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Abstract: In this paper, a broadband high-gain Fabry–Pérot (F-P) antenna composed of the air-loaded
slot-coupled broadband microstrip antenna and the frequency selective surface (FSS) based positive
gradient reflection phase structure is proposed. Taking advantage of the superposition effect of
multiple reflections and transmissions occurring between layer structures, the gain enhancement
was realized. Meanwhile, by cascading the single-layer FSS and the dielectric substrate, the positive
gradient reflection phase over a wider frequency range was achieved. Simulated results show
that the resonant frequency of the designed F-P antenna is 10 GHz, the impedance matching band
(S11 < −10 dB) ranges from 8.3 GHz to 11.25 GHz with a bandwidth of 29.5%, and the antenna gain
is improved significantly in the range of 8.1 GHz~11.25 GHz with a gain bandwidth of 31.5%. For
further verification, a prototype was fabricated, and the experimental and simulated results are in
good agreement.

Keywords: frequency-selective surface; Fabry–Pérot resonator antenna; broadband; high gain

1. Introduction

Broadband and high-gain antennas play an extremely important role in wireless
communications, such as satellite communications, remote control, and navigation [1].
Generally, the improvement of antenna gain can be realized by two methods: antenna
structure optimization or antenna array structure design. However, applying the afore-
mentioned method to improve the antenna gain often leads to problems such as complex
antenna structure, increased processing cost, enhanced mutual coupling between antennas,
and difficulty in designing a feeding network. Therefore, overcoming these problems by
designing an antenna with a simple structure on the basis of high antenna gain and wide
bandwidth is highly desired in practical applications.

Fabry–Pérot (F-P) antenna is a high-gain, high-directional antenna, which can avoid
the disadvantages of traditional high-gain antennas, such as complex structure, large size,
and high cost, and can overcome the large mutual coupling and feeding between array
antennas. It is an effective solution for high-gain antenna design. However, the operating
bandwidth of traditional F-P antennas is relatively narrow, which makes it difficult to
meet the needs of high-gain antennas for broadband communication. In order to increase
the bandwidth of the F-P resonator antenna, different methods and structures have been
proposed [2–13]. For example, a partially reflective surface (PRS) with a positive slope of
the reflection phase frequency response curve is adopted to construct the electromagnetic
bandgap structure (EBG) resonant cavity antenna with an impedance bandwidth of 12.6%
and a gain bandwidth of 15.7% in [6]. A dual-layer FSS structure is designed to construct the
cladding layer of the antenna in [7], which extends the gain bandwidth and improves the
gain simultaneously. A method of adding dielectric cladding to sparse arrays to expand the
gain bandwidth of the antenna is presented in [8]. A double-layer dielectric plate is used as
the antenna cladding to improve the gain of the antenna and increase its gain bandwidth to
27% in [5]. A coplanar waveguide wideband strawberry artistic-shaped printed monopole
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(SAPM) antenna is proposed in [9], and a monolayer frequency-selective surface (FSS)
is used as a metal plate to improve the gain of antenna application. The proposed FSS
reflector uses a 10*10 array, and the study uses a common surface waveguide (CPW)-fed FR4
substrate to print the proposed antenna, which provides a wide impedance bandwidth of
8.85 GHz (3.05 GHz–11.9 GHz), covering the licensed broadband. Due to its relatively high
reflectivity size and positive phase gradient, the PRS layer proposed in [10] is a promising
super velocity for wideband high-gain F-P antenna, which effectively improves the gain
and bandwidth of array antennas. A wideband high-gain rectangular microstrip array
antenna with a new frequency-selective surface (FSS) designed as a reflector for applications
below 5 G is presented in [11]. The antenna configuration consists of a 1*4 rectangular
microarray array antenna and FSS reflector to generate a semistable high radiation gain.
In [12], the perforated metal layer is used as a frequency-selective surface (FSS) for printing
groove dipole antennas operating in the V-band. The 3 dB gain bandwidth is from 61.1 GHz
to 64.9 GHz (6.03%). The gain and bandwidth of the F-P antenna were increased by using a
double-layer FSS in [13], resulting in an antenna gain of 16.8 dBi, impedance bandwidth of
18.4%, and gain bandwidth of 12.5%. These above studies show that the gain bandwidth of
the F-P antenna can be effectively improved by rationally designing the cladding structure
of the F-P antenna. Although these aforementioned research studies provide a solution for
the broadband high-gain F-P antenna, the relative gain bandwidth of the proposed antenna
structure still needs to be further improved to meet the needs of broadband communication,
and it is urgent to design an F-P antenna with a wider gain bandwidth.

In this paper, an F-P antenna with excellent gain is designed. The antenna uses a
cascade structure of a single-layer FSS and a dielectric layer as the antenna cladding, which
can achieve positive gradient reflection with a higher slope in a wider frequency range
phase. By loading it on the air-loaded slot-coupled broadband microstrip antenna, the
antenna gain can be significantly increased in the frequency range of 8.1 GHz~11.25 GHz,
with a maximum in-band gain of 10.35 dBi and a gain bandwidth of 31.5%.

2. Theoretical Analysis and Unit Design
2.1. Fabry–Pérot Resonant Cavity Theory

As shown in Figure 1, a conventional FP resonator antenna is formed by placing an
EBG structure as a partially reflective surface (PRS) at a proper distance from the ground
plane, which creates an air-filled cavity between the PRS and the ground plane, and fed
by a small antenna or an array [7]. The main characteristics of the antenna, such as its
operating frequency, directivity, gain bandwidth, and radiation patterns, are determined by
the property of the PRS. Part of the electromagnetic waves radiated by the antenna passes
through the coating directly, and the other part is reflected once or several times before
passing through the coating. The two electromagnetic waves are superimposed in phase to
achieve the effect of improving the antenna gain.
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According to the ray theory, the frequency, directivity, and gain bandwidth of the
antenna are affected by the characteristics of the F-P resonator and the loading height.
When (1) is satisfied, the directivity coefficient of the antenna reaches the maximum [7].

h =
c

4π f
+ (ϕPRS + ϕGND − 2Nπ), N = 0, 1, 2 · · · (1)

where h is the depth of the cavity, f is the resonant frequency of the antenna, c is the velocity
of light, N is the order of the resonance mode, ϕPRS is the reflection phase of the cladding
structure, and ϕGND is the reflection phase of the ground plane. Normally, ϕGND is π, and
ϕPRS can be derived from (1) as follows:

ϕPRS =
4πh

c
f + (2N − 1)π, N = 0, 1, 2 · · · (2)

As indicated by (2), once the reflection phase of the cladding structure is positively
correlated to the frequency with a reflection slope of 4πh/c, the working band of the F-P
antenna is broadened. Thus, obtaining the reflected phase indicated by (2) in a wide
frequency range is important for designing wideband high-gain F-P antennas.

2.2. Selection of Feed Antenna

The traditional microstrip patch antenna has a narrow bandwidth and is not suitable
for bandwidth expansion of F-P antennas, while the air-loaded slot-coupled microstrip
antennas have a wider bandwidth and are suitable for high-gain antennas [5]. The structure
of the microstrip slot antenna used is shown in Figure 2. The feed antenna adopts a
rectangular radiation patch and has rectangular grooves in the floor plate. Multiplicative
resonances are generated by coupling between radiating patches, rectangular slots, and
microstrip lines, which result in a broad impedance bandwidth. Commercial laminate
Rogers RT/duroid 5880 (εr = 2.2, tan δ = 0.0009) with a thickness of 1 mm is used in
the design.
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This patch is coupled to the feeder through a ground plane gap, and the patch and
ground plane are separated by an air gap to suppress surface waves, which can be fed into
the cavity and degrade the antenna performance of the F-P resonator [14]. The antenna
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is simulated by HFSS15.0, and the parameters of the coupling feed of microstrip slots are
determined and shown in Table 1.

Table 1. Structural parameters of microstrip slot antenna.

Parameters Values Parameters Values

W1 1.2 mm Ws 1 mm
W2 2.3 mm L1 9.5 mm
WP 8.8 mm Lstub 3 mm
hair 3 mm h1 1 mm
Ls 8.8 mm h2 1 mm

The simulated reflection coefficient results of the microstrip slot-coupled feed antenna
are shown in Figure 3. It can be seen that the reflection coefficient stays below −10 dB in
the frequency range of 8.8 GHz to 11.4 GHz with an impedance bandwidth of over 20%.
Obviously, compared with the traditional patch antenna, the antenna gain is improved
(shown in Figure 4). However, it is still not suitable for high-gain applications. Considering
the good impedance match and antenna gain over a wide frequency band, the air-loaded
slot-coupled antenna is a good candidate for the feed source of the broadband F-P antenna.
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2.3. Design of Positive Gradient Reflection FSS Unit

The traditional F-P antenna has narrow frequency bands because of the negative
correlation between the reflection phase and cladding structure frequency. In order to
expand the antenna bandwidth (mainly gain bandwidth), an FSS with a positive gradient
reflection phase is designed (reflection gradient phase is the change in reflection phase that
increases or decreases with frequency).

The traditional cladding has a relatively narrow bandwidth. For bandwidth broaden-
ing, this paper selects the FSS structure as the cladding structure. At low frequencies, the
metal square patch FSS has a small reflection coefficient, and with the increase in frequency,
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the reflection coefficient increases. It has the characteristics of a low-pass filter. However,
the wire grid has a contrary trend. The reflection coefficient is higher at low frequencies and
decreases with increasing frequency. It has the characteristics of a high-pass filter. Therefore,
the FSS structure combined with these two structures produces a weak resonance in the
wide band, which results in a positive slope and high reflection coefficient of the reflection
phase frequency response curve in this band.

The design of the FSS consists mainly of two parts, as shown in Figure 5. The upper
layer is a pure dielectric plate, and the lower layer is a double-layered FSS structure. In the
double-layered FSS structure, the upper FSS array is composed of the square slot and the
bottom array is the wire grid. The two-layer dielectric board is made of Rogers RT/duroid
5880 (εr = 2.2, tan δ = 0.0009), and the thickness is 1 mm.
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The PRS is simulated by HFSS15.0, and the reflection phase of the PRS together with
the ideal reflection phase indicated by (2) is plotted in Figure 6. In addition, the reflection
phase of the FSS in the proposed PRS is also plotted in Figure 6, and it can be seen that if
only the FSS in the proposed PRS is used, the frequency range with the normal reflection
gradient phase is about 1 GHz. However, when the proposed PRS is used, the frequency
range of the regular reflection phase gradient increases to 2 GHz (that is, with a positive
reflection gradient phase in a wider frequency range), and a high reflection slope can also
be observed in the designed PRS structure as shown in Figure 6.
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There is a coupling effect between the FSS and the dielectric plate, which depends on
the air height hc, as shown in Figure 7. This behavior of PRS is similar to the Fano-like reso-
nance, which arises from the interference between nonradiative and radiative modes [15]
and in different dielectric metal composite metamaterials [16,17] and nanophotonic struc-
tures [18]. The small air gap between the two PRSs has a stronger effect on the reflection
properties of the multilayer PRS, as shown in Figure 8. As the band gap increases, however,
the effect of the Fano resonance decreases due to the weaker EM coupling between the
two PRSs.
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The amplitude and phase of the reflection coefficient depend on the size of the FSS
unit, and only a chosen size is suitable for designing an ideal FSS. It can be seen from
Figure 5 that there are four parameters in the FSS unit that can be modified and improved.
The F-P antenna will have strong broadband operating characteristics while keeping high
gain only if the parameters take a moderate value, preventing the reflection amplitude of
the FSS unit from being too low and the reflection phase curve from being too steep. The
specific structural parameters are shown in Table 2.

Table 2. PRS structure parameters.

Parameters Values

P 10 mm
L1 9 mm
L 7.5 mm
W 1 mm
t1 1 mm
t2 1 mm
hc 2.5 mm

The equivalent circuit diagram of the PRS unit is shown in Figure 8. The upper
dielectric plate of the unit structure is Z1, and the middle dielectric plate is Zair. Z2 is the
dielectric plate of the lower FSS layer, Cp and Lp are the equivalent parameters of the upper
FSS layer, and LS is the equivalent parameter of the lower FSS layer. It is known that the
equivalent circuit is mainly affected by the structure change of the FSS layer.

The final result was obtained by HFSS15.0 simulation. The positive phase gradient
obtained can cover a certain working frequency band while ensuring a higher slope, and
the result is presented in Figure 9. As shown in Figure 10, the magnitude of the reflection
coefficient is greater than 0.5, and the reflection coefficient of the entire frequency band is
large; the transmission coefficient is greater than 0.5, and the transmissibility within the
band is better. Figure 9 shows that the reflection phase at the center frequency of 10 GHz is
162◦, the reflection phase curve with a positive slope is obtained in the frequency band of
8.9 GHz~11.3 GHz, and it can meet the requirements of antenna gain broadening in a wide
frequency domain.
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A PRS with a double-layer pure dielectric layer is proposed in [5], but it requires
that the two dielectric layers be selected with different dielectric constants, the dielectric
constant of the lower dielectric layer is greater than that of the upper layer, the distance
between the two dielectric layers is greater than λ/2, and a PRS with a positive gradient
reflection phase can be obtained, which limits its application. In this paper, by connecting
the FSS layer with the dielectric layer, the FSS layer can be made of the same material
as the dielectric layer, and the distance between the two is small. A PRS with a positive
gradient reflection phase is easier to achieve through the coupling between the FSS layer
and dielectric layer.

2.4. Design of F-P Resonant Cavity Antenna

A high-gain wideband F-P antenna is designed as a combination of the superstructure
and feed antenna. According to the configuration shown in Figure 11, there are still two
parameters, W and h, that are not determined.
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Assuming that the lateral size W is infinite, the directivity of the F-P antenna relative
to that of the feed antenna can be formulated as:

Dr = 10 log
1 + Γ
1 − Γ

(3)

where Dr is the relative directivity and Г is the reflection magnitude of the superstrate
structure. Ludovie et al. found that the electromagnetic field in the resonator can be
equivalent to a Gaussian distribution [19] and then concluded the empirical formula for
the radiation area S required by the resonator antenna to reach a certain gain value:

S =
10D/10 · λ2

0.8π2 (4)

where S is the antenna surface area, D is the total gain value added by the feed antenna
gain and the gain value added by the PRS, λ is the free space wavelength at the operating
frequency, and 0.8 is the effective power factor summed up after numerous simulation
experiments. As can be seen from Figure 4, the gain of the 10 GHz feed antenna is about
7.5 dBi, and the reflection coefficient amplitude of the cladding FSS is 0.5. Therefore, the
gain of the F-P antenna at 10 GHz is estimated at 12 dBi. Considering that broadband is
required in practical work, W should be slightly larger. The initial determination of h can be
based on (1), and further optimization needs to be performed through full-wave simulation.

As shown in Figure 12, studies have shown that h has a significant effect on F-P anten-
nas. As h increases, the impedance bandwidth increases. For example, when h = 12.5 mm,
the input impedance matches the wave impedance of the free-space band, resulting in a
larger reflection (S11 > −10 dB). When h increases to 17.5 mm, the impedance matches well,
and the impedance bandwidth reaches 32%.
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Meanwhile, the gain bandwidth of the F-P antenna decreases with h. For example, at
h = 12.5 mm, the gain bandwidth reaches 33%, but at h = 17.5 mm, the gain bandwidth is
only 8%. In practical applications, the antenna impedance bandwidth and gain bandwidth
are required simultaneously.

Hence, the value of h should be selected properly for the simultaneous enhancement
of the impedance bandwidth and gain bandwidth. In our work, h is set to be 14.5 mm and
the antenna has a better impedance match with a 23% impedance bandwidth and 33% gain
bandwidth.

The side view of the broadband F-P antenna is shown in Figure 11. It was modeled
and simulated by HFSS15.0. Through optimization, we can finally obtain W = 70 mm and
h = 14.5 mm (about λ/2).

As shown in Figure 13, the number of FSS unit cells has a great impact on the perfor-
mance of F-P antennas. As the number of FSS unit cells increases, the antenna’s impedance
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bandwidth increases first and then decreases. For example, the impedance bandwidth
is 18% when the number of cells is 5*5, 22% when the number of FSS cells is 7*7, and
20% when the number of cells is 9*9. As the number of cells increases, the antenna gain
bandwidth increases first and then decreases. For example, the gain bandwidth is 30%
when the number of cells is 5*5, 33% when the number of cells is 7*7, and 26% when the
number of cells is 9*9. Finally, the number of FSS unit cells selected is 7*7 to obtain a wider
impedance bandwidth and a wider gain impedance.
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The simulated reflection coefficient of the F-P antenna is shown in Figure 14. Its
impedance bandwidth is slightly lower than that of the single antenna, and the relative
bandwidth exceeds 20%. The simulated gain diagram of the feed antenna and F-P antenna
is shown in Figure 15. It can be seen from the figure that the gain of the feed antenna
is significantly improved in the 8 GHz~11.8 GHz frequency band. The relative gain
bandwidth (3 dB bandwidth) of the F-P antenna is about 33%, which is greatly improved
compared to the traditional F-P antenna. The efficiency of the antenna with and without
the proposed PRS is simulated and provided in Figure 16. It can be found that the efficiency
of the F-P antenna is lower than that of the individual antenna after 10.2 GHz but largely in
line with the antenna before 10.2 GHz, presumably due to the cladding material.
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3. Experimental Verification

In order to verify the performance of this F-P antenna, an F-P antenna prototype was
fabricated, and its realized gain and radiation pattern were measured. The prototype is
shown in Figure 17, and its measurement device in the anechoic chamber is shown in
Figure 18. According to the test results in Figure 19, the working frequency range of the
antenna is 8.3 GHz~11.25 GHz and the relative bandwidth is 29.5%, which basically agrees
with the simulation result.
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Figure 19. Measurement and simulation of F-P antenna S11.

The measured and simulated gains of the prototype antenna are shown in Figure 20,
together with the simulated gain of the feed antenna without PRS. As shown, the antenna
gain could be significantly increased in the frequency range of 8.1 GHz~11.25 GHz, with a
maximum in-band gain of 10.35 dBi and gain bandwidth of 31.5%. The differences between
the measured and simulated results are due to antenna fabrication, assembly errors, and the
actual tolerances of the measurement system. In addition, the gain comparison technique
used to measure antenna gain may introduce some errors in the gain measurement.
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As shown in Figure 20, the antenna gain was higher than that of a single antenna in
the actual experiment, but it is different from the simulation. It is assumed that the cavity
height h has a great influence on the experiment and that there is a large error in the actual
manufacturing and simulation of h. We changed the cavity height h and used HFSS15.0 for
modeling and simulation, and the results are shown in Figure 21. It can be seen that when
h = 16.5 mm, the simulated gain curve is close to the actual measurement, so h has a great
impact on the performance of the F-P antenna, and the experimental results are different
due to the influence of h.
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Figure 21. Simulation of F-P resonator antenna gain as a function of h.

Another important characteristic of the antenna is the radiation, which was simulated
and measured on the E-plane (yoz) and H-plane (xoz) of 9.5 GHz, 10 GHz, and 10.5 GHz,
as shown in Figure 22. The F-P antenna produces directive radiation in both the E-plane
and the H-plane with peak sidelobes less than −15 dB and broadside radiation. The high
radiation intensity at the backside is caused by the back radiation from the feed antenna
and SMA connectors.
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A performance comparison of the proposed F-P resonator antenna with previous
works is shown in Table 3. The work in [11] achieved a higher gain bandwidth and larger
gain than the existing work, but [11] used an open waveguide as the main feed antenna,
which was bulky and increased the structural cost. Compared with the listed literature, the
antenna proposed in this paper has a higher gain, with the maximum reaching 10.35 dBi;
a lower overall profile, about 0.6λ; and a wider gain bandwidth, with the relative gain
bandwidth reaching 31.5%.

Table 3. Performance comparison of broadband high-gain F-P antennas.

Ref Freq
(GHz)

Impedance BW
S11 < −10 dB (%)

3 dB Gain
BW (%)

Profile
(λ0) Primary Feed Antenna

[20] 7.45 8.69% 10.9% 0.64 Probe feed patch
[21] 12.5 16.2% 12.5% 1.4 Aperture-coupled patch
[22] 13 37% 32.3% 0.66 Waveguide feed

[23] 5.85 28.6% 22.3% 0.45 Probe feed with air
Dielectric patch

[24] 13.8 12% 17.1% 0.65 Slot antenna

[25] 10.8 24.8% 15.9% 1 RIS-backed probe
Feed patch

This paper 10 29.5% 31.5% 0.63 Air-loaded patch
antenna

4. Conclusions

In this paper, a Fabry–Pérot resonator antenna with a double FSS as the cladding
of a slit-coupled microstrip antenna is presented. In general, the proposed F-P antenna
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achieves high gain and broadband performance. The proposed FSS consists of a pure
dielectric layer and a double-layered FSS structure. By studying the performance of the
double-layered structure, the optimal parameters were obtained, and the equivalent circuit
model was obtained. Finally, it has a positive reflection gradient phase at 9–11 GHz, which
can effectively increase antenna gain and expand antenna bandwidth. According to the
working principle of the Fabry–Pérot resonator, a wideband gap coupling is proposed,
and the designed frequency-selective surface is combined with the microstrip antenna. By
studying the cavity height h and number of FSS unit cells of the F-P antenna, h = 14.5 mm,
and 7*7 FSS unit cells were selected to broaden the impedance bandwidth and the gain
bandwidth simultaneously. The experimental results show that the impedance bandwidth
of the F-P antenna is 29.5%, gain bandwidth is 31.5%, and maximum gain is 10.35 dBi, all
higher than those of a single antenna. The proposed broadband F-P resonator antenna has
potential application value in x-band radar and tracking systems.
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