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Abstract: Tunnels play an essential role in the transportation network. Tunnel entrances are usually
buried at a shallow depth. In the event of an internal explosion, the blast pressure will cause severe
damage or even collapse of the tunnel entrance, paralyzing the traffic system. Therefore, an accurate
assessment of the damage level of tunnel entrances under internal blast loading can provide effective
assistance for the anti-blast design of tunnels, post-disaster emergency response, and economic
damage assessment. In this paper, four tunnel entrance specimens were designed and fabricated with
a scale ratio of 1/5.5, and a series of field blast tests were carried out to examine the damage pattern
of the tunnel entrances under internal explosion. Subsequently, static loading tests were conducted
to obtain the maximum bearing capacity of the intact specimen and residual bearing capacities of
the post-blast specimens. After that, an explicit non-linear analysis was carried out and a numerical
finite element (FE) model of the tunnel entrance under internal blast loading was established by
adopting the arbitrary Lagrangian–Eulerian (ALE) method and validated based on the data obtained
from the field blast and static loading tests. A probabilistic vulnerability analysis of a typical tunnel
entrance subjected to stochastic internal explosions (assuming various charge weights and detonation
points) was then carried out with the validated FE model. For the purpose of damage assessment, the
residual bearing capacity of the tunnel entrance was taken as the damage criterion. The vulnerability
curves corresponding to various damage levels were further developed based on the stochastic data
from the probabilistic vulnerability analysis. When the charge weight was 200 kg, the tunnel entrance
exhibited slight or moderate damage, while the tunnel entrance suffered severe or even complete
damage as the charge weight increased to 1000 kg. However, the tunnel entrance’s probability of
complete damage was less than 10% when the TNT charge weight did not exceed 1000 kg.

Keywords: tunnel entrance; internal explosion; residual bearing capacity; vulnerability analysis

1. Introduction

In recent decades, terrorist attacks have occurred frequently around the world [1–3].
As an important infrastructure in the transportation system, tunnels have become a key
target for terrorist attacks. In addition, accidental explosions caused by negligence during
transportation frequently occur. The occurrence of terrorist attacks and accidental explo-
sions may bring a serious threat to the tunnel infrastructure, seriously endangering the
safety of people’s lives and property. Hence, it is of great significance to investigate the
dynamic response of tunnels under internal blast loading and assess the damage level of
tunnels after explosions.

Due to the semi-enclosed space of the tunnel, the blast wave generated by internal
explosion will experience multiple reflections and superimpositions, and therefore the
transmission of the blast wave within tunnels is very complicated compared to that of a
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free field explosion [4]. In recent years, many scholars have conducted experiments and
numerical simulations of tunnels under blast loads [5–11]. Meng et al. [12] conducted a
field test on a tunnel with dimensions of 20,000 × 1800 × 600 mm under a gas explosion.
The results demonstrated that the tunnel linings were prone to cracking due to the uneven
pressure distribution in the semi-enclosed space. Tiwari et al. [11] conducted numerical
simulations of tunnels under internal blast loads. The influence of three parameters, namely
lining thickness, explosive equivalent and friction angle, on the dynamic response of the
tunnel was discussed. The results showed that the deformation of the tunnel lining became
more severe with increasing charge weight and decreased with increasing lining thickness
or shear strength of the surrounding soil layer [13]. Xu et al. [14] conducted internal
explosion tests and numerical simulations on a scaled immersed tunnel model. The results
showed that the major damage was concentrated at the mid-span and corners of the tunnel
roof. Yang et al. [15] carried out numerical simulations on underwater tunnels under
internal explosion conditions and proposed four damage levels based on the deflection-
span ratio criterion, i.e., slight damage, moderate damage, severe damage and collapse.
Afterwards, a damage assessment model for underwater tunnels after an internal explosion
was established. It should be noted that tunnel entrances are normally constructed at
shallow burial depths. For shallow-buried tunnels under internal blast loads, the blast
wave propagates in a spherical pattern, which might cause bending or collapse failure of
the tunnel [16,17]. However, there are limited studies on the blast performance of tunnel
arches under the conditions of internal explosions. Liu et al. [13] found that for an internal
explosion, the lower the thickness of the ground above the tunnel, the more severe the
damage to the tunnel. Choi et al. [16] numerically investigated the anti-blast performance
of tunnels under the conditions of internal explosion with TNT charges varying from 230 to
910 kg. The results showed that compared to tunnels with deep burial depths, shallow-
buried tunnels were more vulnerable to internal explosions. Therefore, it can be seen that
under an internal explosion, shallow-buried tunnels (i.e., the tunnel entrance) might be
destroyed by intense blast loading, thereby causing the collapse of the tunnel entrance
or the surrounding ground. Therefore, it is crucial to analyze the dynamic response of
the tunnel entrance and to assess the damage level of the tunnel entrance under different
magnitudes of internal blast loading.

Vulnerability analysis is a very mature assessment method in the field of earthquake
engineering [18,19]. In the vulnerability analysis of tunnels subjected to seismic loading,
vulnerability curves can be established to comprehensively assess the seismic performance
of tunnels by selecting vibration strength indicators and engineering parameters [20].
Methods of analysis such as seismic damage investigation, numerical simulation and
experimental simulation are usually adopted [21–25]. Hazus-MR4 [21] collected data on
the damage to tunnels in earthquakes around the world and further used such data to
classify the degree of seismic damage of tunnels into intact, minor, moderate, severe and
complete damage. The vulnerability curves of different types of tunnels under various
peak vibrations were also developed. Avanaki et al. [24] investigated the effect of steel
fiber reinforced lining on the seismic vulnerability of a tunnel by employing nonlinear
quasi-static seismic analysis. Argyroudis et al. [20] proposed a numerical method to
construct the vulnerability curves of shallow buried tunnels under seismic loading by
considering the uncertainties of the shape of the tunnel section. However, there have
been very few vulnerability analyses of tunnels under blast loads. Choi et al. [16] studied
the dynamic response of tunnels under internal explosion by considering the factors of
explosive mass, distance, and tunnel shape. Then, damage assessment diagrams of tunnels
were developed, which provided important data for vulnerability assessment of tunnels
under blast loads. Chaudhary et al. [26] established an FE model of a tunnel with a diameter
of 5 m. A probabilistic dynamic analysis of the tunnel with different lining materials was
then carried out, and the probability of failure curve was obtained for the tunnel at different
explosive equivalents.
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In summary, the application of the vulnerability method to the seismic analysis of
tunnels can not only adequately take the stochasticity and uncertainty of earthquakes into
account but can also truly reflect the damage of tunnels. In addition, the damage levels
of tunnels subjected to earthquakes can be predicted. Although the vulnerability analysis
of tunnels is widely applicable in seismic engineering, it is still rarely seen in the field of
explosions. Therefore, how to reasonably apply vulnerability analysis to tunnels under
blast loads and determine an appropriate damage criterion to study the damage of tunnels
needs to be further studied. Therefore, in this paper, a high-fidelity FE model of the tunnel
entrance was established by using the arbitrary Lagrangian–Eulerian (ALE) method. The
results of the field blast test and static loading test were employed to verify the accuracy of
the developed FE model. Then, a prototype model of the tunnel entrance was established
based on the validated FE model. A probabilistic vulnerability analysis of the tunnel
entrance subjected to internal explosions was further conducted with consideration of the
uncertainty of explosive resources (i.e., charge weights and detonation points). For the
purpose of the damage assessment, the residual bearing capacity of the tunnel entrance was
taken as the damage criterion. The vulnerability curves corresponding to various damage
levels were developed based on stochastic data from probabilistic vulnerability analysis.
This study contributes to the anti-blast design of tunnel structures and further provides a
new research perspective on the vulnerability of tunnel entrances under internal explosions.

2. Validation of the FE Model
2.1. Field Blast Test and Static Test

In this paper, a total of four tunnel entrance models were fabricated, three of which
were tested in the field blast test, and one of which was adopted for the static loading
test. The design of the model was based on a prototype of a tunnel entrance with a scale
ratio of 1:5.5. The blast load was described by using the cube root scaling rule [27]. For
the tunnel entrance specimen, it was first assumed that the same materials were used
for the model and the prototype. Furthermore, to reduce the effect of dimensions on
the dynamic response of the tunnel structure, the same reinforcement ratio was adopted
in the model, and the inner and outer diameter ratios were kept the same as those in
the prototype. Dimensional analysis was then used to derive material properties (i.e.,
compressive strength and concrete strain) as well as structural properties (i.e., length
volume and structural mass). The similarity factor of the tunnel entrance model in the
present study is reported in Table 1 [28,29].

Table 1. Similarity ratio for the scaled blast test.

Quantity Symbol Similarity Factor

Scaling factor λr 1/5.5
TNT mass density λρ 1

Sound velocity in air λc 1
Time λt = λr/λc 1/5.5

Blast pressure λp = λρ λc
2 1

TNT mass λM = λp λr λt
2 1/166.4

Outer radii λor = λr 1/5.5
Inner radii λir = λr 1/5.5

Lining thickness λlt = λr 1/5.5
Reinforcement ratio λrr 1

Strength λfc = λp 1
Strain λε 1

Because the present study mainly focuses on the damage to the tunnel crown and
hance of the tunnel entrance under internal explosion, the curved wall and invert of the
tunnel were simplified as the foundation slab. Therefore, the tunnel structure was directly
connected with the foundation slab in the tunnel entrance model. The longitudinal length
of the specimen was 2000 mm, while the outer and inner radii of the tunnel arch were
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1000 mm and 880 mm, respectively. The thickness of the tunnel lining was 120 mm. The
ratio of the buried depth to the tunnel diameter was kept at 0.15; therefore, the depth of the
covering soil layer was 300 mm in the test [30]. The concrete strength of the tunnel lining
was 31.35 MPa [31]. Double layers of 6 mm diameter rebar were spaced 85 mm apart both
in circumferential and longitudinal directions in the tunnel lining, and the concrete cover
of the lining was 10 mm. The yield strength of the rebar was 450 MPa. The rebar of the
tunnel lining was connected to the foundation slab, which had a thickness of 250 mm and
was cast by premixed concrete with a compressive strength of 45.65 MPa. Rebar with a
16 mm diameter was arranged in the foundation slab. The geometrical dimensions and the
reinforcement of the tunnel entrance specimen are illustrated in Figure 1.
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Figure 1. Geometrical dimensions and reinforcement of the specimen (unit: mm): (a) Tunnel;
(b) Foundation slab.

A total of three detonation positions were designated to investigate the dynamic
response of the tunnel entrance under internal blast loading. The detonation points were
the center of the tunnel, the tunnel crown and the hance of the tunnel. The detonation
points for all blast scenarios were set at the middle of the specimen along the longitudinal
direction. The field blast test program is listed in Table 2.

In the field blast test, each tunnel entrance model was connected to an additional
tunnel section, in which the entrance model was placed at one end, as shown in Figure 2.
Therefore, during the internal explosion, the blast wave could propagate along the longi-
tudinal direction of the tunnel section. The gap between the specimen and the additional
tunnel section was filled by foam to reduce the influence of reflection of the blast wave on
the specimen.
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Table 2. Program of the field blast test.

Case
TNT Charge

(kg)
Position of Explosion

in the Tunnel
Schematic

Cross-Section Longitude

B1 2 Center
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Figure 2. Test setup: (a) Scene photo of the tunnel specimens; (b) Details of foam filling; (c) Prepare
for covering soil; (d) Finish covering.

In the test, overpressure sensors were used to record the reflected overpressure for
each shot. The overpressure sensors were located at the additional tunnel section. The
layout diagram of overpressure sensors for each case is shown in Figure 3.
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After the field blast test, the three blast-damaged specimens were transferred to the
laboratory, along with one intact specimen for the static loading test. The setup of the static
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load test is given in Figure 4a. A spread beam was arranged on the top of the tunnel crown
and contacted with the hydraulic servo jack, thus transferring the vertical load uniformly
to the specimen. Two displacement sensors were employed at the inner side of the tunnel
crown, which were used to measure the deflection of the specimen during the static tests,
as shown in Figure 4b. The test program of the static loading test is listed in Table 3.
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Table 3. Test program.

Case Specimen No. Position of Explosion

B0 Specimen 4 Intact specimen
B1 Specimen 1 Center
B2 Specimen 2 Top
B3 Specimen 3 Hance

2.2. Development of the FE Model
2.2.1. Spatial Discretization and Modeling Process

In this study, explicit non-linear analyses were conducted, in which a finite element
(FE) model was established and solved via the commercial software LS-DYNA. In LS-
DYNA, the element of the Lagrangian algorithm is attached to the material, and the
deformation of the element is generated with the flow of the material. However, when
the deformation of the structure is enormous, it may lead to serious distortion of the finite
element mesh, which will result in an invalid calculation. The Eulerian algorithm is based
on spatial coordinates, and the element is fixed in space during the analysis which will not
move with the component. The arbitrary Lagrangian–Eulerian (ALE) algorithm has the
advantages of both the Lagrangian and Eulerian algorithm [32–35]. The elements can move
independently of the material and spatial coordinate systems, which can avoid serious
distortion. In addition, it can effectively track the motion of the structure boundary and
maintain a reasonable shape of the elements, which is widely adopted for solving large
deformation issues in the field of structural explosion [36–38]. Hence, the ALE algorithm
was employed to simulate the interaction between the blast wave and the tunnel entrance.
As shown in Figure 5, the FE model consisted of the soil layer, RC lining, foundation slab,
rebar, air and TNT charge. Lagrangian algorithms were used to describe solid materials
such as soil layer, RC lining, foundation slab. Eulerian algorithms were utilized for air and
TNT charge components. The interaction between Eulerian and Lagrangian elements was
attained using the keyword * CONSTRAINED_LAGRANGE_IN_SOLID. A face-to-face
contact algorithm was employed to simulate the interaction between the lining and the
soil. The effect of the initial earth stress on the buried tunnel entrance was considered
by applying gravity to the soil layer via the keyword * LOAD_BODY_Z. The rebar was
modeled by Hughes-Liu beam elements and connected into the concrete with the keyword
* CONSTRAINED_LAGRANGE_IN_SOLID. After a mesh convergence study, a mesh size
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of 15 mm was determined for the center of the RC lining, and a mesh size of 20 mm was
determined for the rest of the Lagrangian models. In addition, the Eulerian mesh size was
determined to be 10 mm in the FE model [39,40]. The erosion algorithm was adopted in the
FE simulation. After several preliminary simulations, a maximum tensile strain erosion
criterion with a value of 0.1 was used in this study [41,42].
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Figure 6 shows the FE model of the intact specimen under static loading. For the
FE model of static loading, the spread beam vertically moved to the tunnel crown with a
constant velocity of 0.1 mm/ms. In addition, to obtain the residual bearing capacity of the
blast-damaged specimens, it was necessary to first apply a small restart after the explosion
simulation. The aim was to allow the blast-damaged specimen to vibrate freely. When the
global system stabilized, a full restart function in LS-DYNA was employed to connect the
explosion and static loading phases. It should be noted that dynamic explicit analysis was
employed in all phases. The simulation process for the calculation of the residual bearing
capacity of the blast-damaged specimen is shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 24 
 

 

the keyword * CONSTRAINED_LAGRANGE_IN_SOLID. After a mesh convergence 
study, a mesh size of 15 mm was determined for the center of the RC lining, and a mesh 
size of 20 mm was determined for the rest of the Lagrangian models. In addition, the Eu-
lerian mesh size was determined to be 10 mm in the FE model [39,40]. The erosion algo-
rithm was adopted in the FE simulation. After several preliminary simulations, a maxi-
mum tensile strain erosion criterion with a value of 0.1 was used in this study [41,42]. 

 
Figure 5. FE model of the blast test: (a) RC lining; (b) Soil layer; (c) Details of RC lining; (d) Foun-
dation slab. 

Figure 6 shows the FE model of the intact specimen under static loading. For the FE 
model of static loading, the spread beam vertically moved to the tunnel crown with a 
constant velocity of 0.1 mm/ms. In addition, to obtain the residual bearing capacity of the 
blast-damaged specimens, it was necessary to first apply a small restart after the explosion 
simulation. The aim was to allow the blast-damaged specimen to vibrate freely. When the 
global system stabilized, a full restart function in LS-DYNA was employed to connect the 
explosion and static loading phases. It should be noted that dynamic explicit analysis was 
employed in all phases. The simulation process for the calculation of the residual bearing 
capacity of the blast-damaged specimen is shown in Figure 7. 

 
Figure 6. FE model of the undamaged tunnel under static loading. Figure 6. FE model of the undamaged tunnel under static loading.



Sensors 2022, 22, 9727 8 of 23
Sensors 2022, 22, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 7. Process of calculation. 

2.2.2. Material Model 

Concrete and Rebar 
In this study, the * MAT_CONCRETE_DAMAGE_REL3 model (i.e., the KCC model) 

was employed to simulate the dynamic response of the tunnel [43–45]. Three independent 
strength surfaces (i.e., the yield strength surface, maximum strength surface, and residual 
strength surface) are defined in the KCC model to fully represent the elastic, plastic and 
softening behaviors of the concrete-like materials being stressed. The parameters for the 
strength surface are a0, a1, a2, a0y, a1y, a2y, a1f and a2y, which can be determined by triaxial 
compressive or tensile tests. At the same time, users only need to input the uniaxial com-
pressive strength and Poisson’s ratio of the concrete, and then other parameters can be 
automatically generated. However, in the KCC model, the default compressive and tensile 
softening parameters (b1 and b2) are only valid for an element size of 25.4 mm and thus 
should be modified if different element sizes are used in the FE simulation [46]. For the 
concrete with a cylindrical strength of 24.7 MPa, Gc was 13.62 MPa * mm, the area under 
the post-peak stress-strain curve Gc/h was 0.91 and the corresponding b1 was 3.11 after 
calculation. In the same way, b2 was 1.25. For the concrete with a cylindrical strength of 
37.4 MPa, Gc was 14.38 MPa * mm, the area under the post-peak stress-strain curve Gc/h 
was 0.96 and the corresponding b1 was 2.73 after calculation. In the same way, b2 was 1.32. 
Table 4 lists the key parameters of the KCC model utilized in the current study. The equa-
tion of state 8 (* EOS_TABULATED_COMPACTION) was employed in the KCC model 
to describe the relationship of volumetric strain and bulk modulus under various hydro-
static pressures. 

Table 4. Key parameters in the KCC model for the tunnel lining and foundation slab. 

Tunnel Lining Foundation Slab 
Parameter Value Parameter Value Parameter Value Parameter Value 

fc (MPa) 24.7 a1 0.4463 fc (MPa) 37.4 a1 0.4463 
ft (MPa) 2.551 a2 0.0033 ft (MPa) 3.363 a2 0.0022 
wc (mm) 30 a1f 0.4417 wc (mm) 30 a1f 0.4417 
h (mm) 15 a0y 5.5130 h (mm) 15 a0y 8.3480 

b1 3.13 a1y 0.6250 b1 2.73 a1y 0.6250 
b2 1.27 a2f 0.0048 b2 1.32 a2f 0.0032 
a0 7.3010 a2y 0.0104 a0 11.06 a2y 0.0069 

The * MAT_PLASTIC_KINEMATIC material model was utilized to characterize the 
dynamic behavior of the rebar. The model is related to the strain rate of the material and 

Figure 7. Process of calculation.

2.2.2. Material Model
Concrete and Rebar

In this study, the * MAT_CONCRETE_DAMAGE_REL3 model (i.e., the KCC model)
was employed to simulate the dynamic response of the tunnel [43–45]. Three independent
strength surfaces (i.e., the yield strength surface, maximum strength surface, and residual
strength surface) are defined in the KCC model to fully represent the elastic, plastic and
softening behaviors of the concrete-like materials being stressed. The parameters for the
strength surface are a0, a1, a2, a0y, a1y, a2y, a1f and a2y, which can be determined by triaxial
compressive or tensile tests. At the same time, users only need to input the uniaxial
compressive strength and Poisson’s ratio of the concrete, and then other parameters can
be automatically generated. However, in the KCC model, the default compressive and
tensile softening parameters (b1 and b2) are only valid for an element size of 25.4 mm and
thus should be modified if different element sizes are used in the FE simulation [46]. For
the concrete with a cylindrical strength of 24.7 MPa, Gc was 13.62 MPa * mm, the area
under the post-peak stress-strain curve Gc/h was 0.91 and the corresponding b1 was 3.11
after calculation. In the same way, b2 was 1.25. For the concrete with a cylindrical strength
of 37.4 MPa, Gc was 14.38 MPa * mm, the area under the post-peak stress-strain curve
Gc/h was 0.96 and the corresponding b1 was 2.73 after calculation. In the same way, b2
was 1.32. Table 4 lists the key parameters of the KCC model utilized in the current study.
The equation of state 8 (* EOS_TABULATED_COMPACTION) was employed in the KCC
model to describe the relationship of volumetric strain and bulk modulus under various
hydrostatic pressures.

Table 4. Key parameters in the KCC model for the tunnel lining and foundation slab.

Tunnel Lining Foundation Slab
Parameter Value Parameter Value Parameter Value Parameter Value

fc (MPa) 24.7 a1 0.4463 fc (MPa) 37.4 a1 0.4463
ft (MPa) 2.551 a2 0.0033 ft (MPa) 3.363 a2 0.0022
wc (mm) 30 a1f 0.4417 wc (mm) 30 a1f 0.4417
h (mm) 15 a0y 5.5130 h (mm) 15 a0y 8.3480

b1 3.13 a1y 0.6250 b1 2.73 a1y 0.6250
b2 1.27 a2f 0.0048 b2 1.32 a2f 0.0032
a0 7.3010 a2y 0.0104 a0 11.06 a2y 0.0069

The * MAT_PLASTIC_KINEMATIC material model was utilized to characterize the
dynamic behavior of the rebar. The model is related to the strain rate of the material and
is very suitable for the simulation of isotropic and kinetic plastic hardening materials. In
this paper, the yield strength of the rebar is 450 MPa, the elastic modulus is 200 GPa, and
the strain rate parameters C and P are 40 s−1 and 5, respectively. In addition, the failure
strain of the rebar was set to 0.15, which meant that beam elements would be deleted if
their strain value exceeded 0.15, indicating rupture of the rebar.
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Soil Layer

In the current study, the soil layer was simulated by the * MAT_SOIL_AND_FORM
material model [47–49], in which the stress yield function can be expressed as:

φS = Sijsij/2 −
[

a0 + a1 p + a2 p2
]

(1)

where a0, a1 and a2 are yield function constants, which can be determined by the internal
friction angle ϕ and soil cohesion C. Sij denotes the deviatoric stress tensor. p is the
hydrostatic pressure, and the relationship with the volume strain is shown in Table 5 [50].
Based on the measured data of the soil in the field blast test, the main parameters of the
soil in the FE model are shown in Table 6.

Table 5. Pressure versus volume strain.

Volume Strain (lnV) 0 0.104 0.161 0.192 0.224 0.246 0.271 0.283 0.290 0.40

Pressure (MPa) 0 8 16 24 48 80 160 240 320 1640

Table 6. Key parameters of the soil layer.

Density ρ (kg/m3) Shear Modulus G (MPa) Bulk Modulus for Unloading K (MPa) a0 (Pa2) a2 (Pa) a3

1820 76.01 87.87 0 0 0.47

Air and TNT

The air in the FE model was considered an inviscid ideal gas, which was represented
by the * MAT_NULL material model. The keyword * EOS_LINEAR_POLYNOMIAL was
used to simulate the equation of state of the air, which is expressed as [50]:

P = C0 + C1µ + C2
2µ + C3

3µ +
(

C4 + C5µ + C2
6µ

)
E (2)

µ = 1/V − 1 (3)

where P is the pressure, E represents the internal energy per unit volume, V is the initial
relative volume, and C0, C1, C2, C3, C4, C5, and C6 are the coefficients of the polynomial
equation; for ideal air, C0 = C1 = C2 = C3 = C6 = 0 and C4 = C5 = 0.4 [33,38,50].

The TNT charge was described as * MAT_HIGH_EXPLOSIVE_BURN, and its cor-
responding equation of state was simulated by * EOS_JWL. The P-V relation of the JWL
equation of state is expressed as follows [50]:

P = A
(

1 − ω

R1v

)
e−R1V + B

(
1 − ω

R2V

)
e−R2V +

ωE0

V
(4)

where P is the detonation pressure, V is the initial relative volume, E0 is the detonation
energy per unit volume, and ω, A, B, R1 and R2 are polynomial equation coefficients. The
key parameters of air and TNT charge in the current study are shown in Table 7.

Table 7. Key parameters of air and TNT [33,36,50,51].

Air TNT
Parameter Value Parameter Value Parameter Value Parameter Value

ρ (kg/m3) 1.29 C4 0.4 ρ (kg/m3) 1630 R1 4.15
C0 0 C5 0.4 D (m/s) 6930 R2 0.95
C1 0 C6 0 PCJ (MPa) 21,000 ω 0.3
C2 0 E0 (J/m3) 0.25 A (MPa) 374,000 E0 (J/m3) 7 × 109

C3 0 B (MPa) 3230
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2.3. Validation
2.3.1. Reflected Overpressure

Figure 8 reports the history curves of the reflected overpressure from the field blast
test and FE simulation. The arrival time of the blast wave from the FE simulation was
generally close to that of the field blast test. In addition, the FE simulation predicted that the
attenuation rate of the overpressure was intense with several peaks, which is consistent with
the experimental results. Table 8 reports the comparison of the peak-reflected overpressure
from the field blast test and the FE simulation. It is shown that most of the peak-reflected
overpressure predicted by the FE simulation is in good agreement with the experimental
results, in which the deviations were less than 30%. However, for RP7 in Case B3, there
was a large deviation for the peak-reflected overpressure between the experimental and FE
simulations. This may be due to the decrease in soil mass affecting the sensors during the
field blast test.
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Table 8. Comparison of the reflected overpressure and acceleration between the test and simulation.

Case Peak Reflected Overpressure (MPa)

B1

Sensor No. RP7 RP8 RP9 RP10 RP11 RP12
Test 0.93 - - 1.29 1.26 0.93

Simulation 0.60 0.51 0.50 1.22 1.47 1.30
Deviation

(%) −35.5 - - −5.4 16.7 39.8

B2

Sensor No. - - - RP4 RP5 RP6
Test - - - 2.75 2.61 2.40

Simulation - - - 2.56 2.25 1.55
Deviation

(%) - - - −6.9 −13.8 −35.4

B3

Sensor No. RP7 RP8 RP9 RP10 RP11 RP12
Test 0.84 1.03 0.68 1.58 1.46 0.57

Simulation 1.65 1.09 0.83 1.69 0.97 0.33
Deviation

(%) 96.4 5.8 22.1 7.0 −33.6 −42.1

2.3.2. Damage Pattern

In the presentation of the FE results, the effective plastic strain (EPS) was used to
reflect the damage to the tunnel entrance. Since the current research focused on the damage
pattern of the specimen after an internal explosion, the post peak behavior of the tunnel
entrance was of great interest. Thus, the EPS was selected to vary from 1 to 2, which
corresponded to the concrete material deteriorating from its maximum strength to its
residual strength [46,52]. Figure 9 presents the damage pattern of the tunnel entrance under
the internal explosion from the FE simulation. Under the same TNT charge weight, the
punching failure caused by the contact detonation at the tunnel hance was greater than that
at the tunnel crown, which was consistent with the field blast test results. The comparison
of the punching failure zone between the experimental and FE results is further reported in
Table 9. The dimensions of the punching failure zone in the two specimens were close to the
test result, and the maximum deviation between the FE simulation and experimental result
was less than 10%, indicating the accuracy of the developed FE model. In the FE simulation,
all the specimens suffered tensile damage at the tunnel foot, which was consistent with the
field observation. Figure 9 also reports the deformation of the soil layer above the tunnel.
Note that the plastic strain was used to present the deformation of the soil layer in the FE
simulation. The soil layer above the tunnel entrance exhibited perforation due to contact
detonation, while a small settlement of the soil layer was observed for the tunnel after the
center explosion. These phenomena were also observed in the field blast test.
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Table 9. Size of punching failure zone (unit: mm).

Case
Test Simulation

Average DeviationInner Face Outer Face Inner Face Outer Face
d1 d2 d1 d2 d1 d2 d1 d2

B2 500 560 530 580 540 600 580 610 7.44%
B3 500 400 600 660 550 448 630 710 8.64%

2.3.3. Residual Bearing Capacity

The maximum bearing capacity of the specimen predicted by the FE simulation is given
in Table 10. The maximum bearing capacity of the intact specimen from the FE simulation
was 585 kN, which had a deviation of 2.5% from the experimental result. Table 10 further
reports the comparison of the test and FE simulation for the residual bearing capacity
of the blast-damaged specimens. The deviations between the static loading test and FE
simulation for each specimen were 2.5%, 3.9%, 9.3% and 11.5%, demonstrating the precision
of the FE model developed in this study. In addition, for the same TNT charge weight, the
specimen under the condition of contact detonation at the tunnel hance exhibited a greater
residual bearing capacity than that under the condition of contact detonation at the tunnel
crown, which was consistent with the experimental results. This phenomenon further
demonstrates the accuracy of the FE model and modeling process in the current study.

Table 10. Bearing capacity of the specimens between test and simulation.

Case Specimen No.
Bearing Capacity (kN)

Deviation
Test Simulation

B0 Specimen 5 600.00 585.00 2.5%
B1 Specimen 2 531.64 510.69 3.9%
B2 Specimen 3 454.21 411.52 9.3%
B3 Specimen 4 573.39 507.00 11.5%

3. Prototype of the Tunnel Entrance under Internal Explosion
3.1. FE Model

Based on the above validated material model and modeling algorithm, the FE model of
the tunnel entrance was scaled up to the prototype of the tunnel entrance with a scale ratio
of 1:5.5, as shown in Figure 10. In the FE model of the prototype of the tunnel entrance, the
outer diameter Ro and inner diameter Ri of the RC lining were 11 m and 9.68 m, respectively,
and, thus, the lining thickness DL was 0.66 m. A diameter (d) of 24 mm was utilized at both
double layers of the bidirectional rebars. The dimensions of the surrounding soil layer were
55,000 × 11,000 × 20,000 mm (length × width × height), and the buried depth (Ds) was
determined to be 1.65 m. The mesh sizes for the key components in the FE model of the
prototype of the tunnel entrance were consistent with those verified in Section 2.2.1 (i.e., a
mesh size of 15 mm was used for the center of the RC lining, and 20 mm was used for the
rest of the Lagrangian models). Outflow boundaries were imposed around the perimeter
of the ground to simulate an infinite space of surrounding rock.

3.2. Blast Scenarios

Based on the potential for terrorist attacks during the life cycle of the tunnel [53],
five explosive threats were selected in this section. The potential explosive threats were
a suitcase bomb, a compact sedan, a sedan, a cargo van and a delivery truck, which
correspond to 23, 227, 454, 1814 and 4536 kg of equivalent TNT weight (W), respectively, as
shown in Table 11. Numerical simulations of the central explosion and contact explosion at
the tunnel crown and tunnel hance for the prototype tunnel entrance were carried out. The
purpose was to investigate the dynamic response of the prototype of the tunnel entrance
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under internal explosions, thus contributing to the determination of the proper TNT charge
weight in the following vulnerability study in this paper.
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TNT equivalent (kg) 23 227 454 1814 4536

3.3. Dynamic Responses of the Prototype of the Tunnel Entrance

In the present study, the maximum bearing capacity of the prototype tunnel entrance
was determined to be 4640 kN via the FE simulation, as stated in Section 2.2. Figure 11
selectively illustrates the damage pattern of the prototype tunnel entrance subjected to the
internal explosion with three different TNT charge weights (W = 454, 1814, 4536 kg). It is
noted that there were three blast scenarios for each TNT charge weight (i.e., the central
noncontact explosion, the contact detonation at the tunnel crown and the contact detonation
at the tunnel hance). As shown in Table 12, there was no significant reduction in the residual
bearing capacity of the tunnel entrance when W was 23 kg, implying that the suitcase bomb
posed little threat to the tunnel entrance.
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Table 12. Residual bearing capacity of the prototype of tunnel entrance with given explosive mass.

Residual Bearing Capacity (kN)
Position of the Detonation Point Center Tunnel Crown Tunnel Hance

W = 23 kg 4598 4370 4452
W = 227 kg 3858 2540 3671
W = 454 kg 2954 2005 2413
W = 1814 kg 330 254 631
W = 4536 kg 42.4 20.1 41.8

As the weight of the explosive increased, the localized punching failure zone and
the region of damaged area greatly expanded, which was consistent with the field test
results. It is worth noting that for the case of the central noncontact explosion, when the
weight of the explosive was less than 454 kg, the tunnel entrance suffered global damage,
while local collapse occurred as the weight of the explosive increased to 1814 kg. Under
such circumstances, the residual bearing capacity of the tunnel entrance rapidly decreased.
As shown in Table 12, when the weight of the explosive reached 4536 kg, the tunnel
entrance suffered severe damage regardless of the position of the detonation point, and
its corresponding bearing capacity was reduced to 1% of the maximum bearing capacity,
implying that failure had occurred in the tunnel entrance.

4. Vulnerability Analysis of the Tunnel Entrance
4.1. Analysis of Uncertain Issues

For a tunnel structure, there are many random structural issues, such as tunnel di-
mensions, lining strength, rebar ratio, and burial depth. In addition, the risk of explosion
from accidental vehicle explosions and terrorist attacks is associated with a number of
uncertainties, such as the explosive type, the location of detonation, and the weight of the
explosive [54,55]. In the present study, two main uncertainties were considered, namely
the detonation point and weight of the explosive. According to the dynamic response
of the prototype of the tunnel entrance under internal explosion in Section 3.3, it was
found that when the weight of TNT charge exceeded 1000 kg (i.e., 1814 and 4536 kg), the
maximum residual bearing capacity of the tunnel entrance was less than 13.6% of the initial
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bearing capacity. Under such circumstances, the tunnel entrance seemed to suffer severe
failure. Therefore, in the following vulnerability analysis on the tunnel entrance under
internal explosion, the case of TNT charge weight beyond 1000 kg was not considered.
After several FE simulation trials, in this section, a total of five explosive weights (W) were
taken into account, which were 200, 400, 600, 800 and 1000 kg. It is further assumed that
the internal explosion occurred 5.5 m away from the tunnel entrance. Then, the Monte
Carlo method was utilized in Python to conduct two-dimensional random sampling of
the detonation points [56,57]. The sample size for each group of explosives was 50, thus a
total of 250 random detonation points were located in the Y-Z plane. Figure 12 illustrates
the coordinates of the random detonation points for each explosive weight, in which the
red point was the origin of the coordinate. It should be noted that if the distance from
the detonation point to the inner wall of the tunnel was less than the dimension of the
explosive, it was regarded as a contact explosion scenario. The FE model of the prototype
of the tunnel entrance in this section remained the same as that in Section 3.
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4.2. Damage Criterion

In the existing structural analysis under blast loading, the displacement, angle, ductil-
ity ratio and bearing capacity of the reinforced concrete members are usually utilized as the
damage criterion [58,59]. However, according to the field observations, the failure mode of
the tunnel entrance was not unique under various internal explosion conditions. Under the
condition of internal noncontact explosion, the tunnel entrance mainly suffered a global
response, while under the condition of internal contact explosion, the tunnel entrance
exhibited localized punching failure of the tunnel lining. Hence, the displacement damage
index in this study cannot accurately evaluate the damage of the tunnel entrance after an
internal explosion. For the tunnel structure, the bearing capacity is usually employed as
a basic design parameter, and the degradation degree in the bearing capacity is directly
related to the deterioration of the mechanical properties of the tunnel structure. Therefore,
it is more appropriate to take the degradation degree of the bearing capacity as the damage
index for the tunnel entrance under an internal explosion. In this paper, the damage index
D of the tunnel entrance under internal explosion was defined as [60,61]:

D = 1 − Fr

F0
(5)
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where F0 is the maximum bearing capacity of the intact tunnel entrance. Fr is the residual
bearing capacity of the blast-damaged tunnel entrance, which can be determined from the
FE simulation. In this paper, it is assumed that the damage level for the tunnel entrance
after an internal explosion can be divided into four categories based on the degradation
degree of the bearing capacity: light damage, moderate damage, severe damage and
complete damage [60]. Table 13 gives the threshold values for different damage levels in
the tunnel entrance.

Table 13. Threshold value for different damage levels of the tunnel.

D Damage Levels

0–0.2 Light damage
0.2–0.5 Moderate damage
0.5–0.8 Severe damage
0.8–1 Complete damage

4.3. Analysis of the FE Simulation Results

Figure 13 displays the typical damage pattern of the prototype of the tunnel entrance
under various detonation points for a certain TNT charge weight selected from 250 groups
of numerical simulation results. This selection was based on the conditions under which
the random detonation points occurred at the tunnel crown, center of the tunnel, tunnel
hance and center of the foundation slab. The figure shows that the level of damage in
the tunnel entrance was aggravated with increasing TNT charge weight. In particular, for
the case of detonation at the foundation slab, a localized crater was formed, and several
longitudinal cracks simultaneously developed at the tunnel crown, hance and foot. The
residual bearing capacity of the tunnel entrance for each case is presented in Figure 14. It
can be seen that the deterioration of the residual bearing capacity of the tunnel entrance
was worse for the case of contact explosion at the tunnel crown, whereas it was lighter for
the case of contact explosion at the foundation slab, indicating that the tunnel crown was
the weakest position of the tunnel entrance. In addition, for explosive weights ranging from
200 kg to 600 kg, the tunnel entrance mainly exhibited light to moderate damage, except for
the case of contact detonation at the tunnel crown. When the explosive weight increased
from 600 kg to 800 kg, the tunnel entrance damage gradually evolved from moderate to
severe. When the explosive weight reached 1000 kg, severe damage to the tunnel entrance
was observed regardless of the position of the explosion in the tunnel.
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4.4. Vulnerability Analysis of the Tunnel Entrance under Internal Explosion

The residual bearing capacities were calculated for all the post blast tunnel entrances
generated in Section 4.1. Thus, a series of scatter points was obtained, as shown in Figure 15.
It is noted that each point in the figure represents the damage level for the tunnel entrance
under different detonation points. The three horizontal dashed lines correspond to three
damage levels.

In the present study, it is assumed that the damage index of the sample data under
the same explosive weight follows a lognormal distribution [56,62–64]. Therefore, the
probability density function of the damage index of the tunnel entrance can be further
expressed as the lognormal probability density function. The corresponding logarithmic
mean and logarithmic standard deviation of the five TNT charge weights are reported in
Table 14. From the table, it is shown that with the increase in explosive weights, the mean
of the function gradually increased. Based on the data in the table, the probability density
function curves of the damage level for different explosive weights are plotted in Figure 16.
The dashed lines in the figure represent the threshold value for the corresponding damage
level. From the figure, it is observed that the probability density curve shifted to the right as
the explosive weight increased, suggesting that the damage to the tunnel entrance became
more severe. For an internal explosion with a charge weight of 200 kg, the tunnel entrance
suffered light or moderate damage, while for the 1000 kg charge weight, severe or even
complete damage of the tunnel entrance occurred.
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Table 14. Lognormal mean and standard deviation under different equivalence of explosives.

M/kg Lognormal Mean (µln) Lognormal Standard Deviation (σln)

200 −1.510 0.477
400 −0.835 0.160
600 −0.646 0.130
800 −0.466 0.099
1000 −0.315 0.066
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Figure 17 plots the vulnerability curves of the prototype tunnel entrance under internal
explosion, in which the horizontal coordinate is the explosive weight and the vertical
coordinate represents the exceedance probability for the tunnel entrance under internal
explosion. The plane in the figure was divided into four regions (light damage, moderate
damage, severe damage and complete damage) by the three curves Dlv0.2, Dlv0.4 and
Dlv0.6. From the figure, it is observed that when the explosive weight was greater than
300 kg, the probability of the tunnel entrance exceeding light damage reached 1.0, while the
corresponding probability for moderate damage was 0.08. At the same time, the enclosed
areas of moderate and severe damage were greater than the other areas, indicating that the
prototype of the tunnel entrance was dominated by moderate and severe damage for TNT
charge weights ranging from 200 kg to 1000 kg. In addition, the area enclosed by Dlv0.8
and the coordinate axis were small, implying a low probability of complete damage to the
tunnel entrance for explosive weights less than 1000 kg.
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5. Conclusions

In this paper, an FE model of a tunnel entrance under internal explosion was de-
veloped and validated based on field blast tests and laboratory static loading tests. The
validated FE model was then employed to conduct a probabilistic vulnerability analysis to
quantify the probability of damage to the tunnel entrance under internal explosion. The
uncertainty of explosive resources was considered. The residual bearing capacity of the
tunnel entrance after blasting was adopted as the damage criterion for damage assessment.
The vulnerability curves corresponding to various damage levels were then developed
based on the stochastic data from the probabilistic vulnerability analysis. The following
conclusions were obtained:

(1) When the tunnel entrance was under the action of contact explosion, a punching
failure zone appeared at the location of the detonation point, and a large number of
cracks radially developed around the crater, indicating that the tunnel entrance had
suffered local damage. When the detonation point was in the center of the tunnel, the
tunnel entrance exhibited global damage. Under the same TNT charge weight, the
residual bearing capacity of the tunnel entrance after contact explosion at the tunnel
crown was the lowest among all the blast scenarios. It can be concluded that damage
occurring at the tunnel crown would significantly reduce the bearing capacity and
stiffness of the tunnel entrance.
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(2) The numerical results of the finite element (FE) model were in good agreement with
the actual measurements from the blast and static loading tests in terms of reflected
overpressure, damage pattern and residual bearing capacity. The validated FE model
was able to precisely predict the damage mode and residual bearing capacity of the
post blast tunnel entrance.

(3) For the central noncontact explosion scenario, when the charge weight (W) was
less than 454 kg, the tunnel entrance suffered global damage, and its corresponding
residual bearing capacity dropped to 63% of the maximum bearing capacity. As
W increased to 1814 kg, the tunnel entrance seemed to collapse. However, when
W reached 4536 kg, the tunnel entrance suffered severe damage regardless of the
position of the detonation point. In addition, when the detonation point was located
at the foundation slab, the degradation degree of the tunnel entrance was minimal,
but the opposite result was observed when the contact explosion occurred at the
tunnel crown, demonstrating that the tunnel crown was the vulnerable position for
the tunnel entrance.

(4) When the charge weight (W) was in the range of 0–100 kg, the probability of damage to
the tunnel entrance increased rapidly. As the charge weight increased past 300 kg, the
tunnel entrance’s probability of slight damage reached 1.0. When W varied from 200 to
1000 kg, the damage to the tunnel entrance shifted from moderate to severe. However,
the tunnel entrance’s probability of complete damage was less than 10% when the
TNT charge weight did not exceed 1000 kg. The established vulnerability diagram can
be used for probabilistic assessment of the damage level in tunnel entrances subjected
to various charge weights or detonation points.

(5) The recommendation for the blast-resistant design of the tunnel in this paper is that
the tunnel arch should be the most emphasized part in the reinforcement for the
entire structure. In addition, for daily transportation, the threshold value of the TNT
equivalent (Wt) of hazardous articles for carrying is 100 kg. When Wt is less than
100 kg, the vehicles can be permitted to transport. When Wt exceeds 100 kg, it is
recommended for vehicles to pass through the tunnel in batches. The accumulation of
Wt up to 800 kg in the tunnel is strictly prohibited.
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