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Abstract: Gait analysis refers to the systematic study of human locomotion and finds numerous
applications in the fields of clinical monitoring, rehabilitation, sports science and robotics. Wearable
sensors for real-time gait monitoring have emerged as an attractive alternative to the traditional
clinical-based techniques, owing to their low cost and portability. In addition, 3D printing tech-
nology has recently drawn increased interest for the manufacturing of sensors, considering the
advantages of diminished fabrication cost and time. In this study, we report the development of
a 3D-printed capacitive smart insole for the measurement of plantar pressure. Initially, a novel
3D-printed capacitive pressure sensor was fabricated and its sensing performance was evaluated. The
sensor exhibited a sensitivity of 1.19 MPa−1, a wide working pressure range (< 872.4 kPa), excellent
stability and durability (at least 2.280 cycles), great linearity (R2 = 0.993), fast response/recovery
time (142–160 ms ) , low hysteresis (DH < 10%) and the ability to support a broad spectrum of
gait speeds (30–70 steps/min). Subsequently, 16 pressure sensors were integrated into a 3D-printed
smart insole that was successfully applied for dynamic plantar pressure mapping and proven able to
distinguish the various gait phases. We consider that the smart insole presented here is a simple, easy
to manufacture and cost-effective solution with the potential for real-world applications.

Keywords: gait analysis; wearable sensors; 3D printing; capacitive pressure sensors; smart insole;
real-time plantar pressure monitoring

1. Introduction

Human gait, as natural and as simple as it seems, is the product of a complicated and
cooperative process involving the brain, spinal cord, nerves, muscles, bones and joints.
Gait is a typical activity for healthy human beings but also characteristic of a person’s
style and quality of life. Proper gait functionality is essential for maintaining an abundant
lifestyle, healthier and happier, while any deviation from the standard can drastically affect
everyday experiences.

The study of human walking, namely gait analysis, can be used as a valuable diagnostic
tool to distinguish between normal and pathological gait. Abnormal gait patterns are
related to the pathology of the human locomotor system, which can be caused by various
pathological conditions including neurodegenerative, musculoskeletal or other peripheral
disorders [1]. For example, apraxic gait is characterized by the deterioration of neurons, loss
of locomotion control and eventually inability of proper movement as a result of diseases
such as Parkinson’s [2], Alzheimer’s [3] or cerebral palsy (CP) [4], etc. Limited mobility
and dysfunctional gait, e.g., antalgic patterns, may be the effect of chronic musculoskeletal
pain arising from age-related conditions such as knee osteoarthritis [5], osteoporotic hip
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fractures [6], etc. In this respect, a quantitative gait analysis at a specific moment, or
through continuous monitoring and re-evaluation over time, can support early diagnosis of
diseases, credible clinical decisions, optimization of treatment protocols and assessment of
patient outcomes [7]. Apart from clinical applications, the reliable analysis of human gait
characteristics is one of the main interests in the fields of sports science [8], rehabilitation [9],
security monitoring [10] and robotics [11].

The traditional/old-fashioned approach to human gait analysis is based on the obser-
vation of a patient’s gait performed in a clinic by experienced specialists, aided with patient
self-reporting. However, this method is considered unreliable and oversimplified, i.e., the
evaluation is subjective and lacks of quantitativeness [1]. The progress of new technologies
has given rise to more delicate, advanced techniques which allow for an accurate, objec-
tive and quantitative measurement of gait parameters [12]. The standard method for gait
analysis, adopted by the majority of specialized clinics, is a vision-based motion analysis
captured by digital video cameras and thoroughly analyzed through image processing
techniques [13]. Alternatively or in combination, force platforms can be used to extract gait
information; they are located on the floor and utilize a pressure mattress to measure ground
reaction forces (GRFs) during walking [14]. Nonetheless, the aforementioned methodolo-
gies are relatively expensive, time-consuming and require expertise [15]. Moreover, the
examination procedure is strictly performed to controlled environmental settings, where
the patient is aware of his/her movements and usually with markers attached to the body;
hence, the results do not reflect real-world activities [15].

In the last decade, wearable insole-based sensor systems have shown great potential
as gait analysis tools, intending to overcome the aforementioned limitations of stationary
force platforms [16–18]. These wearable technologies allow for continuous gait monitoring
in both indoor and outdoor environments on a daily basis without any constraints on an
individual’s natural gait during measurements. Most often, they are used to measure the
plantar pressure distribution, despite the fact that other gate features can also be obtained,
including the center-of-pressure (CoP), step count, duration of gait cycle, swing and stance
duration [19]. Insole-based plantar pressure sensors produce an electrical signal upon
pressure loading during human gait. Based on their working mechanism, they can be di-
vided into three major, widely used types: piezoelectric [20–22], piezoresistive [23–26] and
capacitive [27–30]. Each sensing mechanism exhibits its own merits and limitations [16,18],
none of them has a clear edge and it is rather hard to develop a sensor device with ideal
characteristics [31]. The basic parameters to determine the performance of plantar pressure
detection sensors are sensitivity, linearity, range of detection, response time, hysteresis, sta-
bility, durability and interferences from external sources such as temperature, humidity or
electromagnetic interference [32]. Apart from sensor performance characteristics, multiple
factors have to be considered prior to the development of a new insole sensing system,
including sensing elements layout, electronics circuit design, signal processing algorithms,
energy consumption, manufacturing cost and user comfort [7,16,18].

Capacitive pressure sensors have been established as a compelling candidate for insole-
based plantar pressure monitoring due to their simple structure, low power consumption,
good reliability, repeatability and dynamic performance [16,17,33]. Nonetheless, their
performance can be affected by humidity, temperature and electromagnetic interference [16].
Many attempts have been made over the years to integrate capacitive pressure sensors
into smart insoles. In order to increase plantar pressure sensitivity, capacitive sensors
with porous polydimethylsiloxane (PDMS) as the dielectric material have been repeatedly
presented in the literature [34–36]. In another approach, Zhang et al. developed a low-
cost, capacitive-based plantar pressure sensor composed entirely of fabric [37]. Tao et al.
established a real-time pressure mapping smart insole system with a rubber dielectric
layer and studied various motions and postures [29]. Aqueveque et al. presented a
gait segmentation method using a custom-made capacitive insole [28]. Sorrentino et al.
developed a capacitive insole prototype with temperature compensation and high spatial
resolution [27]. Recently, De Guzman et al. created a low-cost, capacitive insole for
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plantar pressure measurement as a possible alternative to more expensive systems [30].
However, the insoles presented in the aforementioned studies are characterized by complex
and expensive fabrication processes or inadequacy for cost-effective mass production. In
addition, a few capacitive-based insole products have become commercially available in
the last two decades. For example, the Pedar® (Novel GmbH, Munich, Germany) pressure
distribution measuring system is a widely used and well-tested in-shoe device based on
99 capacitive sensors [38–40]. Another product worth mentioning is Moticon’s (Moticon
GmbH, Munich, Germany) OpenGo® sensor insole system which consists of 16 capacitive
pressure sensors and is capable of measuring plantar pressure distribution and acceleration
in three dimensions [41–43]. PODOSmart® (Digitsole SAS, Nancy, France) insoles have also
been validated for normal walking measurements using a stereophotogrammetry-based
system [44]. Despite the above solutions having been proven in terms of accuracy and
repeatability, they are characterized by a relatively high cost.

In recent years, the application of three-dimensional (3D) printing technology for the
manufacturing of sensors has attracted a significant amount of research interest both in
industry and academia [45]. When compared to traditional semiconductor processing tech-
niques, 3D printing offers several advantages, including lower fabrication costs, reduced
manufacturing time, lesser number of processing steps, a range of different materials and
prototypes that can be easily customized according to application [46]. Various types of
3D-printed sensors such as force, acoustic and ultrasonic, optical and electromagnetic have
been developed for engineering [45,47] and biomedical applications [46,48,49]. Several
3D-printed capacitive-based, flexible strain and tactile sensors can be found in the liter-
ature [50,51], but to the best of our knowledge, a 3D-printed capacitive smart insole for
plantar pressure monitoring has not been developed up to now.

In this study, we present the development of a 3D-printed smart insole suitable for
plantar pressure monitoring. The insole incorporates 3D-printed pressure sensors based on
the capacitive sensing principle. At first, the capacitive sensors were tested under dynamic
loading conditions to assess their performance by measuring their principal characteristics.
These include sensitivity, linearity, pressure detection range, durability, stability, hysteresis
and response/recovery time. The 3D-printed sensors were integrated into a 3D-printed
insole, demonstrating the potential use of the system for recording gait-related data.

2. Materials and Methods
2.1. A 3D-Printed Capacitive Pressure Sensors

Capacitive pressure sensors were fabricated using 3D printing technology, employing
the Fused Filament Fabrication (FFF) method. Specifically, 3D printing was performed
with the TENLOG TL-D3 Pro Dual Extruder 3D Printer (TENLOG 3D solutions, Shenzhen,
China). The sensors were designed via the Fusion 360 CAD software (Autodesk, San
Rafael, CA, USA), while the Ultimaker Cura 4.6.2 software (Ultimaker B.V., Utrecht, The
Netherlands) was used for the slicing of the object into layers.

Capacitive pressure sensors consist of two conductive plates separated by a dielectric
material. As it is shown in Figure 1, the in between section of the two plates consists of two
dielectric materials, in separate levels: First, an air cavity with a thickness of 1.0 mm and
then a 0.2 mm solid flexible material (Filaflex 70A). This architecture was chosen as it offers
greater sensitivity than the classic plate–dielectric–plate structure [52]. We should mention
here, that prior to the presented architecture, we had already tested various versions of the
classic capacitive structure (data not shown), where the dielectric was either solid or had a
grid pattern (20% to 100% infill). However, in this case the system demonstrated a poor
signal response/sensitivity. In general, the pressure sensitivity of a capacitive pressure
sensor Sc can be expresses as [34]:

Sc =
(∆C/C0)

∆P
(1)
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where ∆C is the change in capacitance, C0 is the initial capacitance without the application
of pressure and ∆P is the pressure change.
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The optimized model of the capacitive pressure sensor incorporates two conductive
plates made of Protopasta CDP11705 composite conductive PLA (Protoplant, Vancouver,
Canada) while the middle dielectric layer is made of Filaflex 70A TPU (Recreus Industries
S.L., Elda, Spain) (Figure 1). The overall thickness of the sensor is t = 2 mm and its
diameter d = 14.5 mm with layers of the following thicknesses: bottom electrode— 0.3 mm,
top electrode—0.5 mm and dielectric in total—1.2 mm. The settings for the 3D printing
of the different materials used for the fabrication of the capacitive pressure sensors are
summarized in Table 1.

Table 1. Printing parameters applied for the 3D printing of the different materials.

3D Printing Settings Protopasta Conductive PLA Filaflex 70A/82A TPU

Infill (%) 100

Extruder temperature (◦C) 215 230

Bed temperature (◦C) 45

Print speed (mm/s) 15–20

Layer height (mm) 0.1

Nozzle diameter (mm) 0.6

Flow rate (%) 110

Flow width (mm) 0.6

Retraction speed (mm/s) 60

The capacitance for two dielectric layers in series can be found easily from basic
electrodynamics equations [53] and expressed as:

C =
ε0 × A
d1
k1

+ d2
k2

(2)
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where ε0 is the dielectric constant of free space, A is the area of the plate, d1, d2 are the
thicknesses of the two dielectric materials and k1, k2 are the relative permittivity of the two
dielectrics, respectively.

When pressure is applied on the capacitance sensor, the two plates (top and bottom)
come closer. Thus, the total distance (d1 + d2) between the two electrodes is reduced on the
system and the capacitance changes (Equation (2)).

On both plates, we fix the cables with an adhesive conductive glue and on top of the
glue we place a small piece of insulation tape as a protective layer.

2.2. Experimental Set-Up for Dynamic Measurements

An in-house experimental set-up was designed and manufactured to facilitate dynamic
measurements by simulating a pressure point. This is performed through an aluminum
shaft (piston) that moves up and down. The shaft moves through a flanged linear ball
bearing (8 mm), which is fixed on the structure (wooden crate). The sensor is located
on the bottom side of the structure, just below of the shaft’s tip (area of the tip is equal
to the area of sensor). On the top part of the shaft, the crate supports the installment of
a pulley system that enables the movement of the shaft on the vertical axis (Figure 2).
Additionally, the pulley system is easily disengaged from the shaft in order to place on it
0.5 kg disk weights. In this direction, the pulley system transmits the motion to the piston
through a stepper motor (Nema 23 57BYGH115 from Wantai motors), which is located
on the side of the crate, and is connected to a motor driver (TB6600), both controlled by
an Arduino Nano system (Arduino LLC, Boston, MA, USA). This way, the shaft applies
periodic force on the sensor. Two potentiometers control the speed and the elevation of
the shaft, which are modified in real time. The gait speed is displayed on a microdisplay
(1.3′′ OLED Display Module from Waveshare) as steps per minute per foot. A second
Arduino Nano board is used for the system’s output acquisition and data are recorded
using a code written with the open-source Arduino software language (IDE). The total time
of the measurement and the sampling period are defined by the user. The sensor is fixed at
this position with adhesive tape (3M™ Acrylic Adhesive 300MP) before the experiment
initiation. The set-up makes it possible to measure the sensor’s response as a function of
different mass loading conditions ranging from 0.7 (weight of shaft) to 14.7 kg (which in
pressure units is 41.5 kPa to 872.4 kPa). The environmental conditions of the sensor tests
were 20 ◦C and 55–60% humidity.

2.3. A 3D-Printed Smart Insole

The fabricated 3D-printed capacitive pressure sensors were used for the design and
development of a 3D-printed smart insole. The architecture, circuit connection and images
of the 3D-printed capacitive smart insoles are presented in Figure 3. The upper and lower
layer of the insole are made of Filaflex 82A (Recreus Industries S.L., Elda, Spain) and the
printing parameters are the same as those presented in Table 1. Each insole incorporates
16 capacitive pressure sensors which are fixed to the lower flexible case and adequately
electrically connected. The sensors are distributed in the insole as depicted in Figure 3A.
The total thickness of the insole is 3.8 mm, with a length up to 25 cm and width up to
8.5 cm, corresponding to a No.39 EU size shoes. The two layers (upper and lower) are
glued together at the perimeter of the insole.

2.4. Smart-Insole Graphical User Interface (GUI) Implementation

The GUI presented in the current investigation is a Java-based desktop application
developed in IntelliJ IDEA [54]. It makes use of a “lightweight” GUI Framework, called
“Swing”, which contains a set of classes to provide powerful and flexible GUI compo-
nents [55]. The application communicates with the insole, and particularly with the elec-
tronics module, with the use of the Serial Communication protocol, through a USB cable,
or, alternatively, a wireless Bluetooth module working as a serial (Rx/Tx) pipe. It receives
and converts in real-time the sensor readings, acquired from the A/D converter of the elec-
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tronics module, into pressure values, and subsequently, it presents in a graphical manner
the pressure variations of each individual sensor and the center of pressure (CoP) in total
too. In the implementation of the individual pressure variations, the insole, scaled into the
monitor resolution, is divided into 227 grids as shown in the middle of Figure 4. Then, a
group of nearby grids is assigned to every sensor, which, depending the current pressure
value, change color accordingly, with yellow indicating the lowest and red the highest
pressure. Next to the grid implementation, the individual pressure values may also be
presented in a chart-type implementation as shown at the left and the right side of Figure 4.
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3. Results and Discussion
3.1. Sensor Evaluation

In order to evaluate the sensing performance of the 3D-printed capacitive pressure
sensors, we conducted a series of experiments that enabled to assess their basic charac-
teristics. The real-time sensor responses under dynamic pressure loading were used to
obtain an estimation of their sensitivity, both in and out of the insole. In addition, we
investigated other key parameters correlated to sensor performance including linearity,
limit of detection (LoD), detection range, effect of loading frequency, stability, durability,



Sensors 2022, 22, 9725 8 of 18

repeatability, hysteresis, response and recovery time. In this manner, their potential for
practical applications such as plantar pressure monitoring was verified.

3.1.1. Real-Time Measurements

The real-time capacitance changes of a typical 3D-printed capacitive pressure sen-
sor as a function of varying external pressure are demonstrated in Figure 5. The dy-
namic experiments were performed under a loading frequency that was kept constant at
40 steps/min. The applied pressure ranged from 41.5 kPa to 872.4 kPa with an incremental
increase of 59.35 kPa, while one-minute recordings were obtained at every pressure. In
these graphs, we present the dynamic responses of the sensors at selected pressure values
(step = 118.7 kPa) under three loading/unloading cycles. As observed, the capacitance
response gradually increases with pressure and its value is clearly distinctive among all
steps. Moreover, the sensor is characterized by a stable and repeatable capacitance response
under every pressure in the range tested. The results indicate that the sensors can efficiently
operate at this pressure range without any damage, since in all cases they rapidly recover
to their initial baseline value.
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3.1.2. Sensitivity

In order to assess the sensitivity of the 3D-printed capacitive pressure sensors, we
measured their relative responses versus external pressure. In Figure 6, the relative capac-
itance change, the average of 16 sensors, is presented under varying external pressures
ranging from 41.5 kPa to 872.4 kPa, using a step of 59.35 kPa. In this range, the mean sensor
response was proved to be linear with pressure, while the slope of the curve was used to
estimate the sensitivity. As shown in Figure 6, the average sensitivity of the capacitive
sensors is 1.19 ± 0.03 MPa−1, showing a great linear trend (R2 = 0.993) under the pressure
range tested up to 872.5 kPa. The LoD is 41.5 kPa, which means that below this point it is
not possible to reliably detect any pressure changes. The sensitivity found here is higher
than that of other capacitive pressure sensors with similar working pressure ranges re-
ported previously in the literature [34,37]. Our results suggest that the developed capacitive
sensors are well-suited for applications with a broad pressure range.



Sensors 2022, 22, 9725 9 of 18

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 6. Average relative capacitance variation of 16 sensors as a function of the external pressure 
applied (0.04 − 0.87 MPa); the red line represents a linear fit of slope 1.19 ±  0.03 MPaିଵ. 

3.1.3. Loading Frequency 
Considering the specific application envisaged for the capacitive pressure sensors, 

i.e., gait analysis, it is important to verify the sensor response at different loading 
frequencies, which correspond to altering gait speeds. In this direction, Figure 7 shows 
the capacitance response of a typical 3D-printed capacitive pressure sensor as a function 
of different loading frequencies under a pressure load of 872.5 kPa. The range of the 
tested gait speed is between 30 and 70 steps/min, simulating slow, normal, fast and 
dynamic gait. As shown, no dependence of the sensor response was found on the gait 
speed. This means that the operation of the capacitive sensor remains stable regardless of 
the gait pace. In this graph, the initial C଴ and final C୤ capacitance values are depicted, as 
well as their difference ΔC. 

Figure 6. Average relative capacitance variation of 16 sensors as a function of the external pressure
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3.1.3. Loading Frequency

Considering the specific application envisaged for the capacitive pressure sensors, i.e.,
gait analysis, it is important to verify the sensor response at different loading frequencies,
which correspond to altering gait speeds. In this direction, Figure 7 shows the capacitance
response of a typical 3D-printed capacitive pressure sensor as a function of different
loading frequencies under a pressure load of 872.5 kPa. The range of the tested gait speed is
between 30 and 70 steps/min, simulating slow, normal, fast and dynamic gait. As shown,
no dependence of the sensor response was found on the gait speed. This means that the
operation of the capacitive sensor remains stable regardless of the gait pace. In this graph,
the initial C0 and final C f capacitance values are depicted, as well as their difference ∆C.
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3.1.4. Durability

In Figure 8, we present the capacitive sensor response during 1 h of continuous
measurements (2.280 cycles of loading/unloading) under an applied pressure of 872.4 kPa.
The experiment is used as a reliability test in order to assess the durability of the capacitive
sensor. The inset figures demonstrate the first and final minute of the measurements. As
seen, the response of C0 and C f remains the same, confirming the excellent stability and
durability of this type of sensor.
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3.1.5. Hysteresis

Hysteresis is a critical parameter to be evaluated considering the practical applicability
of any pressure sensor. Hysteresis can be defined as the difference in the output signal
between consecutive loading and unloading cycles [56]. Negligible or low hysteresis is
a desirable property that allows for consistent and accurate measurement of pressure
variations over time. Due to the fact that the sensor has to operate under repeated dynamic
conditions, potential unrecoverable deformations could introduce significant measurement
errors. Figure 9 depicts the measured hysteresis curves, forward and reverse, as obtained
from three consecutive linear loading–unloading pressure cycles. According to this graph,
two different responses are distinguished with the unloading curve being slightly higher
compared to the loading cycle. Nevertheless, the sensor only exhibits low hysteresis,
indicating its capability to obtain reliable and accurate pressure signals.
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cycles of pressure.

Quantitively, hysteresis can be assessed using the equation for the degree of hysteresis
(DH) which is defined as the percentage of the relative difference in the area underneath
the loading and unloading curves, calculated by the following equation [56]:

DH(%) =
AUnloading – ALoading

ALoading
× 100 (3)

where ALoading and AUnloading are the areas underneath the curves in Figure 9, corresponding
to the loading and unloading cycles, respectively. For our sensor, the DH value was
estimated to be 9.8%, implying a relatively good hysteresis level.

3.1.6. Response/Recovery Time

Real-time pressure monitoring requires sensors that exhibit fast response and recovery
times. Response time is the interval needed for the sensor output to reach its final value
upon a pressure change. Reversely, recovery time is the interval required for a sensor to
return to its base value upon pressure release. In this study, the response time was estimated
as the time in which the capacitance changes from 10 to 90% of its maximum change upon
pressure loading while the recovery time was from 90 to 10% upon pressure unloading [57].
The response/recovery time can be seen in Figure 10, where the sensor response is presented
under the loading–unloading of 872.4 kPa. As illustrated, the response/recovery time of
our device was found to be in the millisecond range. Specifically, the sensor can detect
pressure changes with a response time of 142 ms and a recovery time of 160 ms. This means
that the developed sensing device can successfully monitor plantar pressure variations,
at least in cases where the stride frequencies are in the range of 30–70 steps/min. The
response/recovery time found in this study is similar to that of other capacitive pressure
sensors [29,35].
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3.1.7. Insole Sensitivity

Since the capacitive pressure sensors developed in this research are meant to be fixed
inside an insole, one should consider investigating the effect of the insole and electrical
connections on the sensor’s performance. For this purpose, the same sensors were placed
inside the designed 3D-printed insole and re-calibration was performed using the same
experimental parameters (see Section 3.1.2). The average relative capacitance change ratio
(∆C/C0) of sixteen sensors as a function of increasing applied pressure, both outside and
inside the insole, is presented in Figure 11. Again, the slope of the curve reveals the average
sensitivity of the capacitive pressure sensor. As anticipated, the insole has a noticeable
impact on the sensor’s response, i.e., the sensitivity decreases 2.1 times, specifically from
1.19 to 0.55 MPa−1. Even so, the linearity is still high

(
R2 ∼ 0.989

)
, and the working

pressure range remains the same while the average error level drops to 10%. The insole
sensitivity may be further improved by reducing the thickness of the insole’s upper/lower
cases and minimizing the electrical noise by upgrading/optimizing the external electrical
circuit and hardware.
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3.2. Plantar Pressure Mapping

To demonstrate the relevance of the developed 3D-printed capacitive pressure sensors
for practical applications, we placed the sensors inside a 3D-printed smart insole, which
was subsequently used for real-time plantar pressure measurements and gait analysis. The
smart insole was designed to incorporate 16 pressure sensors, distributed appropriately
across the main pressure areas of the foot during walking. Specifically, the sensors were
fixed at four areas: phalanges (T1, T2, T3, T4), metatarsals (ME1, ME2, ME3, ME4, ME5),
plantar arch (M1, M2, M3, M4) and calcaneus (H1, H2, H3). The arrangement of the sensing
elements inside the smart insole is depicted in Figure 12G.
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Figure 12. Plantar pressure distribution (heatmap) of the right foot under the main phases of a normal
gait cycle: (A) stance, (B) heel strike, (C) foot flat, (D) midstance, (E) heel off and (F) toe off, (G) insole
sensors arrangement and color map of the pressure range.

The smart insole system was fixed at the right foot of a volunteer subject and real-time
recordings were obtained during repeated gait cycles. The subject recruited for these
experiments was a healthy female, 27 years old, 59 kg in weight and 1.69 cm in height with
a European 39 shoe size. No discomfort was reported from the volunteer while wearing
the insole. The plantar pressure distribution during a dynamic gait cycle is presented in
Figure 12. The heatmaps shown in this graph correspond to the main stance phases of
a gait cycle including stance, heel strike, foot flat, midstance, heel off and toe off. The
plantar pressure mapping is based on a color scale of ten regions (0–450 kPa), ranging from
yellow (low pressure) to red (high pressure). It can be clearly seen that the developed smart
insole system was able to assess dynamic pressure variations and successfully determine
gait events during a gait cycle. The plantar pressure distribution changes depend on the
specific gait phase. In the stance and foot flat phases, a relatively even distribution of the
pressure across the foot is observed. In the heel strike stage, ground contact is initiated,
which results in the activation of the heel sensors that reach their peak value while the rest
of the sensor remains inactive. The midstance posture is characterized by the relocation
of the pressure loading mainly on midfoot and forefoot as recorded by the metatarsal and
toe sensors. During the heel off phase, the pressure is concentrated on the metatarsals
zone and the big toe. Finally, as displayed in the graph, at heel off all sensors return close
to zero pressure values, despite the fact that some signal drift or delay is observed. In
Figure 12, the trajectory of the center-of-pressure (CoP) is also shown (blue marker) during
the gait cycle and its transition through the subphases is revealed. As expected, the CoP
is initially located near the heel at the time of heel strike and gradually moves forward
to the forefoot near the toes at the heel off stage, indicating a regular variation of the CoP.
It should be noted that a proper estimation of the CoP, its trajectory and velocity, is an
important parameter to evaluate the balance ability of an individual.

The real-time plantar pressure signals, as collected from the sixteen sensors of the
insole during the normal gait cycle, are displayed in Figure 13. All heel sensors are activated
at the first three phases, namely stance, heel strike and foot flat with the highest amplitude
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of pressure measured at sensor H1 during heel strike (∼ 295 kPa). The hallux area, repre-
sented here by the sensing element T4, experienced a pressure value of ∼ 127 kPa in the
transition between midstance and heel off. At the same time point, the highest pressure
value in the phalanges zone was reported at sensor T1 (∼ 370 kPa). The metatarsals area
is for the most part loaded between the end of heel strike and the start of heel off. The
maximum pressure recorded in this zone was of value ∼ 380 kPa at sensor ME5, which is
located lateral to the first metatarsal. The plantar arch received the lowest pressure and
it was activated primarily at the foot flat stage with pressures remaining below 150 kPa.
Sensors T2 and T3 of the middle toes area did not bear any pressure throughout the gait
cycle. The results presented above confirm the applicability of the proposed 3D-printed
smart insole system for plantar pressure monitoring in real time with adequate accuracy
and time resolution. However, it should be noted that the results depend firmly on the
architecture of the sensors, their position within the system (including how close they are
packed together), on the manufacturing materials and on the general design of the insole
and how it may absorb the pressure during a gait analysis.
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Figure 13. Real-time plantar pressure signals obtained from the right foot of the subject during a nor-
mal gait cycle using the developed smart insole system. Sensors monitored four areas: (A) calcaneus,
(B) plantar arch, (C) metatarsals and (D) phalanges.

4. Conclusions

In this work, a 3D-printed smart insole system was established, aiming to monitor
the plantar pressure distribution during human gait. The insole system consists of 16
3D-printed pressure sensors employing capacitive sensing. The capacitive sensors were
tested under dynamic loading conditions using a custom-built experimental set-up that
was developed for gait simulation experiments. The experimental set-up allows to evaluate
the response of the sensors under repeated loading/unloading cycles and by varying
the loading frequency and amount of pressure. As a result, it was possible to assess the
performance of the sensors in terms of real-time dynamic response, sensitivity, linearity,
pressure detection range, stability, durability, hysteresis, response/recovery time and gait
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speed. It was confirmed that the sensors exhibit a very positive performance for their
specific application, i.e., real-time human gait monitoring. Using the smart insole and
dedicated software, it was possible to obtain plantar pressure maps at different gait phases,
to demonstrate the capabilities of our system for gait signal analysis. Moreover, this smart
insole system is characterized by a fast and low-cost fabrication process. Depending on the
3D printing systems, one can have a pair of insoles ready within a day. According to Table 2,
the manufacturing costs of the 3D-printing parts per sole is a little bit less than EUR 6. The
total cost of the insole pair, including the external recording unit, reaches EUR 60. Addi-
tionally, the process offers the ability to easily redesign an insole that will specifically meet
the requirements of a process and the specificity of a person’s/patient’s foot. This makes
the use of the aforementioned smart insole system perfect for personalized applications.

Table 2. Analysis of the cost per sole.

3D Printing

Part Mass (gr) Material Cost (EUR)

Insole case (top and
bottom) 82 Filaflex 82A 4.57

Sensor—Conductive
parts 4 Protopasta 0.50

Sensor—dielectric 4 Filaflex 70A 0.38

Electronics

Part # Characteristic Cost (EUR)

Cables 32 30 AWG 4.00

Microcontroller 1 Arduino mega 41.00

USB cable 1 2.00

Other

Part Cost (EUR)

Adhesive conductive
glue 4.00

Adhesive glue 1.00

Insulation tape 0.50
Full insole (including cables) 14.95

Monitoring system 41.00

Total 57.95
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