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Abstract: Grading is a decisive step in the successful distribution of mangoes to customers according
to their preferences for the maturity index. A non-destructive method using near-infrared spec-
troscopy has historically been used to predict the maturity of fruit. This research classifies the
maturity indexes in five classes using a new approach involving classification modeling and the
application of fuzzy logic and indirect classification by measuring four parameters: total acidity,
soluble solids content, firmness, and starch. These four quantitative parameters provide guidelines
for maturity indexes and consumer preferences. The development of portable devices uses a neo
spectra micro development kit with specifications for the spectrum of 1350–2500 nm. In terms of
computer technology, this study uses a Raspberry Pi and Python programming. To improve the
accuracy performance, preprocessing is carried out using 12 spectral transformation operators. Next,
these operators are collected and combined to achieve optimal performance. The performance of the
classification model with direct and indirect approaches is then compared. Ultimately, classification
of the direct approach with preprocessing using linear discriminant analysis offered an accuracy of
91.43%, and classification of the indirect approach using partial least squares with fuzzy logic had an
accuracy of 95.7%.

Keywords: classification; fuzzy logic; mango; maturity; near infrared

1. Introduction

Mango has a fresh taste and distinctive aroma and contains various bioactive com-
pounds such as vitamins, β-carotene, and polyphenols, which contribute to antioxidants
and nutrients. Thus, mango has been recommended for daily consumption [1]. The mango
has fairly large export potential, but the fruit also has perishable properties and a relatively
short shelf life, so in distribution, there is often a decrease in quality and damage before
the product reaches the customer [2]. Mango Arumanis can succeed in overseas markets
because of its sweet, fresh, and slightly sour characteristics, which are flavors favored by
many foreign consumers [3]. Arumanis mango’s characteristics are demanded by con-
sumers from Korea, Japan, Singapore, Malaysia, Europe, and the Middle East. The existing
advantages of this species make the selling price relatively higher than that of other types
of local mangoes.

The determination of mango maturity at harvest is essential for distribution decisions
in trade. A challenge for packinghouses in mango distribution is the grading stage, which
is the initial stage that determines the success of the next level. Grading also determines
decisions on sales, products whose shelf lives have been measured, and consumer prefer-
ences [4,5]. Grading aims to group mangoes with the same maturity level so that when
the fruits arrive, they have a maturity level that is in accordance with consumer demand.
Mangoes produce ethylene, which can trigger maturity in the surrounding mangoes [5].
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Thus, the placement of mangoes with varying maturity levels in one box can cause the
product to not meet consumer demands [3].

Arumanis mango is a climacteric fruit and usually harvested at the green stage. The
fruit does not change its physical appearance or skin color during maturity, so it is difficult
to determine the maturity levels of mangoes by sight compared to other types of mangoes
that experience skin discoloration. Several grading methods are used in determining the
maturity index based on the firmness, shape of the fruit, acidity, soluble solids content
(SSC), and number of days after full bloom (DAF) [6,7]. Due to the subjective aspects
of determining the mango maturity index based on physical characteristics, inconsistent
assessments, and the use of destructive chemical parameters [8], a non-destructive method
has been proposed as a tool to determine maturity. Near Infrared (NIR) spectroscopy is a
non-destructive method that can be used to determine the maturity index of fruit [9,10].
NIR spectroscopy is a non-destructive analytical technique capable of providing chemical
and structural information on certain samples in a very fast time [11]. NIR has a wavelength
of 750–2500 nm. Using this technology, the target sample is illuminated with light, and the
reflected light, or backscatter, is measured with a spectrometer. Compared to other infrared
spectroscopy methods, NIR can increase the depth of penetration and has less stringent
requirements for sample preparation [12,13]. The absorbance bands in the NIR region
of the spectrum are often non-specific, broad, and overlapping. NIR spectrum analysis
requires a multivariate method that is highly subject to noise arising from instrumentation,
scattering effects, and measurement settings. Spectral transformation is an essential step
in NIR processing because it can improve model performance [14]. The use of the best
spectral transformation method is often determined through trial and error. Previously, a
comparison of different spectral transformations was performed to achieve optimal model
input [15].

In several previous studies, NIR spectroscopy was widely used to predict the chemical
content and maturity of mangoes. However, the type of NIR spectroscopy used involves
a desktop in the laboratory, which is quite large and expensive. Thus, this technology
cannot be used for grading in the packinghouse. Although several studies to predict the
chemical contents and parameters of mangoes using NIR spectroscopy have produced
good accuracy, the results could still be improved. In a study to predict the total acidity
(TA) content in mangoes, the predictive determination coefficient (R2) was found to be 0.89
using the standard normal variate (SNV) transformation and artificial neural networks [16].
A study on predicting firmness in Kent mangoes obtained an R2 of 0.75 using interval
partial least squares (iPLS) [17].

Although there are commercially available portable NIR spectroscopy devices, includ-
ing Scio [18], Neospectra [19], and F-750 [20], these devices are expensive and have not
been able to classify fruits correctly; they also need to be calibrated for definite samples.
The results of research using NIR spectroscopy still predict the content of starch, SSC,
vitamin C, Firmness, TA, and dry matter in mangoes using a regression model, and no
study has yet discussed the accuracy of the mango classification maturity index. Based on
the recent literature, a portable NIR spectroscopy prototype was developed for the indirect
classification of Chaunsa mango maturity based on dry matter content. This device was
developed using a spectrometer model BIM-6002A with a spectrum of 400–1100 nm. The
computing device was an Intel Compute Stick, and the development used Microsoft Visual
C++ [21].

For classification of the maturity index, most studies in the literature recommend using
an indirect approach based on the chemical content of the fruit. However, the comparison
results of the direct classification model test are better than those of the indirect approach
using the mango dry matter content threshold, with accuracy of 88.2% and 55.88% [21]. This
paper proposes a new approach for classification of the mango maturity index indirectly
using four parameters—TA, starch, firmness, and SSC—Using fuzzy logic. The selection of
these parameters is based on the relevance between parameters and consumer preferences.
There are currently no studies that use the parameters of TA, SSC, firmness, and starch
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simultaneously as a mango maturity index. The challenge in this study is the classification
of five maturity indices due to each class being similar. We seek to improve the accuracy
of the classification model by collecting and combining the methods and operations of
spectral transformation, which include clipping, scatter correction, smoothing, derivation,
trimming, and resampling methods, for further selection as the best model input.

2. Device Hardware and Software Development

The portable device developed consists of a neo spectra micro development kit (NDK),
touchscreen LCD, weight sensor, calibrator made of Barium Sulfate (BaSO4), power supply
unit, and sample holder. The NDK consists of a Neo Spectra Micro (NSM), a Raspberry Pi
board, and a software development kit. NSM is an integrated spectral sensor consisting
of an optical head, electronics, and optical core module, with specifications for an NIR
spectrum range of 1350–2500 nm, a signal-to-noise ratio of 2000:1, an integration time of
up to 2 s, an optical resolution of 16 nm, and dimensions of 2 × 3 × 3 cm. The computing
device is a Raspberry Pi equipped with a Broadcom BCM2835 processor and 512 MB
LPDDR2 RAM. The components of the portable NIR device can be seen in Figure 1.
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Figure 1. Portable NIR spectroscopy components (www.neospectra.com, accessed on 20 August 2022).

One graphical user interface package used on portable devices consists of two pieces
of software. Original software from the sensor manufacturer is used to control the spec-
trometer in parameter setting, calibration, and spectral data collection. The development
software uses Python programming to obtain spectral information from samples; convert
those data into a spectrum; remove noise; predict TA, SSC, firmness, and starch content;
and classify maturity levels. The results of the manufacture and assembly of portable NIR
devices can be seen in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 2. Portable NIR spectroscope. 

3. Materials and Methods 

3.1. Dataset 

There is no standard for determining the maturity indexes of mangoes, but guide-

lines for the mango maturity index (Table 1) were issued by the Directorate General of 

Horticulture, Ministry of Agriculture of the Republic of Indonesia (2005). The maturity 

level is based on the age of the mango (i.e., the number of days after full bloom (DAF)), 

and the parameters of the color of flesh and taste are considered qualitative. The samples 

used in this study were Arumanis mango taken from the Situbondo plantation, East Java, 

and harvested at several levels of maturity: 80%, 85%, 90%, 95%, and 100%. Differences in 

the maturity index affect the quality, which includes the color of flesh, shelf life, and taste. 

The shelf life of mango decreases with an increase in sugar content and decrease in acid 

content. 

Table 1. Arumanis mango maturity index. 

Maturity Index 80% 85% 90% 95% 100% 

Days after full bloom (DAF) 90–95 105 108 112 115 

Color of flesh 
Butter yellow 

around the seeds 

Evenly butter 

yellow 

Yellow 

orange 
Orange 

Reddish 

yellow 

Taste 
Sweet, sour, 

fresh 

Sweet, sour, 

fresh 

Sweet, 

fresh 

Sweet, 

fresh 

Sweet, 

fresh 

shelf life (days) 21–25 14–17 7 5 1 

 

Samples were harvested on 23 September 2021. As many as 175 samples were taken, 

with a composition of 35 samples for each maturity index. Samples were harvested from 

the plantations and then cleaned, which included washing and sap removal, followed by 

the grading and packaging stages. The samples were then sent to the laboratory for label-

ing and non-destructive and destructive analysis. The stages of the research are shown in 

in Figure 3. Each sample was marked in as many as 4 locations and adjusted for the posi-

tion of the mango when measuring on a portable NIR sensor, as shown in Figure 2. After 

obtaining spectral data and TA, SSC, firmness, and starch data at each location from all 

samples, then the data was split with a composition of testing data is 10%. 

Figure 2. Portable NIR spectroscope.

www.neospectra.com


Sensors 2022, 22, 9704 4 of 15

3. Materials and Methods
3.1. Dataset

There is no standard for determining the maturity indexes of mangoes, but guidelines
for the mango maturity index (Table 1) were issued by the Directorate General of Horti-
culture, Ministry of Agriculture of the Republic of Indonesia (2005). The maturity level
is based on the age of the mango (i.e., the number of days after full bloom (DAF)), and
the parameters of the color of flesh and taste are considered qualitative. The samples used
in this study were Arumanis mango taken from the Situbondo plantation, East Java, and
harvested at several levels of maturity: 80%, 85%, 90%, 95%, and 100%. Differences in the
maturity index affect the quality, which includes the color of flesh, shelf life, and taste. The
shelf life of mango decreases with an increase in sugar content and decrease in acid content.

Table 1. Arumanis mango maturity index.

Maturity Index 80% 85% 90% 95% 100%

Days after full bloom
(DAF) 90–95 105 108 112 115

Color of flesh Butter yellow
around the seeds

Evenly butter
yellow

Yellow
orange Orange Reddish

yellow

Taste Sweet, sour, fresh Sweet, sour,
fresh

Sweet,
fresh

Sweet,
fresh

Sweet,
fresh

shelf life (days) 21–25 14–17 7 5 1

Samples were harvested on 23 September 2021. As many as 175 samples were taken,
with a composition of 35 samples for each maturity index. Samples were harvested from
the plantations and then cleaned, which included washing and sap removal, followed
by the grading and packaging stages. The samples were then sent to the laboratory for
labeling and non-destructive and destructive analysis. The stages of the research are shown
in in Figure 3. Each sample was marked in as many as 4 locations and adjusted for the
position of the mango when measuring on a portable NIR sensor, as shown in Figure 2.
After obtaining spectral data and TA, SSC, firmness, and starch data at each location from
all samples, then the data was split with a composition of testing data is 10%.
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3.2. Spectral Acquisition

Before measuring the sample, the sensor was calibrated with the calibrator device
followed by pressing the button on the application. After being calibrated, the sample
holder containing the sample was placed and closed with a sample cover device; then,
the scan button was pressed on the application. The device components are shown in
Figure 2. For spectrum acquisition and reference analysis, four locations in each sample that
correspond to the position of the NIR sensor at measurement were selected as representative
of mango for TA, SSC, firmness, and starch content. The data stored on the device were
then retrieved and processed for classification modeling.

Measurements of TA, SSC, firmness, and starch were performed using the same
location as the measurement spectrum, with the firmness measurement stage first, followed
by measurements of TA, SSC, and starch. For firmness measurements, a rheometer was
used, while for TA and SSC measurements, an Atago pocket device with a sample depth of
up to 40 mm was used after the skin was removed. For starch content, measurements were
carried out only once for each sample. With a sample number of 175, we obtained a total of
700 spectral, TA, SSC, and firmness data respectively.

3.3. Spectral Transformation

Spectral transformation methods can improve model performance and interpretabil-
ity [22]. These methods include clipping, scatter correction, smoothing, derivatives, trim-
ming, and resampling. The order of preprocessing operations applied can affect the
performance of the model [15]. Scatter correction was proposed to counteract the effect
of particle size [22], while smoothing aims to smooth the NIR spectra and help eliminate
environmental or instrumentation-related noise [23]. Clipping aims to remove or replace
data points with values that exceed a user-defined threshold [24]. Trimming allows the ex-
traction of continuous and non-continuous wavelength regions from full spectral data [25].
Resampling processes a new spectral resolution using the Fourier method that is able to
combine the spectra obtained from several devices with different spectral resolutions [26].
Scatter correction consists of several operations: standard normal variate (SNV), multi-
plicative scatter correction (MSC), robust normal variate (RNV), localized version of SNV
(LSNV), extended MSC (EMSC), normalization, and baseline. SNV can correct based on the
mean and spectral standard deviation [27]. RNV is most suitable for data with significant
noise, and the concept of correction is based on the median value and the interval between
quartiles [28]. LSNV is conceptually similar to SNV with partial operations in the spectral
window [27]. The MSC correction principle is only for the spectral mean, while the EMSC
takes into account linear and quadratic correction [29]. Spectral normalization can be
carried out over a certain range of values or using euclidean. The baseline only centers
on the spectral mean. In this study, 5 methods and 12 operations were used with detailed
operations, parameters, and values (Table 2).

Table 2. Methods, operations, and parameters of spectral transformation.

Method Operation Parameter Value

Clipping CLIP threshold Clipping

Scatter Correction

SNV
RNV iqr 75–25, 90–10
LSNV
MSC

EMSC
NORML

DETREND bp 0
BASELINE
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Table 2. Cont.

Method Operation Parameter Value

Smoothing SMOOTH
filter_win 5, 7, 9

window_type hamming

Derivative SAVGOL
filter_win 5, 7, 11, 31, 71

poly_order 3
deriv_order 1, 2

Resampling RESAMPLE rasio 0.7

3.4. Chemometrics

In this study, we compare the accuracy of direct and indirect approaches for classifying
the mango maturity index. The direct approach is to build a classification model using
Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-layer Perceptron (MLP),
Linear Discriminant Analysis (LDA), and Decision Tree (DT) based on the NIR spectrum
and reference labels from the maturity index. Cross validation was carried out ten times
with three repetitions and random sample selection. The indirect approach involves
building a predictive model, first for the contents of TA, SSC, firmness, and starch. The
regression model uses Partial Least Squares (PLS), SVM, Random Forest (RF), and Linear
Regression (LR); the results are compared in terms of the correlation coefficient (R2) and
root mean squared error (RMSE). The best regression model is then used for maturity
index classification based on application of the threshold, fuzzy logic, and classification
algorithms. Application of the threshold is based on statistical and expert calculations, and
the classification algorithms compared are SVM, KNN, MLP, LDA, and DT. A schema of
the mango maturity index classification with direct and indirect approaches is illustrated
in Figure 4.
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3.5. Fuzzy Logic

Fuzzy set theory is the basis for fuzzy logic, which is able to overcome subjective
judgments [30]. The fuzzy set becomes the definition of membership functions and rules
in linguistic data, which become a working model of fuzzy logic. The fuzzy set approach
can overcome complex models that are not able to measure an indicator conventionally.
Considering the reliability of operating on linguistic variables and a qualitative assessment
system, fuzzy logic can work optimally in cases that cannot be described numerically. Fuzzy
logic is able to solve ambiguities and inaccuracies in the problem of uncertainty [31] and was
shown to be reliable in many fields of research, including predictions of peach quality based
on acidity, SSC, and firmness parameters [32]; the determination of quality jute products
based on 4 parameters [33], the selection of 6 varieties of pears with 10 criteria [34], sweet
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bell pepper maturity predictions in 4 classes [35], a prediction of hydrogen production
from coffee mucilage and organic wastes using 5 parameters showing that fuzzy logic
performance was better than an artificial neural network [36], and an evaluation of sensory
quality in korla pear based on metabolites [37].

Fuzzy logic is the correct approach for determining the accuracy of mango maturity
for several parameters. Processing input into output through a fuzzy inference system
includes the membership function and if–then rule [38]. The formation of fuzzy sets by
mapping data input points into fuzzy set membership values has an interval of 0–1. After
the fuzzy set is formed, the minimum value of each method is sought based on the rules.
The minimum curve value is aggregated to determine the maximum curve value [39].
From the maximum curve, the value is capable of being determined by defuzzification.
Figure 5 shows the steps of the fuzzy inference system, namely, determining the input
as a mango maturity parameter, making a fuzzy set and determining the degree of truth
of each parameter, determining the inference rules in the system, and determining the
output in the form of a fuzzy set that is calculated based on defuzzification. The trapezoidal
membership function is chosen by considering the results of the destructive test. The
membership functions of TA, SSC, firmness, and starch were built by considering the
opinion of the expert assisted by the clustering approach using the K-means algorithm.
The four parameters are grouped into high (H), medium (M), and low (L) categories. The
output membership function is adjusted to the mango maturity index based on 5 levels,
and a triangular membership function is selected for the output.
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4. Results and Discussion
4.1. Destructive Test Results

The results of the destructive analysis for the content of TA, SSC, firmness, and starch
are provided in Table 3. By measuring each mango sample taken at four locations selected
to measure the chemical contents, 700 data were successfully obtained. However, four
invalid spectral data were acquired, and destructive data at invalid locations were not used.
Thus, the amount of data used was 696, with 139 data for each of the 80% and 95% maturity
indexes, 140 data for each of the 85% and 90% maturity indexes, and 138 data for the 100%
maturity index. A total of 70 data were ultimately used for testing.

Table 3. Summary statistics of TA, SSC, firmness, and starch for the Arumanis mango maturity index
in 80, 85, 90, 95, and 100; n: amount of data; SD: standard deviation.

Maturity
Index (%)

TA (%) SSC (brix) Firmness (kgf) Starch (%)
Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD

80 (n = 139) 0.8 2.23 1.11 0.31 5.9 9.7 8.456 0.82 3.6 4.4 3.76 0.19 7.23 10.3 7.58 0.75
85 (n = 140) 0.53 0.81 0.67 0.11 9.5 15 11.26 1.16 3 3.6 3.47 0.09 5.3 7.19 6.52 0.65
90 (n = 140) 0.44 0.56 0.49 0.03 12.3 19.2 16.19 2.31 2.9 3.8 3.12 0.20 3.96 4.97 4.49 0.21
95 (n = 139) 0.36 0.46 0.42 0.03 18 19.7 19.15 0.51 1.8 2.9 2.13 0.32 2.01 3.26 2.31 0.45

100 (n = 138) 0.19 0.38 0.33 0.05 19.5 21.9 20.21 0.65 0.6 1.9 1.34 0.39 0.89 1.94 1.59 0.36
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Table 3 shows that a higher maturity index corresponds to a decrease in TA, starch,
and firmness content and an increase in SSC content due to the conversion of starch to
sugar. Based on the mean and SD values, the data are less varied and have a fairly high
degree of closeness between maturity indices. The maturity indexes of 95% and 100% are
very close in the SSC and starch parameters, the maturity indexes of 90% and 95% are very
close for the TA parameter, and the maturity indexes of 80% and 85% are very close for the
firmness parameter. Based on the expert and statistical analyses, thresholds were set for
each maturity index for the content of TA, SSC, firmness, and starch, as shown in Table 4.

Table 4. Threshold of TA, SSC, firmness, and starch for Arumanis mango maturity index.

Maturity Index (%) TA (%) SSC (brix) Firmness (kgf) Starch (%)

80 >0.8 <9.5 >3.6 >7.2
85 0.55–0.8 9.5–13.5 3.4–3.6 5–7.2
90 0.45–0.55 13.5–19 2.9–3.4 3.5–5
95 0.37–0.45 19–19.6 1.8–2.9 1.95–3.5
100 <0.37 >19.6 <1.8 <1.95

4.2. Non-Destructive Test Results

Figure 6a shows the data spectrum of the mango NIR, which was taken from a
spectrum with a wavelength of 1350 to 2500 nm without spectral transformation. Here, each
wave spectrum consists of 136 wavelength points with several spectral peaks and valleys.
Figure 6b illustrates the results of the best spectral transformation in LDA classification,
Figure 6c–f is the result of the best spectral transformation in PLS for the prediction of TA,
SSC, firmness, and starch. The spectral transformation operations on each of the forming
parameters can be seen in Tables 5 and 6.

Table 5. Comparison results of direct approach classification.

Classification Testing
SVM LDA kNN MLP DT

NONE 58.57% 74.29% 32.86% 20.00% 22.86%
Transformation spectra 61.43% 91.43% 51.43% 62.86% 51.42%

Best operation

CLIP
MSC

RESAMPLE
SMOOTH

SAVGOL

CLIP
DETREND

RNV
SMOOTH

CLIP
DETREND

MSC
RESAMPLE

SAVGOL

CLIP
DETREND

MSC
SAVGOL

Table 6. Results of indirect comparison of predictions.

TA SSC Firmness Starch
R2 RMSE R2 RMSE R2 RMSE R2 RMSE

NONE

SVM 0.561 0.641 0.617 2.893 0.561 0.641 0.621 1.564
PLS (86) 0.629 0.171 0.852 1.798 0.770 0.464 0.890 0.843

RF 0.107 0.265 0.252 4.046 0.237 0.845 0.232 2.224
LR 0.632 0.170 0.870 1.685 0.738 0.495 0.900 0.804

Transform

SVM 0.529 0.193 0.746 2.358 0.602 0.610 0.658 1.485
PLS (86) 0.694 0.155 0.920 1.326 0.840 0.387 0.931 0.668

RF 0.629 0.171 0.711 2.512 0.539 0.656 0.604 1.597
LR 0.693 0.155 0.918 1.341 0.832 0.396 0.929 0.675

Best operation
tranformation spectra

BASELINE
CLIP

NORML
RESAMPLE

SAVGOL

CLIP
DETREND

NORML
RNV

SAVGOL

CLIP
DETREND

EMSC
NORML

SMOOTH

CLIP
DETREND

EMSC
NORML

RESAMPLE
SAVGOL
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4.3. Direct Approach Model

This classification method is used to predict the mango maturity index. The maturity
index labels include five indexes (Table 1). The predictor input includes 696 NIR spectra
of Arumanis mango. The SVM, LDA, CNN, MLP, and DT classifiers are implemented
using 10-fold cross-validation. Preprocessing is done via spectral transformation. Spectral
transformation involves collecting and combining 12 spectral transformation operators
from Table 2 with operations, parameters, and values for SAVGOL (filter_win = 5, 7,
11, 31, 71, poly_order = 3, deriv_order = 1, 2, 3) and SMOOTH (filter_win = 5, 7, 9,
window_type = hamming). There are 1,152 operator combinations, and the operators
that produce the best accuracy for SVM are CLIP {‘substitute’: None, ‘threshold’: 10,000.0},
MSC, RESAMPLE {‘resampling_ratio’: 0.7}, and SMOOTH {‘filter_win’: 5, ‘ window_type’:
‘hamming’}. The spectral transformation operator with the best accuracy for LDA is
SAVGOL {‘deriv_order’: 3, ‘filter_win’: 5, ‘poly_order’: 3}. The spectral transformation
operators with the best accuracy for kNN are CLIP {‘substitute’: None, ‘threshold’: 10,000.0},
DETREND {‘bp’: [0]}, RNV {‘in’: [75.0, 25.0]}, and SMOOTH {‘filter_win’: 5, ‘window_type’:
‘hamming’}. The spectral transformation operators with the best accuracy for MLP are
CLIP {‘substitute’: None, ‘threshold’: 10,000.0}, DETREND {‘bp’: [0]}, MSC, RESAMPLE
{‘resampling_ratio’: 0.7}, and SAVGOL {‘deriv_order ‘: 1, ‘filter_win’: 5, ‘poly_order’: 3}.
The spectral transformation operators with the best accuracy for DT are CLIP {‘substitute’:
None, ‘threshold’: 10,000.0}, DETREND {‘bp’: [0]}, MSC, and SAVGOL {‘deriv_order’: 3,
‘filter_win’: 11, ‘poly_order’: 3}.
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After testing all classifiers without spectral transformation, LDA classifiers were found
to have the best accuracy at 74.29%. After spectral transformation, all classifiers experienced
an increase in accuracy, including an increase in SVM accuracy of 2.86%, an increase in LDA
accuracy of 17.14%, an increase in kNN accuracy of 18.57%, an increase in MLP accuracy of
42.86%, and an increase in DT accuracy of 28.56%. Thus, the accuracy of LDA classifiers
with spectral transformation increased to 91.43%. The results of the comparison of classifier
accuracy can be seen in Table 5.

4.4. Indirect Approach Model

This section focuses on developing the optimal prediction model for TA, SSC, firmness,
and starch by comparing SVM, PLS, RF, and LR regressors. Before modeling, preprocessing
was carried out with spectral transformation, and the optimal number of components for
PLS was determined. Spectral transformation involved the collection and combination of
12 spectral transformation operators from Table 2 with operations, parameters, and values
for SAVGOL (filter_win = 7, 11, 21, 61, 121, poly_order = 3, 6, deriv_order = 0, 1, 2) and
SMOOTH (filter_win = 7, 11, 61, window_type = hamming). There are 2112 operator com-
binations and operators that produce the smallest RMSE values for TA, namely, BASELINE,
CLIP {‘substitute’: None, ‘threshold’: 10,000.0}, NORML, RESAMPLE { ‘resampling_ratio’:
0.7}, and SAVGOL {‘deriv_order’: 0, ‘filter_win’: 61, ‘poly_order’: 6}. The spectral trans-
formation operators with the smallest RMSE values for SSC are CLIP {‘substitute’: None,
‘threshold’: 10,000.0}, DETREND {‘bp’: [0]}, NORML, RNV {‘in’: [75.0, 25.0]}, and SAVGOL
{‘deriv_order’: 0, ‘filter_win’: 21, ‘poly_order’: 3}. The spectral transformation operators
with the smallest RMSEs for firmness are CLIP {‘substitute’: None, ‘threshold’: 10,000.0},
DETREND {‘bp’: [0]}, EMSC, NORML, and SMOOTH {‘filter_win’: 11, ‘window_type’:
‘hamming’}. The spectral transformation operators with the smallest RMSEs for starch are
CLIP {‘substitute’: None, ‘threshold’: 10,000.0}, DETREND {‘bp’: [0]}, EMSC, NORML, and
RESAMPLE {‘resampling_ratio’: 0.7}. The results of the search for the number of compo-
nents after running a loop that minimizes RMSE in PLS obtained the most optimal number
of components: 86. The best model performance in predicting the content of TA, SSC,
firmness, and starch in Arumanis mango was ultimately obtained with PLS. Comparative
data are presented in Table 6. PLS offers the best performance for TA with R2 = 0.694 and
RMSE = 0.155, for SSC with R2 = 0.920 and RMSE = 1.326, for firmness with R2 = 0.840 and
RMSE = 0.387, and for starch with R2 = 0.931 and RMSE = 0.668.

Next, we use the predicted values for the content of TA, SSC, firmness, and starch from
the best regression model to determine the mango maturity index based on the threshold
in Table 4. Among the 70 test data, the TA accuracy is 55.71%. The maturity index of
80% successfully predicted all values correctly. The maturity index of 85% produced six
incorrect predictions, and the maturity index of 90% only correctly predicted four values.
The maturity index of 95% only correctly predicted three, and the maturity index of 100%
incorrectly predicted 5. Here, the SSC accuracy is 71.43%, the firmness accuracy is 62.86%,
and the starch accuracy is 68.57%. The results of the confusion matrix can be seen in Table 7.

Table 7. The results of the confusion matrix using PLS based on the threshold.

PLS
Predict

TA SSC Firmness Starch
80% 85% 90% 95% 100% 80% 85% 90% 95% 100% 80% 85% 90% 95% 100% 80% 85% 90% 95% 100%

A
ct

ua
l

80% 14 9 5 13 1 10 4
85% 6 10 16 6 4 6 5 11
90% 3 4 4 3 1 13 12 2 1 13
95% 8 3 2 5 3 5 4 9 1 6 6
100% 1 4 8 3 1 9 2 11 5 8

The development of the classification model was compared using SVM, LDA, KNN,
MLP, and DT. The training data used included 626 destructive test data for the content of TA,
SSC, firmness, and starch, while the testing data were the result of predicting the contents
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of TA, SSC, firmness, and starch using PLS from 70 test data. The accuracy performance of
each classification model is shown in Table 8.

Table 8. The results of the accuracy comparison of the classification approaches.

Algorithm SVM LDA KNN MLP DT

Accuracy 80% 58, 57% 80% 85, 71% 68, 57%

4.5. Application of Fuzzy Logic

Mamdani is the fuzzy inference system used in this study. This method is very suitable
because its foundation is experience or expert knowledge [30,40]. The four parameters in
Table 3 are defined as inputs, namely, TA, SSC, firmness, and starch. The measurement
results of the four parameters in numerical form are then used to build fuzzy logic mem-
bership functions in three classes: High (H), Medium (M), and Low (L). The determination
of the level is based on the closeness of the values between the maturity classes in terms of
parameters and consumer preferences. The trapezoidal membership function presents the
ranking of the inputs, with numerical values of 0–2.5 for TA, 4–24 for SSC, 0–5 for firmness,
and 0–15 for starch. The TA value is classified as L (0–0.65), M (0.6–0.8), and H (more than
0.75). SSC values are classified as L (0–9.6), M (9.2–16.5), and H (more than 16). Firmness
values are classified as L (0–1.7), M (1.5–2.9), and H (more than 2.7). Meanwhile, starch
values are classified as L (0–3.5), M (3–5.6), and H (more than 5.6). To obtain the numerical
value of the maturity index, defuzzification is carried out. There are 5 values that can
be seen in Figure 7, with a value range of 75–100. Based on the membership function of
the input attribute, 81 inference rules are obtained. Table 9 presents the results of if–then
rules obtained from expert opinions based on the processing of attribute clustering and
expert analysis.
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Table 9. If–then rules for converting fuzzy inputs to fuzzy outputs.

Firmness H M L
TA SSC/Starch H M L H M L H M L

H
H 80% 90% 95% 80% 90% 95% 80% 90% 95%
M 80% 85% 95% 80% 85% 95% 80% 85% 95%
L 80% 80% 95% 80% 85% 95% 80% 85% 95%

M
H 85% 90% 95% 85% 90% 95% 85% 95% 100%
M 85% 85% 95% 85% 95% 95% 85% 85% 95%
L 80% 85% 95% 80% 85% 95% 80% 85% 95%

L
H 85% 90% 95% 85% 95% 95% 85% 100% 100%
M 85% 90% 95% 85% 90% 95% 85% 95% 95%
L 80% 85% 95% 80% 85% 95% 80% 85% 100%

Using the same 70 test data in the classification and regression models, the predicted
value for the four parameters was then determined via a fuzzy inference system process
and obtained an accuracy result of 95.7%, with three incorrect prediction data that should
be 95% guessed at 90% (Table 10).

Table 10. The matrix results of testing using fuzzy logic.

Actual Classification
Fuzzy Algorithm Output

80% 85% 90% 95% 100%

80% 14 14

85% 16 16

90% 14 14

95% 13 3 10

100% 13 13

4.6. Discussion

Mango maturity can be measured based on the total sugar content called SSC, which
is the total sugar content that reflects the sweet taste of the fruit. Starch can also be used as
a measure of fruit maturity. Starch and SSC have an inverse relationship: the more ripe
the fruit is, the higher the SSC content and the more the starch content decreases due to
the change from starch to sugar. The Arumanis mango’s sweet, fresh, and slightly sour
characteristics, as well as consumer preferences for acidity and firmness levels, were chosen
as the parameters for maturity. Acidity and firmness were also inversely proportional to
SSC: the more ripe the mango, the lower the acidity and firmness levels. The maturity
index labels used include five classes, 80%, 85%, 90%, 95%, and 100%, based on mango
age from the Directorate General of Horticulture, Ministry of Agriculture of the Republic
of Indonesia (Table 1). The direct classification approach uses class labels based on fruit
age references, i.e., the number of days after the flower blooms. Determination of this fruit
maturity class label can be applied to other fruits because it is easier to measure. Then, the
class label can be linked to the chemical content of the fruit constituents.

The mango classifies maturity directly by training the spectra, which is compared to
the class label. The resulting classification model identifies the test data according to which
class label it belongs. Based on testing the maturity index classification directly, the LDA
algorithm had higher accuracy than SVM, kNN, DT, and MLP. LDA offered 74.29% accuracy.
However, by using SAVGOL {‘deriv_order’: 3, ‘filter_win’: 5, ‘poly_order’: 3} operations,
the accuracy increased to 91.43%. In direct classification, the spectral transformation process
increased the accuracy significantly, except for SVM.

The results in Tables 5 and 6 showed that the spectral transformation affected and
increased the accuracy of the model. In the spectral transformation, 12 spectral transforma-
tion operators with their parameters and values were collected and compared to achieve
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the best accuracy. Likewise, in the indirect classification approach, the spectral transfor-
mation process improved performance. In the indirect classification approach, predictions
of the content of TA, SSC, firmness, and starch were carried out using a machine learning
regression algorithm. The SVM, PLS, RF, and LR algorithms offered better performance
than PLS, even though all of them had prediction errors. The next stage after prediction
involves application of the threshold, classification modeling, and using fuzzy logic on the
predicted value. The results of indirect classification produce the best performance through
the application of Mamdani fuzzy logic with an accuracy 95.7% higher than that of the
direct approach. The use of fuzzy logic can work well for boundary values between classes
that are close to each other.

After scanning the mango with the NIR sensor on a portable device, the screen will dis-
play the maturity index value, TA value, SSC, firmness, and starch. The maturity index and
values of the four parameters can be used as a reference for grading and product delivery.
The higher the maturity index, the more suitable the product is for the nearest market.

5. Conclusions

In this study, we developed a portable NIR spectroscopy device using a neo spectra
micro development kit with an NIR spectrum range of 1350–2500 nm and original soft-
ware alongside Python programming to obtain spectral data, convert them into spectra,
perform spectral transformations, and classify mango maturity indexes. In this way, a
new approach to classify the mango maturity index, directly and indirectly, using fuzzy
logic was presented. Maturity classification consists of five classes with measurements
of four parameters, namely, TA, SSC, firmness, and starch. The spectral transformation
process was carried out by collecting and combining 12 operators to obtain the best ac-
curacy. The mango maturity index classification approach was conducted by comparing
SVM, KNN, MLP, LDA, and DT. The best accuracy (91.43%) was obtained with the LDA
and SAVGOL spectral transformation operations. The indirect approach begins with the
spectral transformation process and compares SVM, PLS, RF, and LR. The best model
performance in predicting the content of TA, SSC, firmness, and starch was PLS, with a
total of 86 components. The classification accuracy using the threshold approach was SSC
with 71.43%. The accuracy for starch was 68.57%, that of firmness was 62.86%, and that
of TA was 55.71%. The classification accuracy with the four parameters using MLP was
85.71%, and the Mamdani fuzzy logic approach provided the best accuracy of 95.7%. When
classifying the mango maturity index with five classes, where each class has proximity to
the others, and the parameters used are correlated, the application of fuzzy logic increased
the accuracy of the indirect approach, and the accuracy results were higher than those of
the direct approach.
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