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Abstract: A direct feedback flipped voltage follower (FVF) LDO for a high-precision frequency-
modulated continuous-wave (FMCW) radar is presented. To minimize the effect of the power supply
ripple on the FMCW radar sensor’s resolution, a folded cascode error amplifier (EA) was connected
to the outer loop of the FVF to increase the open-loop gain. The direct feedback structure enhances
the PSRR while minimizing the power supply ripple path and not compromising a transient response.
The flipped voltage follower with a super source follower forms a fast feedback loop. The stability and
parameter variation sensitivity of the multi-loop FVF LDO were analyzed through the state matrix
decomposition. We implemented the FVF LDO in TSMC 65 nm CMOS technology. The fabricated
FVF LDO supplied a maximum load current of 20 mA with a 1.2 V power supply. The proposed FVF
LDO achieved a full-spectrum PSR with a low-frequency PSRR of 66 dB, unity-gain bandwidth of
469 MHz, and 20 ns transient settling time with a load current step from 1 mA to 20 mA.

Keywords: CMOS; low-dropout regulator; flipped voltage follower; large loop gain; fast transient;
high unity-gain bandwidth

1. Introduction

Starting from military equipment, the FMCW radar sensor has broadened its applica-
tion to an autonomous vehicle, a 3D imaging system, and a weather forecast. At the same
time, the power management has become an integral part of the FMCW transceiver. To
ensure the spatial and range resolution of the FMCW radar sensor, the power management
circuit must supply stable and isolated supply voltages to each sensitive block, such as the
PLL, mixer, and ADC [1–10]. With sawtooth modulation with Tm = 2 ms, the time delay (τ)
and the beat frequency (fb) for the frequency-modulated received signal from a target at a
distance of R is given as

τ =
2R
vc

(1)

fb= f tx − f rx= K f τ (2)

With Kf of 500 GHz/s and a target range of 180 m, the maximum beat frequency is
600 kHz. Thus, the LDO should reject the low-frequency ripple from the supply to prevent
it from degrading the phase noise of the PLL, which is the frequency modulation signal
source. Moreover, even the power supply ripple of the frequency higher than the ADC
sampling frequency may fold into the ADC in-band. Hence, it is essential for the LDO to
reject a wide range of the power supply ripple, especially at the low-frequency range. We
noticed that the FMCW frequency hopping approach [11] required an LDO to respond
rapidly to the transient load variation. This is because the current consumption of the PLL
changes relatively rapidly with the frequency hopping.

In order to achieve a high PSR across a wide frequency range, various analog circuit
techniques have been introduced. A feedforward ripple cancellation achieves a high PSR
by combining a feedback and feedforward signal path [12–16]. A bandgap reference
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(BGR) recursive configuration [17] and an output-supplied voltage reference [18] have been
proposed to reduce the effect of a non-ideal PSR of the bandgap reference. A multi-loop
structure [19–23] has been introduced to boost the unity-gain bandwidth and the transient
response in various configurations. The flipped voltage follower (FVF) LDO [24] has
become one of the most popular analog LDO approaches for the last decade. The FVF
LDO has a local feedback loop that reduces output resistance. In addition, an independent
control voltage generator can provide an adequate control voltage for the control transistor.
However, the transient time of the local feedback loop is relatively slow due to the large
pass transistor, and the unity-gain bandwidth of the LDO has been limited. A tri-loop FVF
LDO with buffered FVF was proposed to achieve full-spectrum PSR and fast response time
in [25]. Although additional loops through a tri-input EA provided more loop gain, the
resulting low-frequency PSR was not sufficiently improved. A dual-loop FVF LDO was
reported to provide full-spectrum PSR with high low-frequency PSR in [26]. As the control
voltage regulating loop was removed, it created another power supply ripple path through
the inverting stage, which necessitated an auxiliary LDO.

In this paper, a direct feedback FVF LDO was proposed. By constructing an error
amplifier (EA) that directly controls the FVF local loop, the FVF LDO can eliminate the
power supply ripple path, resulting in a high PSRR without the need for additional compo-
nents. A local FVF loop with a super source follower realizes a fast transient response with
a unity-gain bandwidth of 469 MHz, and an outer loop incorporating folded cascode EA
enhanced a low-frequency PSR to 66 dB. State matrix decomposition [27] was applied to
analyze the stability and parameter sensitivity of a multi-loop FVF LDO.

This paper is organized as follows. Section 2 introduces the proposed direct-feedback
LDO. The PSRR and stability analysis of the FVF LDO was also presented. State matrix
decomposition [27] was employed to analyze the stability and parameter sensitivity of the
multi-loop FVF LDO. Section 3 shows the experimental result with a fabricated FVF LDO,
and Section 4 follows with a conclusion.

2. Design of FVF LDO

Figure 1 shows a schematic diagram of the proposed LDO regulator. The LDO con-
sisted of a unity-gain buffer, an error amplifier (EA), an output capacitor, and transistors,
Mpass, M1, and M2. Mpass, M1, and M2 formed a flipped voltage follower. Fast and weak
shunt–shunt feedback loop 1 in the flipped voltage follower enables the fast response
of the LDO. The output of the error amplifier, VSET, sets the input level of the flipped
voltage follower. The input of the EA was connected to the reference input (VREF), and
VOUT formed another feedback loop 2. This dramatically enhanced the open loop gain of
the overall loop. Since VOUT was directly fed back into EA and the inverting stage was
removed, we can eliminate the power supply ripple path without the need for an additional
component. To enhance the transient performance, we needed to make the dominant pole
of the fast loop 1 located at the output node. The output capacitor, CL, was connected to the
output of the LDO to make the output node of the LDO dominant pole, and the capacitor,
C1, was connected to the output of the error amplifier to stabilize loop 2. An additional
compensation capacitor, C2, was enabled by a start-up pulse generator to guarantee more
phase margin during the start-up situation. The unity-gain buffer was to drive the large
power transistor, Mpass. The size of the transistors, the capacitor values, and the load
current (IL) values are listed in Table 1.
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Figure 1. (a) Schematic diagram, (b) simplified schematic diagram, and (c) block of the proposed
FVF LDO.

Table 1. List of the component values in the proposed FVF LDO.

Component Value Component Value

M1 8 µm/0.13 µm M8, M9 60 µm/1 µm
M2 4 µm/0.13 µm M10, M11 40 µm/1 µm
M3 14 µm/0.18 µm M12, M13 12 µm/1 µm
M4 3 µm/0.06 µm M14, M15 12 µm/1 µm

M5, M6 2 µm/0.18 µm M16, M17 10 µm/1 µm
M7 3 µm/0.18 µm M18, M19 12 µm/1 µm
CL 350 pF IL 1 mA–20 mA
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2.1. Fast Loop 1 Analysis

At higher frequencies where loop 2 did not work, only loop 1 worked. Without loop 2,
the LDO simply had the flipped voltage follower (FVF) used as the power stage. The
proposed LDO without loop 2 is shown in Figure 2a. The input VSET sets the output
voltage of the FVF, and any interference or noise in the VIN works as a disturbance for the
system. The series-shunt feedback structure reduced the output impedance of the system,
enabling a high-frequency operation. The noise or interference from the power source was
reduced by the internal feedback loop. To perform the PSRR analysis of the proposed LDO,
we established a small-signal block diagram of the LDO. The block diagram is shown in
Figure 2b. The VSET works as a reference input of the FVF, and any interference or noise in
VIN was a disturbance for the system. The open-loop gain and output of LDO is

LG1= GAGSSFGP (3)

vout =
GAGSSFGP

1 + GAGSSFGP
vset +

GP
1 + GAGSSFGP

vin ≈ vset +
1

GAGSSF
vin (4)

GA= gm1(ro1||r o2)
1

1 + s(ro1||r o2)CA
(5)

GSSF =
KSSF ω2

n
s2+2ζωns + ω2

n
(6)

GP= gmP(RL||r oP)
1

1 + s(RL||r oP)COUT
(7)

where gm1 is the transconductance of M1, ro1 and ro2 are the output resistance of M1 and
M2, respectively, CA is capacitance seen at node A, ωn is the natural frequency of the
super source follower, ζ is the damping factor of the super source follower, gmP is the
transconductance of the pass transistor, RL is the load resistance, roP is the output resistance
of the pass transistor, and COUT is the capacitance seen at the output node. Supply noise
is reduced approximately by GA at high frequency. The bandwidth of the super source
follower was boosted due to the internal feedback structure, and the pole at node A was
also at high frequency, as M1 and M2 were small. The output capacitor, CL, was set such
that the pass transistor, MPass, was the slowest working component, and the dominant pole
of the controller gain, GA and GSSF, were placed at a higher frequency. Therefore, loop 1
suppressed the supply noise through a wide frequency range. The supply noise at a higher
frequency was absorbed by the large CL. The downside of loop 1 was that the open-loop
gain was not large. Thus, the resulting PSRR of the LDO may not be sufficient only with
loop 1. The error amplifier in loop 2 can improve the PSRR.
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Figure 2. (a) FVF LDO without loop 2 and (b) its small-signal block diagram. Figure 2. (a) FVF LDO without loop 2 and (b) its small-signal block diagram.
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2.2. Slow Loop 2 Analysis

The folded cascode amplifier can drastically improve the closed-loop gain. Since VOUT
was directly fed back into the EA and the inverting stage was removed, we could eliminate
the power supply ripple path without the need for an additional component. Figure 3
shows the loop 2 feedback path. Breaking the loop at VSET gives

LG2 = GEA
GAGSSFGP

1 + GAGSSFGP
(8)

vout =
GEA

GAGSSF GP
1+GAGSSF GP

1+GEA
GAGSSF GP

1+GAGSSF GP

vre f +
GAGSSF GP

1+GAGSSF GP

1+GEA
GAGSSF GP

1+GAGSSF GP

1
GAGSSF

vin

= GEAGAGSSFGP
1+(1+GEA)GAGSSFGP

vre f +
GP

1+(1+GEA)GAGSSFGP
vin

≈ vre f +
1

(1+GEA)GAGSSF
vin

(9)

GEA =
KEA(

1 + s/ωp1
)(

1 + s/ωp2
) (10)

where GEA is the voltage gain of the folded cascode amplifier. The PSRR is boosted
approximately by GEA. Loop 1 is a unity-gain feedback network seen at node VSET, and the
unity-gain bandwidth of loop 1 was far beyond that of the EA. Hence, we simply needed
to compensate for the folded cascode EA. The folded cascode amplifier can be stabilized
simply by adding the compensation capacitor, C1, to the output of the amplifier.
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2.3. Overall Loop Analysis

Loop 1 and Loop 2 formed a combined global loop. The global loop had the largest
closed-loop gain, making it critical for the phase margin design. Figure 4 shows the
combined diagram of loop 1 and loop 2. By breaking the loop at the node VG, the output
voltage is expressed as

LG = (1 + G EA)GAGSSFGP (11)

vout =
(1+GEA)GAGSSFGP

1+(1+GEA)GAGSSFGP
vre f +

GP
1+(1+GEA)GAGSSFGP

vin

≈ vre f +
1

(1+GEA)GAGSSF
vin

(12)
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Figure 4. (a) Small-signal block diagram and (b) its simplified block diagram.

Here, the open-loop gain had a dominant pole at the output of the EA, and the second
pole was at the output of the LDO. The (1 + G EA) term in (11) made a quadratic zero
near the unity-gain bandwidth of the EA. This zero was set to cancel out the second pole,
which was below the unity-gain bandwidth of the LDO. It was noted that the LDO would
be unstable without this zero. As a result, the (1 + G EA) term boosted the unity-gain
bandwidth of the LDO. Figure 5 shows the phase margin simulation result. The unity-gain
bandwidth of loop 1 was 507 MHz, and the phase margin was 37.3◦. The unity-gain
bandwidth of the loop 2 was 31.2 MHz, and the phase margin was 63.6◦. The unity-gain
bandwidth of the overall loop was 469 MHz, and the phase margin was 44.1◦.
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2.4. Effect of Non-Ideal PSRR of Each Component

There was more than one power supply ripple path in the FVF LDO. Circuit blocks
with a non-ideal PSRR can provide an additional path for the power supply ripple. Figure 6
shows the effect of non-ideal components on PSRR. With the simplified model, the output
of the LDO is given as

vout =
(1+GEA)GAGSSFGP

1+(1+GEA)GAGSSFGP
vre f+

GP
1+(1+GEA)GAGSSFGP

(1− PSRSSF + GSSFPSRA + GAGSSFPSREA)vin

≈ vre f +
α

(1+GEA)GAGSSF
vin

(13)

where PSRSSF is the power supply rejection of the super source follower, PSRA is the power
supply rejection of the FVF stage, and PSREA is the power supply rejection of the folded
cascode amplifier. The PSRR of the FVF stage and EA should be as low as possible. On the
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other hand, the super source follower with a poor PSRR helps the LDO reject the power
supply ripple by working as a feedforward path.
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The detailed closed-loop analysis is shown in the Appendix A. The LDO is asymp-
totically stable when all the real parts of the eigenvalues of matrix A are negative. The
eigenvalues are given as

λ1= −5.543× 109+j4.612× 109

λ2= −5.543× 109 − j4.612× 109

λ3= −1.414× 109+j4.342× 109

λ4= −1.414× 109 − j4.342× 109

λ5= −3.444× 108+j2.297× 108

λ6= −3.444× 108 − j2.297× 108

(16)

Since all the eigenvalues have negative real parts, the LDO was asymptotically stable.
The parameters used in the analysis are given in Table 2. The parameters were extracted
from the circuit simulation results, including parasitics. Figure 7 compares the PSRR simu-
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lation results from the circuit simulator and state space model. The state space model fits
the circuit simulation result and can predict the pole/zero location of the transfer function.

Table 2. Parameters used in the state space model.

Parameter Value Parameter Value

KEA 657.9 KA 12.576
ωp1 2π × 5.698 × 104 ωA 2π × 1.058 × 109

ωp2 2π × 1.194 × 108 PSRA 0.02778
PSREA 0.05833 KSSF 0.8386

PDF + 1 3.178 ωn 2π × 1.181 × 109

ωP 2π × 1.363 × 107 ζ 0.4799
PSRSSF 0.0104
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Figure 7. PSRR of the proposed LDO.

The red line represents the simulation result with the state space model, and the blue
line represents the simulation result with Cadence Spectre. We also identified the parameter
variation sensitivity by computing the real part of the critical eigenvalue with variation in
each parameter. Plotting the highest real part of the eigenvalues, the circuit should follow
the conditions:

∀λi, Re(λi) < 0 (17)

Figure 8 shows parameter variation sensitivity simulation results with various circuit
parameters. Nominal design values are marked as the green line.
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Figure 8. Parameter sensitivity simulation result for (a) the voltage gain of the folded cascode EA,
(b) the voltage gain of the FVF stage, (c) the natural frequency of SSF, (d) the voltage gain of the
pass transistor, (e) the dominant pole at the folded cascode EA, (f) the pole at the FVF stage, (g) the
damping factor of SSF, (h) the pole at the output.

3. Measurement Results

We implemented the LDO in TSMC 65 nm CMOS technology with an active area
of 0.037 mm2, including a 350 pF on-chip output capacitor. Figure 9 shows a chip pho-
tograph of a fabricated FVF LDO. A 350 pF output capacitor was implemented on-chip
using a MOM capacitor. We performed the on-chip probe measurements and the chip-on-
board measurements.
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Figure 9. (a) Chip photograph of the fabricated FVF LDO and (b) layout of the FVF LDO.

The power supply rejection ratio measurement setting is shown in Figure 10. The
Analog Device ADA4870 OPAMP supplied the DC power and ac ripple at the frequency of
fR to the LDO. The OPAMP was used to reduce the output impedance and combine the
DC voltage with the ac ripple. A Keysight E36313A DC power supply sets the reference
voltage and voltage bias for the OPAMP. A BK Precision BK4063B arbitrary signal generator
provided the input ripple signal to the OPAMP. A Keysight B2902A SMU supplied Iref
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to bias the internal amplifiers and buffer. The biasing point was controlled by the SPI
Module. A Keysight DSO-X oscilloscope was used to measure the input and output ripple.
The PSRR was calculated using measured input and output. Figure 11 shows the PSRR
measurement result. The fabricated FVF LDO achieved a full-spectrum PSR of 64.6 dB at
100 kHz and the worst measured PSRR of 10 dB at 200 MHz.
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Figure 11. Simulated and measured PSRR of the FVF LDO.

The load transient measurement setting is shown in Figure 12. A Keysight E36313A
was used to supply VIN and VREF to the LDO, and a Keysight B2902A was used to input
IREF to bias the internal amplifiers and buffer. The load control signal was given from
the BK precision BK4064B arbitrary signal generator. The load current was stepped from
minimum to maximum, with an edge time of 8 ns. The load transient measurement result
is given in Figure 13. The maximum voltage droop was 30.3 mV, and the settling time was
about 16 ns. Transient load regulation was 141 µV/mA.
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The line transient measurement setting was the same as the PSRR measurement setting,
and the only difference was that the ripple signal, fR, was replaced with a square wave.
The line transient measurement result is given in Figure 14. With the power supply voltage
changing from 1.2 V to 1.4 V within 20 ns, the output voltage changed by about 25.7 mV.
The settling time to the final value was about 40 ns.

Table 3 summarizes the performance of the proposed FVF LDO with other state-of-the-
art LDOs. The proposed FVF LDO occupied a 0.037 mm2 active area. The LDO output was
1 VDC with a supply voltage of 1.2 VDC. The maximum output current was 20 mA, and
the quiescent current was 290 µA. An output capacitor of 350 pF was used. The worst-case
load transient overshoot was 30.3 mV with a load current step of 8 ns edge time, and the
output was settled within 16 ns. When the response time of the LDO is comparable to the
edge time, the assumption in the simple response time equation [28] is no longer valid.
Assuming that the load current varies at a constant rate [29], the response time is given as

TR =

√
2CL∆VoTedge

∆IL
(18)
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Table 3. Performance comparison with state-of-the-art LDOs.

LDO Regulator This Work [12] [26] [29] [30]

Type Analog Analog Analog Analog Hybrid
Process (nm) 65 130 65 130 40
Area (mm2) 0.037 0.049 0.053 0.008 0.056

Vin (V) 1.2 1.15 1.2 1–1.4 1.25–1.4
Vout (V) 1 1 1 0.8 1.1–1.25
IQ (µA) 290 50 27–82 112 300

Max. Iload (mA) 20 25 20 25 245
Load capacitor (nF) 0.35 4000 0.3 0.025 20

Load transient Overshoot (mV) 30.3
in ns step

15
in 10 ns step

71
in 0.8 ns step

48
in 3 ns step

71
in 0.3 µs step

TR (ns) 2.99 438 5.35 0.881 73
Transient FoM (ps) 43.4 438 1.45 0.9 226

Settling Time
@Max. current step (ns) 16 500 * 200 80 520

PSRR
(dB)

66 at 1 kHz †

43.5 at 1 MHz
23.5 at 10 MHz

60 at 1 kHz
67 at 1 MHz

60 at 1 kHz
42 at 1 MHz

10 at 100 MHz

63 at 1 kHz
57 at 1 MHz
22 at 10 MHz

50 at 1 kHz
43 at 1 MHz

25 at 10 MHz
Load regulation (µV/mA) 141 48 15 173 24
Line Regulation (mV/V) 1.04 26 1 2.25 3.16

* Estimated from figure. † Simulated.

The shorter the response time, the better the performance is. The response time,
calculated according to (18), is shown in Table 2. The response time of the LDO was 2.99 ns.
Transient FoM [28] is given by

FoM = TR
IQ

IL(max)
(19)

where the smaller FoM represents better performance. The proposed FVF LDO achieved
an FoM of 43.4 ps. The low-frequency PSRR of the FVF LDO was 66 dB, and the worst-
measured PSRR of the LDO was 10 dB at 200 MHz.
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4. Discussion

The proposed FVF LDO was successfully implemented in 65 nm CMOS technology.
The PSRR measurement results confirmed that the analytic model and simulation results
corresponded quite well with the measured PSRR. Our work has demonstrated that a
simple direct feedback structure could improve low-frequency PSRR without additional
components. The proposed LDO operated stably with various line/load transient situations,
and the output settled rapidly to the final value. For future research, current efficiency can
be improved by using an efficient buffer structure or an adaptive bias scheme.

5. Conclusions

A direct feedback flipped voltage follower (FVF) LDO was proposed. Both the classical
ac analysis and the state-space model of the LDO were performed, and the results were
compared with the circuit simulations. The parameter variation sensitivity of the LDO
was also investigated using the state matrix model. The local FVF loop achieved a fast
response and a high unity-gain frequency, and the outer loop with the folded cascode error
amplifier (EA) enhanced the low-frequency closed-loop gain. The proposed direct feedback
structure had a less power supply ripple path without a complex design. Experimental
results verified theoretical predictions.
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Appendix A

Let X1= vset/KEA be a state variable, and the gain of the error amplifier is

GEA =
vset

vre f − vout
=

KEA
(1+s/ωp1)(1+s/ωp2)

. (A1)

Substituting vset= KEAX1 into (A1) and identifying the numerator and the denominator,

vre f − vout= X1 + (1/ωp1 + 1/ωp2)
.

X1 + 1/ωp1ωp2

..
X1. (A2)

Let a state variable X2 =
.

X1, and when substituting it into (A2),

.
X2 = −ωp1ωp2X1 −

(
ωp1+ωp2

)
X2 − ωp1ωp2vout+ωp1ωp2vre f . (A3)

Let X3= va/KA be a state variable, and the gain of the error amplifier is

GA =
va

vre f − vset
=

KA
1+s/ωA

. (A4)

Substituting va= KAX3 into (A4) and identifying the numerator and the denominator,

.
X3 = −KEAωAX1 − ωAX3+ωAvout. (A5)
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Let X4= vg/KSSF be a state variable, and the gain of the super source follower is

GSSF =
vg

va
=

KSSF
1+2ζ/ωns+1/ω2

ns2 . (A6)

Substituting vg= KSSFX4 into (A6) and identifying the numerator and the denominator,

va= KAX3= X4 + 2ζ/ωn

.
X4 + 1/ω2

n

..
X4 (A7)

Let a state variable X5 =
.

X4, and when substituting it into (A7),

.
X5= ω2

nKAX3 − ω2
nX4 − 2ζωnX5. (A8)

Let X6= vout/KP be a state variable, and the gain of the pass transistor is

GP =
vout

vsgP
=

KP
1+s/ωP

. (A9)

Assuming the PSR of each component is constant, the effective source-gate voltage vsgP is

vsgP = (1 − PSRSSF+KSSFPSRA+KAKSSFPSREA)vin − vg. (A10)

Substituting (A10), vout= KPX6 and vg= KSSFX4 into (A9), and identifying the numer-
ator and the denominator,

.
X6= −KSSFωPX4 − ωPX6+ωP(1 − PSRSSF+KSSFPSRA+KAKSSFPSREA)vin. (A11)

Substituting vout= KPX6 into (A3) and (A5), we finally obtain



.
X1= X2.
X2= −ωp1ωp2X1 −

(
ωp1+ωp2

)
X2 − ωp1ωp2KPX6+ωp1ωp2vre f.

X3= −KEAωAX1 −ωAX3+ωAKPX6.
X4= X5.
X5= ω2

nKAX3 − ω2
nX4 − 2ζωnX5.

X6= −KSSFωPX4 − ωPX6+ωP(1 − PSRSSF+KSSFPSRA+KAKSSFPSREA)vin

(A12)



X1= vset/KEA

X2 =
.

X1
X3= va/KA
X4= vg/KSSF

X5 =
.

X4
X6= vout/KP

(A13)


vset= KEAX1

va= KAX3
vg= KSSFX4
vout= KPX6

(A14)
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