TX) antennas 3–65 m Indoor shopping mall [17]

Georgia Institute of
Technology 140 GHz 22–23 dBi horn antennas (TX and

RX) 0.3–0.86 m Indoor office [18]

University of Southern
California 140–220 GHz 21 dBi narrow-beam horn

antennas (TX and RX)
0.5–5.5 m Indoor office [19];

100 m Urban [20]

Ghent University 110–170 GHz 23 dBi horn antennas (TX and RX) 1–5 m Outdoor [21];
0.5–8.5 m Indoor office and laboratory [22,23]

SJTU 130–143 GHz 25 dBi horn (RX) and 16 dBi
bicone (TX) antennas

1.8–20 m Indoor meeting room and office
[24,25]

This work 138–165 GHz 25 dBi narrow-beam horn
antennas (TX and RX) 100–800 m Outdoor street

As shown in Table 1, New York University has done a lot of work on D-band channel
measurements. In 2021, NYU Wireless provided a measurement system with dual-mode
switching between the real-time spread spectrum and sliding correlation mode. The
researchers measured and examined the reflection and scattering characteristics of wave
propagation at 140 GHz. Furthermore, in order to simulate ground-to-satellite and ground-
to-unmanned aerial vehicle communications at 140 GHz, they measured rooftop surrogate
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satellite and backhaul. NYU Wireless also evaluated indoor channels (including offices,
conference rooms, classrooms, large hallways, open-plan cubicles, elevators, and a factory
building) at 140 GHz using this system in conjunction [12–15]. In an urban microcell
setting, the team also ran directionally resolved outdoor wideband measurement operations
at 140 GHz [16]. In 2018, Aalto University reported a microcell directional channel at
140 GHz for a large indoor shopping mall environment, arguing that the spatiotemporal
characteristics of the strong path are remarkably consistent between the 28 and 140 GHz
channels, and they discovered that the channel’s large-scale parameters are comparable
at both frequencies [17]. Georgia Institute of Technology conducted a comprehensive
analysis of the physical parameters of the terahertz indoor channel, including LOS path loss,
power delay angle profile, temporal and spatial characteristics, and correlation between
terahertz multipath characteristics [18]. The University of Southern California (USC)
conducted a typical office line-of-sight measurement experiment in the frequency range
of 140–220 GHz and estimated the path loss exponent and standard deviation of the
shading factor of the CI model using the measurement data [19]. USC has also made some
progress recently with longer distances and outdoor settings, but only within 100 m [20].
The University of Ghent designed a VNA-based D-band channel sounder with a 60 GHz
bandwidth for characterizing the entire D-band radio channel at distances of up to 5 m.
The authors present indoor and outdoor propagation measurements and develop D-band
channel models for network performance evaluation [21–23]. Shanghai Jiao Tong University
(SJTU) developed a 140 GHz VNA-based channel measurement system. They conducted
directionally resolved channel measurements in a typical indoor meeting room with Tx/Rx
distances ranging from 1.8 to 7.3 m, and in an office room with Tx/Rx distances ranging
from 3.75 to 20 m. The team analyzed the temporal and angular distribution of MPCs, as
well as the correlation between channel parameters and their distribution [24,25].

Meanwhile, some agencies have measured the channel characteristics of D-band, but
to our knowledge, few outdoor long-distance D-band channel characterization based on
measurements have been reported [12–29]. This paper presents the measurements of the
D-band outdoor long-distance channels, explores the applicability of the FI and CI models
at long distances in the D-band, and also fits the path loss index and shadow fading. The
results show that the path loss of the D-band in outdoor long-distance transmissions is
greater than that in free space, indicating that the propagation condition is worse than
that in free space. Furthermore, in the CI model, the path loss exponent is greater than
2 and increases with frequency, while in the FI model, the path loss exponent has no
apparent frequency dependence. This paper presents prospective and referential outdoor
measurement results for D-band channels with large outdoor radio propagation distances
up to 800 m.

2. Methods

The electromagnetic waves propagation in Free-space is shown in Figure 2.
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According to the classic Friis transmission equation [30], the relationship between
the transmit and the receive power of a wireless link consisting of transmit and receive
antennas can be obtained. Its expression is given as:

Pr = Pt + Gt + Gr − L (1)

where, Gt and Gr represent the gains of the transmit and receive antenna respectively; Pr
and Pt represent the transmit and receive power; and L is free-space path loss (FSPL).

The FSPL model describes the channel propagation characteristics in an ideal propa-
gation environment. Its expression is given as:

FSPL(d, f ) = 20 log10(4πd f /c) (2)

where, d is the wireless transmission distance; f is the transmission frequency; and c is the
speed of light.

It can be seen from the above formula that the free space path loss is only related to the
transmission distance d and the frequency f. When the transmission distance or frequency
doubles, the loss is increased by 6 dB. The free-space propagation model is suitable for
a wireless environment with an isotropic propagation medium (such as a vacuum), and,
therefore, is not an ideal model to apply to real scenarios.

Instead, path loss in the real world is highly dependent on the transmission envi-
ronment. The FSPL model is not accurate enough to describe the actual propagation
characteristics. In 5G, two path loss models—the short-range reference (CI) model and the
floating intercept (FI) model—are commonly used to characterize the power attenuation
during propagation. Both the CI and the FI models are single-frequency path loss models.
They can only simulate the path loss at a certain frequency. The 1 m CI model (3) is one of
the most frequently used large-scale path loss models to predict the signal strength over
distances for various frequencies [31,32]:

PLCI( f , d) = FSPL( f , d0) + 10β log 10(
d
d0

) + XCI
σ , d > d0 (3)

where, FSPL is the free space path loss at carrier frequency f with d0 = 1 m; d0 is a reference
distance; β is the path loss exponent that characterizes the dependence of path loss on d;
and XCI

σ is the large-scale shadow fading that can be modeled as a zero-mean Gaussian
distributed random variable with standard deviation σ (in dB).

The CI model has only one variable (β), which can be obtained by the least squares
linear fitting method, that is, fitting the measurement data with the smallest error. Therefore,
the complexity of the CI model is relatively low.

The FI model is used in the WINNER II and the 3rd Generation Partnership Project
(3GPP) [33,34]. Its expression is given as:

PLFI( f , d) = α + 10β log 10(
d
d0

) + XFI
σ , d > d0 (4)

where, α is a floating intercept in dB that represents the free-space path loss at d0 = 1 m; d0
is a reference distance; β is the path loss exponent; and XFI

σ is the large-scale shadow fading.
Path loss model parameters α, β, and σ are estimated by the least squares linear fitting
method. Similar to the CI model, two variables (α and β) can be obtained by minimizing σ.

3. Measurement Setup

The experimental setup of the D-band millimeter-wave transmission system is shown
in Figure 3. The signal generator generates an intermediate frequency (IF) signal from
11.5 GHz to 13.6 GHz, which passes through a six-multiplier and a two-multiplier (and
is thus multiplied by 12) to reach D-band wavelengths (138 GHz to 163.2 GHz). D-band
signals are transmitted to free space via a standard horn antenna. At the Rx-side, another
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ideal horn antenna that is same as the Tx-side one is used for receiving the signals at the
same polarization direction, and the received signal is boosted via a low noise amplifier
(LNA) with a gain of 30 dB. A radio frequency (RF) signal at 11.4~13.5 GHz generated by
a signal generator is multiplied 12 times to 136.8~162 GHz. Both the intrinsic signal and
the received signal are sent to the mixer to down-convert the received signal and generate
an IF signal at 1.2 GHz, which is amplified by an electric amplifier with a gain of 26 dB.
Finally, its center frequency and received power are observed by an electric spectrometer.
The measurement parameters are summarized in Table 2.
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Table 2. D-band transmission system specifications.

Specifications Values

Center Frequency (GHz) 138 139.2 145.2 150 154.8 160.8 163.2

LO frequency (GHz) 11.5 11.6 12.1 12.5 12.9 13.4 13.6
IF frequency (GHz) 1.2

Tx/Rx antenna gain (dBi) 25

Tx/Rx azimuth HPBW E plane: 9◦

H plane:10◦

Tx/Rx polarization Horizontal
Tx/Rx caliber (mm2) 17.5 × 13.6

Tx/Rx projection diameter (mm) 19.1
EA1 gain (dB) 30
EA2 gain (dB) 26

This D-band transmission system was implemented in an outdoor LoS environment
with clear weather. It was carried out on road on the north side the Guanghua Building in
the Handan Campus of Fudan University. Outdoor measurement environments include
trees, smooth tiles, concrete floors, metal lampposts, concrete building walls, pedestrians,
bare soil ground, concrete pillars, and vehicles.

As shown in Figure 4, in our measuring experiment, the height of the antennas of the
transceiver are set to 1 m. A laser and a telescope pointer were used for calibration to ensure
that the antennas on the Tx-side and Rx-side were aligned. The Tx-side moves in a straight
line different to set measurement distances at 100 m, 200 m, 400 m, and 800 m, while the
Rx-side is fixed. At each measurement location, received power at seven frequency points
from 138 GHz to 163.2 GHz were measured.
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Figure 4. (a) Satellite map of D-band transmission 800 m wireless link on Fudan campus; (b) photo
of Tx-side; (c) photo of Rx-side.

4. Results

Figure 5a–g show the path loss samples at 7 different frequency points with a range of
138 GHz~163.2 GHz using the path loss models of FI, CI, and FSPL. To make the figures
look clear, 10 measured path loss samples at each distance we taken and averaged, and
the averages are presented by the diamonds. It can be observed that the experimentally
measured path loss is greater than the theoretical path loss value in free space at all
frequency points. The fitting results of the two models are similar and basically coincide at
138 GHz. We can observe that our measurements at 138 GHz agree with FI, CI, and FSPL
models. The measured path loss fluctuates more as frequency and distance increase. The
measured path loss curves deviate from the free space path loss curves up to 13.1 dB at
163.2 GHz. At the other frequencies, our measurements imply less differences from the
FSPL model. Figure 6 shows the path loss at distances of 400 m and 800 m.
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To describe MMW signal path attenuation in D-band as a function of distance under
different frequency points in outdoor environments, we estimated the path loss model
parameters of the FI and CI models, which are given in Table 3. The CI model has no
significant statistical difference compared to FI model, as described in the theoretical
analysis. It can be seen that the β parameter of the FI model is around 2 at all frequencies.
This differs slightly from the theoretical free space path loss exponent of 2, but its frequency
dependence is insignificant. The minimum path loss index is 1.82 at 160.8 GHz, and the
maximum path loss index is 2.33 at both 150 GHz and 154.8 GHz. The parameters of the
CI model are greater than 2 at all frequency points, the minimum is 2.06 at 138 GHz, and
the maximum is 2.47 at 163.2 GHz. Figure 7 demonstrates the variation of the reference
distance path loss and path loss exponent at different frequencies in CI and FI models.

Table 3. Path loss model parameters.

Frequency
(GHz)

FI Model CI Model

α β σFI FSPL (f,d0) β σCI

138 79.19 1.91 1.75 75.25 2.06 1.98
139.2 82.45 1.88 0.87 75.31 2.16 0.33
145.2 80.66 2.06 1.68 75.68 2.26 2.33
150 72.7 2.33 3.33 75.96 2.40 2.63

154.8 77.95 2.33 2.46 76.24 2.20 2.51
160.8 86.02 1.82 2.13 76.57 2.20 1.02
163.2 81.45 2.28 1.10 76.70 2.47 0.82
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Many factors can lead to instability in measurement campaigns. Firstly, the path loss
exponent of the test band is extremely sensitive to scatter differences in the measurement
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environment; specifically, outdoor open environments with ground, trees, and smooth
tiles will produce abundant reflections, leading to multipath fading. Furthermore, the
strong directionality of millimeter wave beams can also create device alignment problems,
especially when the distance is set at 200m and more. The 10◦ horn antenna with a wide
antenna beam used in these measurements also make it harder for antennas to perfectly
align. When the distance is greater than a certain value, the signal interferes with ground
reflection and direct transmission. The greater the distance, the more reflection paths are
generated, and the greater the fluctuation of the received signal.

5. Conclusions

This paper presents a D-band MMW transmission measurement campaign in a long-
distance outdoor line-of-sight environment with a measurement distance range of 100 m
to 800 m. We fit the path loss modeling results at seven frequencies using path loss
samples. The performance of the two models is similar in outdoor long-distance scenarios
and the path loss exponent for each model differs slightly from the free space path loss
exponent. This work provides a reference for future exploration of communications in the
D-band frequency range at longer distances. In our future work, we plan to investigate
other outdoor scenarios and the propagation characteristics of D-band MMW signals in
non-line-of-sight environments.
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