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Abstract: The surface condition of roadways has direct consequences on a wide range of processes
related to the transportation technology, quality of road facilities, road safety, and traffic noise
emissions. Methods developed for detection of road surface condition are crucial for maintenance and
rehabilitation plans, also relevant for driving environment detection for autonomous transportation
systems and e-mobility solutions. In this paper, the clustering of the tire-road noise emission features
is proposed to detect the condition of the wheel tracks regions during naturalistic driving events. This
acoustic-based methodology was applied in urban areas under nonstop real-life traffic conditions.
Using the proposed method, it was possible to identify at least two groups of surface status on the
inspected routes over the wheel-path interaction zone. The detection rate on urban zone reaches 75%
for renewed lanes and 72% for distressed lanes.

Keywords: road surface; pavement condition; tire-road noise; unsupervised machine learning;
data clustering

1. Introduction

Due to continuous improvements in technologies applied to transportation systems,
from autonomous driving to e-mobility, it is more common to find sensors embedded
in vehicles that allow continuous scanning of the road environment. One of the crucial
elements of this environment is the superficial pavement condition which is closely related
to traffic safety and rolling noise emissions [1,2].

The Tire-Pavement Interaction Noise (TPIN) is a complex phenomenon which depends
on a number of parameters, such as tire characteristics (e.g., tread pattern, inflation), driver
influence (e.g., speed, acceleration), environmental conditions, surface contamination (e.g.,
wet, dry, dusty), and the parameter on which the present work will focus, the superficial
asphalt condition [3–6].

Even though noise reduction properties of low-noise pavements decrease over time,
resulting in heterogeneous tire-road noise generation along the route [7], the road inspec-
tion activities are mainly focused on roughness, skid resistance, and distress regarding
functional and asphalt serviceability [8]. These conditions of the rolling surface are closely
related to the noise generation from the wheel-path interaction zone, including both the
megatexture and the macrotexture [9,10].

Traditionally, the identification and evaluation of asphalt defects has been performed
by labour-consuming visual inspections. These activities have some subjective assessments
due to experience and the assessor’s judgment of the catalogued defects. Other approaches,
such as coring tests, are also available as mechanical techniques [11]. These methods are
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time-consuming, require further laboratory analysis, and are not easy to apply to large
road sections.

Conversely, new remote sensing methodologies can address some of these shortcom-
ings; for example, analysing large road sections is possible while handling large amounts
of data. These methods include tools such as ground penetration radar, infrared ther-
mography [12], laser scanning [13], image-based [14,15], vibration-based [16–18], and
acoustic-based [19] methods. As these techniques are not mutually exclusive, more than
one technique can be used simultaneously [10,20].

In particular, the acoustic-based methodology exploits the information from the rolling
noise measurements, (i.e., Tire Pavement Interaction Noise (TPIN) [21], which is dominant
over powertrain noise above the “crossover speed”, usually 35 km/h for combustion engine
cars and lower speeds for electric vehicles [22].

The objective of this paper is to present an acoustic-based approach for unattended
discrimination of the changes of the road surface conditions over the wheel-track path
through the analysis of the tire-road noise and unsupervised machine learning (UL). Thus,
the resulting clusters are presented accordingly the road sections of similar asphalt status.
Although the obtained noise measurement data would also gather information about other
aspects present during rolling, such as acoustical comfort inside the car, tire-pavement
adhesion mechanism, vibrations, and aerodynamic phenomena, their identification is out
of the scope of the present work. This study addresses the influences of driving conditions
into the analysis, such as speed and acceleration of the vehicle, and several types and
degrees of damage could be found on a typical route. However, the design of a dataset
with all distress types for supervised classification could be a difficult and time-consuming
task. Hence, UL algorithms will be included in superficial pavement monitoring of three
road circuits. Table 1 shows a summary of the state-of-the-art research focused on road
materiality studies based on the acoustic information contained in TPIN signals.

Although some standards for rolling noise measurement in near field have been
implemented, such as CPX and OBSI, the data analysis from several sensors needed for
their configuration can be time and computationally consuming tasks for other purposes
added to policy noise level reports. Behind-The-Tire (BTT) measurement setup is a practical
option, which allows to analyse the relative influence of pavement texture on tire-road
noise through a simpler electroacoustic setup configuration [21,23]. The BTT technique has
provided good performance in data acquisition stage for further identification of the actual
condition of roads [5,24–26].

Most of the literature in this field, exploiting the advantages of supervised machine
learning in surface-asphalt detection using the frequency features of TPIN measurements,
reports high accuracy on classification tasks, for instance the surface-road type, materiality
class or wet-dry condition. The supervised method has been effective for these tasks,
although it requires a labelled database with enough examples of all possible deteriora-
tion classes to identify them on the actual route. However, the road upper layer to be
inspected might have many forms and degrees of deterioration, and several of them can
even be unknown; especially, when the inspection is over long distances. In addition, the
difficulty of collecting this complete database is the reason for the decision to use the unsu-
pervised approach for monitoring the superficial asphalt condition along the wheel-path
interaction zone.

This paper is organized as follows: Section 2 presents a detailed structure of the
methodology, including data acquisition, signal processing, the UL algorithm, and geopro-
cessing. Then, in Section 3, the obtained results applying the methodology on urban roads
are presented. Section 4 discusses the experimental results, the benefits of the application
of this experimental approach, and the detected limitations. Finally, main conclusions of
this work are detailed in Section 5.
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Table 1. Literature review: Road condition identification based on vibroacoustic data.
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Masino et al. [27] x Tire cavity sound measurement x PSD SVM, ANN x

Ambrosini et al. [28] x Multichannel array x MFCC CNN x

Doğan [29] x Behind the tire (BTT) x MFCC, PSC, LPC ANN x

Paulo et al. [30] x Close-Proximity method (CPX) x 1/3 OCT Bayesian x

Kongrattanaprasert et al. [31] x Coast-by method x Power spectrum ANN x

Alonso et al. [5] x BTT x 1/3 OCT SVM x

Abdic et al. [32] x BTT x Mel-Frequency scale. SVM, RNN-LSTM x

Pepe et al. [33] x Internal and external microphones x MFCC CNN x

Kalliris et al. [25] x On board single microphone x 1/1 OCT SVM x

Gueta and Sato [17] x On board smartphone monitoring x x Peaks on the signal. WT SVM, LDA, KNN x

Ramos-Romero et al. [26] x BTT x x 1/3 OCT KNN. x

Safont et al. [34] x x 10 channel sensor system x 256 features PCA, LDA, SVM, RFC x

David et al. [35] x Microphone pointed to the wheel x x 1/3 OCT—speed Clustering x

Ganji et al. [36] x CPX x MFCC SVM x

Zhang et al. [37] x BTT x PCA Statistic model x

Van Hauwermeiren et al. [38] x x Opportunistic sensing box x Sound levels and
acceleration. DAE DAE x

Del Pizzo et al. [9] x Tyre Cavity Microphone x x 1/3 OCT Statistic model x

* Power spectral density (PSD). Power spectrum coefficients (PSC). Mel-frequency cepstrum coefficients (MFCC). Linear predictive coefficients (LPC). Principal components analysis
(PCA). Wavelet transform (WT). Octave frequency spectrum (OCT). Support vector machine (SVM). Linear discriminant analysis (LDA). Convolutional neural networks (CNN). Artificial
neural networks (ANN). Denoising autoencoder (DAE). Recurrent neural networks (RNN). Long-short term memory (LSTM). K-nearest neighbour (KNN). Principal component analysis
(PCA). Random forest classifier (RFC).
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2. Materials and Methods

The implemented method consists of four main steps, as depicted in Figure 1.
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Figure 1. Methodological flowchart.

Firstly, the data are collected from three different types of input, such as the recordings
of the TPIN signal, speed, and acceleration from the vehicle’s electronic control unit via
the On-Board Diagnostics (OBD) port, and coordinates of the surveyed routes from a
smartphone GPS. Afterwards, the dataset construction is performed through sound signal
processing by frequency domain transformations, feature extraction, and driving condition
dependences. The conformed dataset can be sliced by geographic areas or specific streets
to deepen distress road identification.
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Next, the similarities between the acoustic footprint data are clustered using UL
algorithms. Finally, the available data from GPS were used to visually represent the
detected differences in road conditions. Since the GPS of the mobile phone has an accuracy
of 4.9 m, the geolocation data is not intended to determine the location of a specific type of
deterioration, but rather a generalized inspection of the road surface.

2.1. Data Collecting

As far as possible during the data recording rounds, some constraints of the experiment
were conserved to reduce variability factors and facilitate the subsequent interpretation
of results. Only one class of tire tread pattern was installed on the experimental vehicle,
which is depicted in Figure 2. This tread pattern is recommended for urban mobility in all
seasons by the manufacturer (Pirelli-Cinturato P1™ Verde). The tire inflation pressure was
checked before each experiment and kept constant at 2.2 bar. A single driver drove the
routes to minimize variability in driving behaviour. In addition, the own vehicle’s mass
was checked to ensure that it remained the same as much as possible. For this purpose,
only the driver, regulatory equipment and data acquisition hardware were carried in the
vehicle during the experiments. In addition, the measurement runs were driven with the
fuel tank above its half-capacity whenever possible.
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Figure 2. Sensor’s set-up.

The TPIN data acquisition campaign was carried out during fall season under sta-
ble weather conditions, i.e., average air temperature maintained between 22–25 ◦C and
humidity of 40–50%. Only dry asphalt was considered in the experiments.

Sound pressure signals were collected by using a unique instrumented diesel passen-
ger car, equipped with two 1/2” type-1 microphones and BSWA-MA231 preamplifiers,
according to the BTT technique. Although there is not an international standard for this
simple instrumentation technique, it offers certain advantages for inspections. For applica-
tions in opportunistic scenarios, the sensor configuration is performed with the minimum
disturbance to the vehicle structure, no additional trailer is required, and the microphones
remain hidden during inspections.

The microphones were connected to an NI-9234 Data Acquisition (DAQ) device with
sample rate of 51,200 Hz. The DAQ software is controlled by a portable PC on board.
Although the measurement tasks were performed with two microphones, one on each rear
wheel, the data captured by each microphone were processed independently. This means
that the instrumentation setup simulates two vehicles of the same type making the same
run with only one BTT microphone.

Simultaneously, an ELM327 interface connected at the car OBD port sends the driving
parameter data to a smartphone via Bluetooth at 1 Hz. Because the PC was connected to the
mobile network through the Wi-Fi smartphone portable hotspot, their clocks were matched
to enable recordings using a single clock.
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2.2. Dataset Design

The method seeks to recognize the differences between the sounds coming from
different road conditions when the tire rolls over them. In this context, the information that
makes the sound comparison between the signals is extracted from the TPIN registers and
then constitutes a data set. The selected features are then expected to contain the relevant
information of the input data.

The first step is to pass the audio data through a cut-off high-pass filter from 20 Hz,
which removes the unrelated signal to rolling phenomenon at lower frequencies, such as
sources of mechanical vibration and nonaudible acoustical data. Then, the audio data were
split into 1-s nonoverlapped frames. This frame size allows matching between the OBD
and GPS data sampled at 1 Hz with the corresponding TPIN frame trough date-time data.
A Hamming window was applied to reduce the discontinuity effects at the boundaries
of each chunk before the transformation in the frequency domain [39]. Each audio frame
is processed by the Discrete Fourier Transform (DFT). The power amplitude is computed
as the absolute value from the first half of the coefficients of DFT. Subsequently, the data
conformed by DFT spectrum are further processed in the filter bank.

In general, literature reports that the sound radiation of TPIN mechanisms is promi-
nent below 4000 Hz, and it is closed related with parameters of both the pavement (e.g.,
wavelength texture based on the aggregate particles in the mixture, the road condition
and temperature) and the wheel (e.g., speed, torque, load, and inflation) [3,40]. More-
over, the rolling noise amplitude, at frequencies below 1000 Hz, increases with texture
amplitude within the texture wavelength range of 10–500 mm. Indeed, above 1000 Hz, the
noise amplitude decreases with texture amplitude within the texture wavelength range
of 0.5–10 mm. [3]. Additionally, the changes in asphalt macrotexture are closely related
to sound levels in the frequency range between 40 and 400 Hz at a specific speed [41].
Likewise, the sound intensity level is correlated with pavement surface texture at different
frequency bands, from 315 to 2500 Hz [42].

Although TPIN noise characterisation is most commonly performed in the frequency
domain through the 1/n-octave bands [5,25,26,29,35], there are alternatives for noise repre-
sentation that are capable of handling the subjective impression of frequency, such as Mel’s
triangular filter bank.

Indeed, the triangular filter bank was typically selected for audio processing in tasks
related to the non-linear perception of sound by humans [39,43]. The reason for this type
of filtering approach is that passengers inside the vehicle can perceive changes in the
road surface by both auditory and vibrational stimuli, so this bank filtering is generally
associated with acoustic comfort in the vehicle cabin [44].

In accordance with the frequency behaviour of the TPIN described above, the triangu-
lar filter bank was designed to extract the data at frequencies below 4000 Hz.

On the whole, each signal frame passes through a set of triangular filters (Tf = 50).
The first 15 central frequencies ( fc) are linearly spaced by 15 Hz ( fc = 65 Hz to fc = 260 Hz),
and the next 35 central frequencies ( fc = 278.5 Hz to fc = 3089.4 Hz) are logarithmic
spaced [45]. Figure 3 depicts the triangular filter bank representation, and the frequency
bands are described in the Appendix A.

The OBD data allow the selection of only those signal frames that were recorded at
more than 35 km/h, i.e., the data that continue the process are above the crossover speed.
The detailed length of the studied roadways and corresponding observations [n] are listed
in Table 2.



Sensors 2022, 22, 9686 7 of 20Sensors 2022, 22, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 3. Dataset design. 

The OBD data allow the selection of only those signal frames that were recorded at 
more than 35 km/h, i.e., the data that continue the process are above the crossover speed. 
The detailed length of the studied roadways and corresponding observations [n] are 
listed in Table 2. 

Table 2. Elements of dataset and the length of the inspected routes. 

Roadway  
ID 

Circuit 
Length  

[km] 
Passes 

Travel Length 
Approx. [km] 

Dataset Elements [n]  
1-s Readings  

(Speed ≥35 km/h) 
Data for lineal 

model    39.00 4504 

Reference road  2.74 4 10.96 1430 
Urban avenue 5.82 4 21.52 2266 
Urban street 

circuit 2.81 4 11.24 1998 

2.2.1. Corrections by Driving Conditions 
To minimize the influences of driving conditions (speed and acceleration) on the fre-

quency extracted sound features, a linear multivariate model was implemented. The data 
for the model were recorded under a wide speed range (35 to 60 km/h) on urban roads 
with the same vehicle, set of tires, and driver in order to minimize the data variability (see 
Table 2). The data used to derive the linear model was excluded from the data sets detailed 
in the results. 

The speed 𝒔 [km/h] and acceleration 𝑎 [m/s2] of the vehicle registered during the 
trips are considered for corrections of noise level on each frequency band [35]. It is im-
portant to note that if speed and acceleration are taken as independent features, the clus-
tering algorithm could return an incorrect detection of asphalt zones because it could 
group the zones by driving performance or roads constraints rather than by rolling noise 
and pavement conditions. 

Consequently, every triangular band with sound pressure level in dB of a 1-s element 
[n] 𝐿்[௡]೑  on the dataset is adjusted by 𝑠 and 𝑎 influence by the Equation (1), where 𝐿ᇱ ்[௡](௙) is the corrected level and 𝐵𝑠்೑ and 𝐵𝑎்೑ are the coefficients for linear regression 
for speed and acceleration, respectively, at the reference speed 𝑠௥௘௙ = 70 km/h [35]. Alt-
hough this 𝑠௥௘௙ value was applied to tire-road noise experiments related to road rough-
ness [35] other values could also be considered [46]. 

Figure 3. Dataset design.

Table 2. Elements of dataset and the length of the inspected routes.

Roadway
ID

Circuit Length
[km] Passes Travel Length

Approx. [km]

Dataset Elements [n]
1-s Readings

(Speed ≥ 35 km/h)

Data for lineal
model 39.00 4504

Reference road 2.74 4 10.96 1430
Urban avenue 5.82 4 21.52 2266
Urban street

circuit 2.81 4 11.24 1998

2.2.1. Corrections by Driving Conditions

To minimize the influences of driving conditions (speed and acceleration) on the
frequency extracted sound features, a linear multivariate model was implemented. The
data for the model were recorded under a wide speed range (35 to 60 km/h) on urban
roads with the same vehicle, set of tires, and driver in order to minimize the data variability
(see Table 2). The data used to derive the linear model was excluded from the data sets
detailed in the results.

The speed s [km/h] and acceleration a [m/s2] of the vehicle registered during the trips
are considered for corrections of noise level on each frequency band [35]. It is important
to note that if speed and acceleration are taken as independent features, the clustering
algorithm could return an incorrect detection of asphalt zones because it could group
the zones by driving performance or roads constraints rather than by rolling noise and
pavement conditions.

Consequently, every triangular band with sound pressure level in dB of a 1-s element
[n] LT[n] f

on the dataset is adjusted by s and a influence by the Equation (1), where L′T[n]( f )

is the corrected level and BsTf and BaTf are the coefficients for linear regression for speed
and acceleration, respectively, at the reference speed sre f = 70 km/h [35]. Although this
sre f value was applied to tire-road noise experiments related to road roughness [35] other
values could also be considered [46].

L′T[n]( f ) = LT[n] f
− BsTf log10

s[n]
sre f
− BaTf a[n] (1)

Then, the feature space is made up of frequency bands with the coefficient of determination
R2 ≥ 75% and pvalue ≤ 0.005. The bands with R2 < 75% or p−value > 0.005 are rejected.
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Hence, only the bands from fc = 392.8 Hz to fc = 3089.4 Hz will be kept for the following
stages of the experiment. These resulting 31 bands correspond to the range of useful
frequencies indicated in the literature for tire/noise and pavement condition studies [42].
The selected triangular bands and the coefficients for linear regression are presented in
Appendix A.

Furthermore, deterioration in certain areas of the pavement has been observed due to
several punctual defects distributed over the surface. This surface irregularities generate
impact noise events. To represent these noise dynamics during rolling, three additional
overall-level features have been included for each observation [n] of the data. These are
the peak level LPeak[n], equivalent continuous level Leq[n], and the difference between them
CF[n] = LPeak[n] − Leq[n] as crest factor. Finally, the main dataset is constructed with the

featured TPIN by each element [n] as x =
{

L′T[n]( f ), LPeak[n], Leq[n], CF[n]
}

: x ∈ R34.

2.2.2. Trip Segmentation

Once completed, the dataset can be filtered by geographic regions for further local and
specific analysis. The available GPS data tracking makes it possible to select the amount
of data for the next tasks by a geospatial query. Each zone has a very specific pavement
structural capacity and corresponds to the same administration. The similarity in the
initial asphalt mixture type within each geographical section has been assumed. This
consideration would facilitate further analysis since the variability of the noise signal can
reach 10 dB due to differences in pavement texture [7]. Therefore, data segmentation allows
the selection of roads for a more specific analysis purpose, e.g., roads with similar usage
and traffic density.

2.2.3. Pre-Processing and Feature Space Reduction

After data segmentation, the available data were pre-processed to ensure that each
feature x contributed equally to the estimation of the parameters of the unsupervised
model. Thus, the standardized feature xstd was computed by Equation (2), with mean
µx and standard deviation σx. These new scaled features are centered with mean 0 and
standard deviation 1 [47].

xstd =
x− µx

σx
(2)

Next, the transformation of high-dimensional data into a meaningful representation
of reduced dimensionality is included through dimensionality reduction, also called the
feature reduction task. As a result, feature reduction facilitates and improves the cluster
discrimination, classification, visualization and compression of high-dimensional data [48].

In this regard, unsupervised nonlinear dimensionality reduction was applied by the
t-Distributed Stochastic Neighbor Embedding algorithm (t-SNE) introduced by Maaten and
Hinton [49]. t-SNE attempts to maintain the local neighbourhood structure of input data
points X = {x1, x2, . . . , xn} ⊂ Rd in low-dimensional space Y = {y1, y2, . . . , yn} ⊂ Rs,
where s� d, usually s = 2 or 3.

The above algorithm allows us to preserve the local structure of the data through
pairwise similarity based on the Euclidean distance, while preserving much of the global
structure of the data [49–51]. This distance-based feature reduction approach has provided
better results for clustering tasks than other feature reduction methods, such as principal
component analysis. Although this method was suggested for the graphical representation
of features in a reduced dimensional space, it can also be employed with the clustering
process, as it has been recently applied in fault detections and monitoring experiments [52].
Finally, the dataset reduced space results in y ∈ R2, by t-SNE components equal to 2.

2.3. Unsupervised Learning: Cluster Model and Validity

Because there are no a priori labelled classes about the current condition of the in-
spected streets, UL may be able to explore the similarity and separability criteria among
the observations in the data set. Then, two types of clustering techniques with different
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approaches were applied, but similar results were obtained: hierarchical clustering and
probabilistic clustering. In many cases, the first attempt at grouping data set results in a
clustering that may not be the most effective, so multiple clustering configurations must be
studied [53].

The hierarchical approach does not apply a random initialization. Particularly, the data
pooling algorithm starts with each observation as a cluster itself. These smaller clusters
merge into larger ones by a series of successive fusions of the observations by minimizing
the distance between clusters criteria [54]. The result of this agglomerative algorithm is a
tree of clusters with distance relations. The number of clusters k or disjointed groups of
data is obtained by cutting trees or dendrograms at a desired level [55].

Alternatively, the probabilistic Gaussian Mixture Models (GMMs) technique form
ellipsoidal-shaped clusters based on the iterative expectation-maximization algorithm. It
provides the basis for the Bayesian Gaussian Mixture Model (BGMM) [47,55,56].

The approximation of the minimum number of clusters could be established by the
“elbow diagram”. The elbow method helps to determine the optimal number of clusters K
by means of the sum of squared errors or inertia (SSE) function minimization [47]. The
inflexion point “elbow” of the SSE vs. K plot shows the optimal number of clusters.

An example of the selection of the number of clusters k = 3 by both described
clustering methods is depicted in Figure 4. Clustering algorithm results in a unique cluster
label Ck : k ∈ {1, 2, . . . , K} for each element of the dataset. This label is derived from the
order in which the clusters have emerged.
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2.4. Geo-Procesing of Results

The representation of all the passes over the inspected route is carried out by a basic
geo-processing stage. In this process, the cluster type assigned to each element of the
dataset was plotted on a map by GPS tracking data. However, after the cluster assignment
task, the elements per cluster class might appear during normal driving with a certain level
of randomness because the area of the asphalt on which the wheel contacts is not always
the same. Moreover, defects may not be reached by the wheel in a single pass, especially
in deteriorated areas with very local defects; in that case, the deteriorated area of the road
upper layer is not registered just because the defect has not been passed over. Therefore,
the possibility of detecting defects increases with the number of records belonging to the
same street segment.

To address this drawback, the travelled road is first segmented, and then each element
of the clustered dataset is related to the nearest piece of the road line. Road segments were
set every 20 m for urban roads. This segment length allows us to include enough cluster
elements in each segment when velocities are not constant. Finally, the segment label is
assigned by the mode Mo of the cluster type events Ck|segment associated with it, according
to Equation (3). This information reveals a continuous report of the asphalt status along
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the inspected route. The basic geo-processing procedure was also applied in a previous
work [26].

Labelsegment = Mo
{

Ck|segment

}
(3)

When a segment of route is classified as multimodal, the label legend not assigned
will be present in the mapping report as a “n/a”. In the same way, the segments without
available data (due to stop-car or low-speed events) will be present as “n/d”, from legend
no data.

3. Results

The performance of the introduced acoustic-based methodology for surveying road
condition was tested on urban roads (see Table 2).

3.1. Reference Route

The first experiment was carried out in the Reference-route. The benefit of applying
the proposed methodology on this route is to evaluate the clustering performance on a
controlled and known road environment. The road has two different types of superfi-
cial conditions (Figure 5) which includes the last renewed pavement (6 months before
the data acquisition) conforming the main ring-shaped route, and the straight access to
the ring where the distress sections are presented, such as longitudinal, transversal and
alligator cracking.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 20 
 

 

Therefore, the possibility of detecting defects increases with the number of records be-
longing to the same street segment. 

To address this drawback, the travelled road is first segmented, and then each ele-
ment of the clustered dataset is related to the nearest piece of the road line. Road segments 
were set every 20 m for urban roads. This segment length allows us to include enough 
cluster elements in each segment when velocities are not constant. Finally, the segment 
label is assigned by the mode 𝑀𝑜 of the cluster type events 𝐶௞|௦௘௚௠௘௡௧ associated with it, 
according to Equation (3). This information reveals a continuous report of the asphalt sta-
tus along the inspected route. The basic geo-processing procedure was also applied in a 
previous work [26]. 𝐿𝑎𝑏𝑒𝑙௦௘௚௠௘௡௧ = 𝑀𝑜൛𝐶௞|௦௘௚௠௘௡௧ ൟ  (3)

When a segment of route is classified as multimodal, the label legend not assigned will 
be present in the mapping report as a “n/a”. In the same way, the segments without avail-
able data (due to stop-car or low-speed events) will be present as “n/d”, from legend no 
data. 

3. Results 
The performance of the introduced acoustic-based methodology for surveying road 

condition was tested on urban roads (see Table 2). 

3.1. Reference Route 
The first experiment was carried out in the Reference-route. The benefit of applying 

the proposed methodology on this route is to evaluate the clustering performance on a 
controlled and known road environment. The road has two different types of superficial 
conditions (Figure 5) which includes the last renewed pavement (6 months before the data 
acquisition) conforming the main ring-shaped route, and the straight access to the ring 
where the distress sections are presented, such as longitudinal, transversal and alligator 
cracking. 

 
Figure 5. Reference-route data clustering results. t-SNE clusters formed (left). Geopositioned clus-
ters (middle-right). 

For the feature reduction task, the t-SNE algorithm was fitted to respond closer to the 
known condition of the reference surface road, i.e., t-SNE components (n = 2) and (per-
plexity = 30). This last one is a parameter that means (loosely) how to balance attention 
between local and global aspects of the data [57]. Figure 5 shows the correspondence be-
tween the feature reduction step and the resulting clusters for pavement-condition zones. 
Figure 6 shows the clustered original features for the two resulting types of asphalt con-
ditions. 
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For the feature reduction task, the t-SNE algorithm was fitted to respond closer to the
known condition of the reference surface road, i.e., t-SNE components (n = 2) and (perplex-
ity = 30). This last one is a parameter that means (loosely) how to balance attention between
local and global aspects of the data [57]. Figure 5 shows the correspondence between the
feature reduction step and the resulting clusters for pavement-condition zones. Figure 6
shows the clustered original features for the two resulting types of asphalt conditions.

Frequency features are showed in Figure 6 as the mean spectrum of the dataset for each
cluster with its standard deviation. Temporal features are shown as box and whisker plots.

The cluster C2 has the highest readings of noise levels per band, mainly between
896.0 Hz and 1553.4 Hz bands. Since the initial materiality of the route is considered
the same, and the driving speed and acceleration are quiet constant into the selected
data it can be assumed that the section assigned to cluster C2 would correspond to the
most deteriorated surface condition. Likewise, the differences in the means of the global
noise level indicators between clusters C2 and C1: ∆LPeak ≈ 10 dB, ∆Lrms ≈ 7dB and
∆CF ≈ 4 dB; reinforce the premise that the route sections with distressed conditions is
located on the route assigned to cluster C2.
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Subsequently, the geographic processing of the instances assigned to each cluster
was carried out through the stage described in Section 2.4. It was possible to visualise
the sectors of the surveyed route according to the similar behaviour of the rolling noise
footprint obtained from the clustering stage in Figure 5.
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3.2. Urban Avenue

The second group of data refers to a single avenue in urban environment. It was known
that maintenance work had been done previously, and a short section of this road had been
completely repaved. Thus, the present experiment was motivated by the evaluation of the
model’s ability to identify both distressed and renewed areas. For this experiment, the
resulting number of clusters was k = 3, as is depicted in Figure 7.

Subsequently, the instances assigned to each cluster could be displayed in their original
domain, i.e., according to noise levels by frequency bands and by overall noise levels.
Although the clustered noise spectrum does not show more than 3 dB difference between
the average levels of each cluster (Figure 8) and the main values of the LPeak and Leq
values of C1 and C2 are closer to each other <3 dB, the C3 is 6 dB lower than the other two
clusters. The cluster C3 corresponds to the data in driving deacceleration. The resulting
clusters could be reported by the surveyed route line illustrated in Figure 7. In the mapped
route report two main segments can be identified the one corresponding to cluster C1
and a shorter one corresponding to cluster C2. The third cluster appears located in the
street intersections, roundabout approximation zones and pedestrian crossings which
could explain the data obtained during the car’s deacceleration. Cluster C3 combines the
lowest TPIN levels on feature plots. Nevertheless, this is not related completely with the
superficial condition of the wheel-path interaction zone but with the driving conditions
during the experiments.
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3.3. Urban Street Circuit

The reason of this last experiment was to test the identification of the condition of the
wheel-path interaction zone among several neighbouring streets. These streets, with similar
characteristics, such as vehicle density flow and travel speed, do not necessarily have the
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same asphalt condition, but in general, the initial installed materiality could. Figure 9
shows the obtained results correspond to cluster number k = 3.
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Figure 10 shows the averages of the characteristics in frequency and time domain, as
well as their standard deviation for each cluster assigned to the studied data. It is evident
that instances assigned to cluster C1 have the highest amplitudes, followed by cluster C2
and cluster C3 with lower amplitudes. In general, a difference of about 5 dB is observed
between the band spectrum means and consecutive clusters. This slight difference in the
frequency characteristics of clusters C1 and C2 could indicate that the track section assigned
to cluster C1 is in worse condition than the section assigned to cluster C2.

Besides, cluster C3 shows the lowest amplitudes, and it could be associated with a
quieter routing condition than the other clusters found. Its behaviour is like the third cluster
of the previous experiment’s data set, i.e., the urban avenue. Hence, we can deduct that
cluster C3 is not related to the superficial condition of the wheel-path interaction zone.

Mapping report depicted in Figure 9, a marked zone assigned to cluster C2 is dominant
in almost a whole street of the inspected group. Because of the features on cluster C2 are
lower than C1, a better quality of asphalt is assumed. The greater section of the inspected
group of streets belongs to C1, with the noisiest acoustic footprint. Finally, cluster C3
describes a similar effect as the previous case of groups deaccelerating zones.

After, a further visual inspection of the studied street group was carried out. The
area assigned to C2 certainly showed signs of recent repaving, and zones assigned to C1
correspond to the old pavement.

A straightforward interpretation of the cluster correspondence of a road-surface con-
dition is possible if the road surfaces along each route have similar materiality at the time
of installation. This condition is assumed for the roads considered separately for each case
study. From this point of view, the cluster with higher amplitude of acoustic footprint can
be linked to the old areas, while new areas would belong to a lower amplitude cluster.
Details of the visual inspection and the comparison with cluster estimation are presented
at the end of the section in Table 3.
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Table 3. Discrimination rate of the surface of wheel-path interaction zone by clustering.
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C1 C2 C3 lna lnd
lC

lRS−lnd
∗ 100 lna

lRS
∗ 100 lnd

lRS
∗ 100

University
campus 2.54

renewed 1.54 1.42 0.00 - 0.00 0.12 C1 92.21 0.00 7.79
distressed 1.00 0.16 0.76 - 0.00 0.08 C2 76.00 0.00 8.00

Urban
avenue 5.39

renewed 1.64 0.18 0.94 0.22 0.20 0.10 C2 57.32 12.20 6.10
distressed 3.74 2.27 0.46 0.52 0.30 0.20 C1 60.53 8.02 5.33

Urban street
circuit 2.81

renewed 0.48 0.04 0.36 0.06 0.02 0.00 C2 75.00 4.17 0.00
distressed 2.35 1.70 0.34 0.18 0.07 0.06 C1 72.34 2.98 2.55

A comparison is made between interpretation of the resulting clusters and visual
inspection. The term “estimation” is used since there are no previously assigned class
labels to compare the detections. Nonetheless, it was possible to obtain the length of the
road sections of each circuit lRS, which were visually labeled as “renewed” or “distressed”.
Then, a ratio between lRS and the length assigned to each cluster lC is calculated. The
length assigned to each cluster lC was obtained by counting the total length of segments
assigned to each cluster in the geoprocessing step. In the same way, the total length of
the “no-assigned” sections lna and the total length of “no-data” sections lnd were counted.
Each section of the route has a dominant cluster Ck, which covers the greatest length of that
section. Using this cluster, the condition of each section was rated.

The dominant clusters on each route section agree with the discriminated wheel-
path condition obtained from the cluster interpretation and with the assigned condition
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by means of visual inspection. Then, the correct identification of each route section is
estimated by the ratio between the dominant cluster length lC and the total distance of the
route section, excluding the part that has not been considered on the datasets lRS − lnd, in
percentage. The percentage of the route that was not clearly identified and the percentage
of the route that did not contribute data to the study are also presented, using lna/lRS and
lnd/lRS, respectively.

The results show that the surface discrimination for two pavement condition categories
was obtained from the clusters within the reduced feature space. In the roadway of the
University campus, the detection of both renewed and distressed sections shows more
separable resulting clusters in the feature space (e.g., ∆Leq = 7.2 dB), and the a priori
knowledge of the superficial roadway status allowed a high estimation of the real condition
of the road. In particular, the renewed section length was detected up to 96% and the
distressed section length up to 76%.

On the other hand, the system is less effective in road environments with greater
variability. These are the cases of the urban avenue and the urban circuit, where the
presence of a third cluster is related with external urban factors instead rolling noise.
Therefore, this cluster was not considered for the estimation of the road surface condition.
In addition, the classes proposed by the number of clusters are closer to each other into
the feature space (i.e., ∆Leq < 3 dB). As a result, the discrimination rate of distressed areas
between 60% and 72% was achieved for urban roads environment.

4. Discussion

The results of the automatic discrimination of the asphalt surface condition over the
wheel-path interaction zone have been compared with the conventional visual inspection
technique, which is performed on reference points of the road. In addition, local road
evaluations were generalized to make them comparable with the results of the large
length inspection attained from the proposed method. As a result, the discrimination rate
presented in Table 3 can be underestimated

For all urban-roads study case, the corresponding C3 appears in localized deceleration
zones. It suggests that several low-noise data observations do not contain information
purely related to tire-road noise. The speed limits and the car used for this traffic environ-
ment would make it difficult to record signals without contamination, such as ambient
noise or phenomena related to sound reflections. This effect would be present in all clusters
due to data acquired at speeds very close to the crossover speed (35 km/h) but mostly
assigned to C3.

Due to the location of the microphones, BTT method depends on the wheel path,
which is the contact area between the tire and the road during normal traffic. Therefore,
the assigned group is not necessarily the same for all passes neither for both tires at the
same time. However, with increasing passes, the detections show homogeneity across road
segments, and the subsequent geoprocessing step allows smoothing the cluster assignment
by a majority vote summary.

This acquiring system proposed allows to process signals from two microphone posi-
tions independently. This suggests that two cars with similar engine and tire characteristics
and with only one instrumented tire, would provide similar results. However, the influence
of driver and vehicle variability must be considered in the clustering interpretation. This
can lead to collecting information collaboratively in the horizon.

• This method, based on the clustering of the acoustic features of rolling noise, provides
an unsupervised alternative for the discrimination of the asphalt surface status along
the trajectory followed by a vehicle wheel. Notwithstanding, certain possible improve-
ments, such as the selection of the vehicle and the placement of the microphone for
data acquisition, should be considered in future works.

• The placement of the microphone in the wheel housing produces signals that are
not “purely” from the interaction between the tire and the road. In fact, there could
be other types of sounds, both from the outside (when driving on busy roads) and
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from the vehicle itself (noise from the exhaust pipe or from the ventilation of the
wheels themselves). The presence of these other sounds could negatively affect the
classification process by increasing the background noise and masking the signal
containing the contact surface information. However, most of these components are
not sensitive to the type of road surface the vehicle is driving on. Therefore, the
filtering, feature extraction, and dimensionality reduction processes have allowed
to minimize their influence, as their acoustic fingerprints are separable. These non-
overlapping classes were also observed in experiments with supervised classifiers
with similar microphone placement [5,25,32,58]. Furthermore, the impact of these
spurious sound phenomena is minimised by processing multiple observations at the
same location using the geoprocessing step.

• The selection of the speed of reference in the linear model could be improved in
future works. Although the literature reports the linear relationship of the TPIN levels
in dB and log speed [km/h]

speedre f [km/h] over a wide range of speeds, the speed of reference was

considered constant throughout the experiments for homogeneous data processing.
The analysis could be improved by applying different values of the speed reference
based on standard recommendations as is proposed by ISO [46] and CNOSSOS-EU
for traffic noise emissions modelling.

• The asphalt discrimination rate in urban scenarios could be improved with the appli-
cation of this acoustics-based method using electric vehicles, due to the lower crossing
speed (<35 km/h) as reported in [22].

• The detection of road surface quality by unsupervised learning has been evaluated by
comparisons with applications of supervised classification metrics (i.e., accuracy) [35].
On the other hand, the present work proposes the “Estimation of road- section dis-
crimination” which is based on the actual length of the road.

• Comparison of the signals acquired by two or more microphones (e.g., one for each
tire) could be included in future research steps. This would improve the detection of
wear of the pavement, such as potholes, cracks, and bumps. A shorter-time window
could also be included for impulsive noise events processing.

5. Conclusions

The main contribution of this paper is to present the performance of asphalt surface
characterization based on the TPIN signal produced along the wheel path. This unsuper-
vised technique allows the automatic discrimination of a small number of clusters related
to predominant asphalt superficial condition.

Moreover, this method takes advantage of some improvement opportunities detected
in previous related works, such as the inclusion of driving condition influences and the
detection of the differences over the asphalt length without a catalogue of damages.

Three kinds of scenarios were considered to check the performance of the methodology
such as a reference route, one urban avenue, and one urban street circuit. All these
pavements possessed same characteristics of regular aggregate compositions, i.e., no one
of them were neither open-graded pavements, rubber asphalts or poroelastic surfaces.
These measurements were limited to weather conditions without rain and dry asphalt. The
conclusions of the study are as follows:

• The superficial condition of the studied roads is closely related to the rolling sound
footprint and TPIN amplitudes in the frequency and time domains. These relations
allow the interpretation of the clustering results.

• An advantage of the application of UL over supervised techniques is the possibility of
detecting areas with homogeneous rolling noise footprint without knowledge of the
current road status. These localized zones are related to the homogeneous condition
of the road status (deteriorated or not). The results were compared throughout further
conventional visual inspections.

• The implemented methodology has allowed the automatic and continuous discrimina-
tion of the state of the asphalt surface along the wheel trajectory. From these results, the
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surface discrimination of the wheel path on single lane roads can reach 92 % (i.e., the
reference road and the urban street circuit). Multiple observations allow to evaluate
better the TPIN from a narrower wheel track area.

• Whereas in the case of the urban scenarios of roads with more than one lane, the
discrimination rate decreases up to 57%. This because of the discrimination system
must deal with different variables such as the speed limit, traffic flow, and a wider
inspected area. Especially, when the vehicle changes lanes during each trip as it could
happened during naturalistic driving behaviour.

• The present acoustic-based method allows the inspection of road facilities with nonstop
traffic inspections, non-destructive approach, and opportunistic scenario.

• The mapping report contributes to pavement management through visual information.
The surveyed areas producing different TPIN footprints assist in road maintenance
planning, traffic noise mitigation activities, road condition warning reports.

• In the present research phase, only corrections due to driving characteristics (speed
and acceleration) were included. Future developments are also expected to incorporate
corrections due to the variability of other conditions during driving, such as vehicle
load, driver behaviour, tire inflation pressure, tire tread pattern, temperature, humidity,
vehicle engine, pavement materiality, etc.

• The technique could be improved for the detection of punctual defects such as potholes
or manholes through refined time windowing in the signal processing and spatial
resolution in the geoprocessing.

• However, the consideration of these new conditions will surely imply complexity in
the clustering interpretation.
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Appendix A

Table A1. Features based on the triangular filters and the coefficients applied to the linear correction
of the influence of speed and acceleration on TPIN levels.

Fi
lt

er

Triangular Filter
Tf

Coefficients p-Values

R2

Fi
lt

er

Triangular Filter
Tf

Coefficients p-Values

R2

fL fc fU
Bs

Speed
Ba

Accel. Speed Accel. fL fc fU
Bs

Speed
Ba

Accel. Speed Accel.

1 50.0 65.0 80.0 38.7 2.2 0.0 0.0 76.7 26 553.9 593.3 635.5 33.3 1.7 0.0 0.0 87.7
2 65.0 80.0 95.0 37.4 1.8 0.0 0.0 78.9 27 593.3 635.5 680.8 33.6 1.7 0.0 0.0 86.7
3 80.0 95.0 110.0 32.9 1.6 0.0 0.0 74.3 28 635.5 680.8 729.2 32.0 1.9 0.0 0.0 85.3
4 95.0 110.0 125.0 25.2 1.1 0.0 0.0 60.5 29 680.8 729.2 781.1 33.6 1.8 0.0 0.0 85.6
5 110.0 125.0 140.0 22.2 0.9 0.0 0.0 57.8 30 729.2 781.1 836.7 37.3 1.7 0.0 0.0 87.5
6 125.0 140.0 155.0 22.5 0.9 0.0 0.0 59.7 31 781.1 836.7 896.2 36.6 1.8 0.0 0.0 86.5
7 140.0 155.0 170.0 23.5 0.9 0.0 0.0 60.8 32 836.7 896.2 960.0 36.1 1.7 0.0 0.0 87.0
8 155.0 170.0 185.0 25.6 0.9 0.0 0.0 65.5 33 896.2 960.0 1028.4 34.7 1.7 0.0 0.0 85.8
9 170.0 185.0 200.0 27.2 0.8 0.0 0.0 65.0 34 960.0 1028.4 1101.5 35.5 1.7 0.0 0.0 84.5
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Table A1. Cont.

Fi
lt

er

Triangular Filter
Tf

Coefficients p-Values

R2

Fi
lt

er

Triangular Filter
Tf

Coefficients p-Values

R2

fL fc fU
Bs

Speed
Ba

Accel. Speed Accel. fL fc fU
Bs

Speed
Ba

Accel. Speed Accel.

10 185.0 200.0 215.0 27.2 0.9 0.0 0.0 67.7 35 1028.4 1101.5 1179.9 36.0 1.8 0.0 0.0 81.5
11 200.0 215.0 230.0 25.6 0.8 0.0 0.0 65.8 36 1101.5 1179.9 1263.9 35.0 1.6 0.0 0.0 79.2
12 215.0 230.0 245.0 20.5 1.2 0.0 0.0 57.0 37 1179.9 1263.9 1353.9 34.3 1.8 0.0 0.0 79.2
13 230.0 245.0 260.0 18.0 1.1 0.0 0.0 53.1 38 1263.9 1353.9 1450.2 34.4 1.8 0.0 0.0 82.5
14 245.0 260.0 278.5 16.9 1.2 0.0 0.0 48.7 39 1353.9 1450.2 1553.4 33.8 1.7 0.0 0.0 81.5
15 260.0 278.5 298.3 17.7 1.5 0.0 0.0 51.2 40 1450.2 1553.4 1664.0 31.9 1.6 0.0 0.0 80.9
16 278.5 298.3 319.6 20.1 1.6 0.0 0.0 61.2 41 1553.4 1664.0 1782.4 32.0 1.7 0.0 0.0 82.2
17 298.3 319.6 342.3 25.0 1.6 0.0 0.0 71.8 42 1664.0 1782.4 1909.3 28.4 1.9 0.0 0.0 78.8
18 319.6 342.3 366.7 30.4 1.8 0.0 0.0 72.9 43 1782.4 1909.3 2045.2 31.4 2.0 0.0 0.0 79.7
19 342.3 366.7 392.8 29.5 1.7 0.0 0.0 73.7 44 1909.3 2045.2 2190.7 27.7 1.9 0.0 0.0 78.4
20 366.7 392.8 420.7 30.4 1.9 0.0 0.0 83.4 45 2045.2 2190.7 2346.6 27.5 2.1 0.0 0.0 77.0
21 392.8 420.7 450.7 30.9 2.0 0.0 0.0 84.1 46 2190.7 2346.6 2513.6 27.6 2.0 0.0 0.0 82.2
22 420.7 450.7 482.7 31.6 1.8 0.0 0.0 84.3 47 2346.6 2513.6 2692.5 27.6 1.8 0.0 0.0 83.0
23 450.7 482.7 517.1 33.6 1.8 0.0 0.0 84.2 48 2513.6 2692.5 2884.2 28.1 1.9 0.0 0.0 81.3
24 482.7 517.1 553.9 33.2 1.6 0.0 0.0 86.5 49 2692.5 2884.2 3089.4 27.9 1.9 0.0 0.0 79.6
25 517.1 553.9 593.3 32.7 1.7 0.0 0.0 87.5 50 2884.2 3089.4 3309.3 28.1 1.9 0.0 0.0 79.8

In, fL, fc, and fU are the lower, central, and upper frequencies of the triangular
filters, respectively. The coefficients for Equation (1) by each triangular filter are Bs for
the speed and Ba for the acceleration. Additionally, the p-values and the coefficient of
determination R2(%) are presented. The highlighted filters (20 to 50) correspond to the
selected 31 frequency features.
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