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Abstract: Although deep learning-based techniques for salient object detection have considerably
improved over recent years, estimated saliency maps still exhibit imprecise predictions owing to the
internal complexity and indefinite boundaries of salient objects of varying sizes. Existing methods
emphasize the design of an exemplary structure to integrate multi-level features by employing
multi-scale features and attention modules to filter salient regions from cluttered scenarios. We
propose a saliency detection network based on three novel contributions. First, we use a dense feature
extraction unit (DFEU) by introducing large kernels of asymmetric and grouped-wise convolutions
with channel reshuffling. The DFEU extracts semantically enriched features with large receptive
fields and reduces the gridding problem and parameter sizes for subsequent operations. Second,
we suggest a cross-feature integration unit (CFIU) that extracts semantically enriched features from
their high resolutions using dense short connections and sub-samples the integrated information
into different attentional branches based on the inputs received for each stage of the backbone. The
embedded independent attentional branches can observe the importance of the sub-regions for a
salient object. With the constraint-wise growth of the sub-attentional branches at various stages, the
CFIU can efficiently avoid global and local feature dilution effects by extracting semantically enriched
features via dense short-connections from high and low levels. Finally, a contour-aware saliency
refinement unit (CSRU) was devised by blending the contour and contextual features in a progressive
dense connected fashion to assist the model toward obtaining more accurate saliency maps with
precise boundaries in complex and perplexing scenarios. Our proposed model was analyzed with
ResNet-50 and VGG-16 and outperforms most contemporary techniques with fewer parameters.

Keywords: salient object detection; saliency detection; attention recognition; attention mechanism;
multi-scale; asymmetric convolutions

1. Introduction

Salient object detection (SOD) aims to distinguish the most discernible and eye-
catching locations in an image. Most humans can quickly detect what draws their attention
in an image. However, this is a strenuous task in computer vision. The saliency detection
problem involves two sub-categories: eye fixation and salient object detection. We focused
on SOD. Unlike segmentation methods, which classify all foreground object pixels with a
classification label, SOD tasks selectively process the most eye-catching region/object in a
scene and drastically reduce the computational cost.
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It has typically benefited several computer vision activities as a preprocessing step. Exam-
ples include object recognition [1–3], content-aware image editing [4], resizing [5], visual track-
ing [6,7], person re-identification [8–10], image retrieval [11], and video summarization [12].

Motivated by cognitive research on visual attention [13,14], previous studies have
mostly focused on the evidence that contrast [1] contributes to saliency detection. These
approaches mostly consider handcrafted local and global contextual features and their
mutually learned weights. Local contextual features help locate object boundaries, and
global contextual features help capture the abstract details of the salient object in terms
of texture, color, and intensity. Although these previous heuristic-based methods have
demonstrated their importance, they lack high-level semantic knowledge for extracting
salient regions in a simple image background, which frequently restrains the power of
feature extraction when handling images with a complex background. SOD must extract
all required features instead of relying only on hand-crafted low-level features.

Recently, convolutional neural networks (CNNs) [15] have overcome the limitations
of conventional handcrafted features. In particular, after the development of fully convo-
lutional neural networks (FCNs), promising results have been achieved. However, they
continue to encounter two significant challenges in SOD. (1) Contexts play a vital role in
SOD [16–20], i.e., high-level contexts depict relationships between salient regions/objects
and are thus useful for learning the overall positions of salient objects, whereas low-level
contexts ensure fine detail features used to depict the boundaries of salient objects. How-
ever, learning the contextual representation for objects of varying scales and sizes within
complex scenarios poses a significant challenge for SOD models. (2) Obtaining estimated
results with acute boundaries is difficult because of repeated upsampling and pooling
operations. Figure 1 shows that different methods encounter problems while localizing the
complex salient regions and borders for objects of varying scales.

Figure 1. Sample comparisons of our method with others. From left to right: (a) input image,
(b) ground truth, (c) saliency map of our approach, (d) saliency map of CPD [21], (e) saliency map of
AFNet [22], and (f) saliency map of R3Net [23]. Our method generates more rigorous saliency maps
with defined boundaries.

To handle these problems, we propose an attentive-aware wide-kernels asymmetrical
network with blended contour information (CI) for SOD (AWANet) that can produce
high-quality saliency maps. AWANet contains three efficient and effective modules: a
dense feature extraction unit (DFEU), cross-feature integration unit (CFIU), and contour-
aware saliency refinement unit (CSRU). To address the first problem, additional contextual
information must be explored. A common technique is to employ convolutions with
large kernels or stack multiple local convolution layers to perceive contexts in a large
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field of view [20,24]. Atrous convolutions [24] with high dilation rates are often used to
increase the receptive field. Nevertheless, large kernel dilation filters tend to result in a
high computational complexity and consume considerable GPU memory. Sparse sampling
in atrous convolutions with a large dilation rate produces a gridding problem [19] and
may be unable to sufficiently capture local or contextual information. To overcome these
constraints, we designed the DFEU by introducing asymmetric large kernel convolutions
into the final four stages of the backbone. We ignore the first level for subsequent operations
to avoid the burden of a large parameter size owing to its large resolution size. The
proposed DFEU follows a novel mechanism by introducing asymmetric large kernel sizes
and grouped-wise convolutions with channel reshuffling that can extract more semantically
enriched features for each resolution with comparatively fewer parameters. The DFEUs
first divide the available channels of the specific resolution into two sub-resolutions before
performing group convolution and global context block (GCB) operations. The GCB block
introduces parallel asymmetric convolutions with different large sizes: (k × 1)(1 × k)
and (1× k)(k× 1) kernels for each resolution resulting in large fields-of-view with fewer
parameters. The DFEU integrates the downsampled features for subsequent processing
and employs channel reshuffling with channel reduction. After the DFEUs, a careful fusion
method can integrate each resolution’s complementary features to obtain accurate saliency
maps. However, the FCN-based levels always contain significant discrepancies, and the
feature blending often degrades the model performance. Moreover, the subsampling
operations on one side can explore more semantic features but cause the loss of influential
low-level details, which cannot be recovered in subsequent operations.

To address the aforementioned problems, we designed CFIUs for each subsequent
resolution after the DFEUs. The proposed CFIU performs three functions simultaneously,
unlike contemporary feature integration modules. First, it simultaneously extracts dif-
ferent resolutions and performs sub-sampling to explore more semantic features. The
sub-sampled branches depend on the specific position of the backbone level, and each
branch employs channel attention with large asymmetric kernels to focus on the importance
of different regions. The residual connection re-weighs the lost information after fusing
the sub-sampled information, and channel re-shuffling further improves the performance
without additional parameters. Second, it extracts high-level features and progressively
increases the number of sub-sampling branches in a top-down movement for the lower
level using dense short connections. This unique mechanism reduces the parameter size
caused by the constraint expansion and prevents the model from the global feature dilution
effect during top-down propagation. Third, it retrieves CI that can partially compensate
for the low-level details lost during maximum pooling at the backbone. The proposed
CFIUs can guide the model towards accurate predictions. However, for some complicated
scenarios, the model has been observed to confuse between salient and non-salient regions
owing to confused boundaries.

To address the ambiguity between complex background scenarios, some approaches
have used edge labels to augment the training process of segmentation networks by including
auxiliary boundary loss functions or designing unidirectional frameworks [25–28]. They
utilize the edge features solely to enhance the representational capability of edge infor-
mation. Previous research has established that combining edge features results in more
precise segmentation maps. However, because edge features have not been well exploited
in current edge-aware networks, imprecise edge features remain a challenge. Considering
the worth of contour-based supervision, we propose using a CSRU on each output side to
reduce the transition of irrelevant background noise and retain the object boundary. Unlike
existing edge refinement modules, the proposed CSRU is progressively expanded in a
similar manner as the CFIUs by retrieving the contour details directly from lower layers.
Subsequently, by adopting deep supervision for each decoder stage, the learned informa-
tion is fed to the next stage at the decoder side to determine the final, accurate saliency
maps with more precise information. The large asymmetric kernels, with a contour-based
spatial attention and constraint expansion mechanism, differentiate the designed CSRU’s
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effectiveness from existing methods. Our suggested method’s primary contributions are
summarized as follows:

• We offer a unique light-weight DFEU capable of efficiently and effectively capturing
rich contextual information to enhance the inter-resolutions of the backbone for more
semantically enriched features.

• We designed a CFIU that sub-samples the specific resolution into different sub-
resolutions according to the input features. The dense short connections of high
and contour-based features with wide kernels, asymmetric convolutions, and channel-
wise attention direct the model towards more rigorous and accurate saliency maps.
In addition, a subsequent CSRU module was designed to improve the saliency map
using dense contour-based short connections to strengthen and refine the saliency
maps with precise boundaries for more perplexing and challenging scenarios.

• Our model is relatively smaller and more efficient than other large-scale backbone
networks, such as ResNet-50 in the given research domain, with only 26.7 million
parameters and a real-time speed of 31 frames per second (FPS). Experiments demon-
strate our proposed approach’s superiority by analyzing the results on five challenging
datasets and comparing 15 state-of-the-art methods.

2. Related Work
2.1. Salient Object Detection

In the early development stage, SOD methods typically used hand-crafted features,
such as color contrast [29–31], background boundary [32–34], and center-surround
priors [35,36]. Although these low-level models exhibited positive effects, their execu-
tion was imperfect for images with complex salient objects or clutter and complicated
backgrounds. These models have a low computational efficiency and often destroy the
underlying feature structure. See [37,38] for more details on previous and CNN-based
methods.

Recently, owing to the outstanding achievements of CNNs in computer vision, deep
learning has been established as an encouraging substitute for SOD tasks. Some initial deep
learning models for SOD tasks use the CNN architecture to predict each image segment’s
saliency score using object proposal [39] or superpixel [40] schemes. Wang et al. [39]
suggested two neural networks for SOD tasks. One network was learned using a local
patch to regulate pixel-wise saliency values. The other used the global feature to predict the
saliency score for each object region. Liu et al. [18] proceeded with a hierarchical top-down
pathway and embedded local and global modules to obtain all constructive information
from the pixels. Li and Yu [40] first created several input image segments, and the neural
network was trained for each segment separately. These networks were then combined and
used several convolution layers. Zhao et al. [41] developed a multi-context deep structure
with two branches that extracted local and global contexts and then integrated them.

2.2. Multi-Level Information

Several studies that used FCN-based methods [42] proved that the feature integra-
tion of multiple layers is advantageous for producing better results. Deep layers of the
FCN network contain semantically contextual knowledge for recognizing the salient ob-
ject’s location and category. In comparison, shallow layers encode fine spatial details
for reconstructing the corresponding boundary of the salient object. Therefore, several
works [43–45] have adopted multi-level features for SOD. Hou et al. [44] designed a model
to incorporate multi-layer features utilizing a short connection in a top-down manner.
Zhang et al. [43] integrated different level features at multiple resolutions to estimate
saliency maps. Luo et al. [45] proposed a top-down refinement framework in which refined
features propagate from deeper layers to shallower layers.

Similarly, Zhang et al. [46] utilized a bi-directional message-passing scheme by ap-
plying a gate procedure to monitor and regulate feature propagation among different
layers. However, during multi-layer feature integration, some features interfere with each
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other. Combining the features of different layers to suppress the noise and boost the salient
features, by leveraging a selective process, remains an important problem in saliency detec-
tion. Unlike the aforementioned methods, the proposed scheme integrates all deeper-level
features to update the current resolution based on stronger contextual information.

2.3. Multi-Scale Information

The FCN [47] is considered the pioneering network that directly integrates features,
from low- and high-level stages, to enhance the semantic segmentation accuracy. Similarly,
the feature pyramid network (FPN) [48] and U-Net [49] pursued a top-down pathway to
extract multi-scale features, from high- to low-levels, and sequentially integrated them.
Deeplabv2 [24] employed an atrous spatial pyramid pooling (ASPP) module to extract
multi-scale features with different dilated convolutions. Dense ASPP [50] enhances the
ASPP with dense connections. Zhao et al. [20] adopted a pyramid pooling module (PPM)
to integrate multi-scale contextual information with pooling operations. The PPM and
ASPP are the two most common modules used for multi-scale feature extraction and are
often applied at the deeper layers of the network [23,51]. Generally, the in-depth features
of the FCN-based networks, at the topmost layers, cannot handle large-scale variations
owing to lacking information. Hence, the PPM obtains multiscale features through multiple
downsamplings. The ASPP obtains multi-scale features by enlarging the receptive field
with different kernel sizes to successfully handle objects of various scales. However, they
both lose the object’s spatial details owing to multiple downsamplings and minimize
the connectivity among features by inserting additional holes [52,53]. Here, we propose
a more robust method than that of contemporary multi-scale approaches to extract the
multi-scale feature for each backbone level by introducing (k × 1) and (1× k) parallel
convolutions with a large kernel size, which can provide more contextual knowledge with
fewer parameters.

2.4. Attention Mechanism

The attention-based models in recent neural networks that mimic the human visual
system process have significantly improved on computer vision tasks. The main idea of
the attention mechanism in neural networks is to allow the network to concentrate on the
maximum significant parts and then weaken or enhance a large amount of the information
selected. For instance, Hu et al. [54] applied a squeeze and excitation mechanism (SENet).
The squeezing process compresses the feature by applying global average pooling, and the
excitation mechanism obtains the weighted feature maps by applying two fully connected
layers. This process significantly increases the precision of image classification models.

Moreover, Woo et al. [55] proposed the convolutional block attention Module (CBAM)
model, which expanded SENet from a one-dimensional channel to a two-dimensional channel
and combined the weighted feature maps of both the average and max-average feature maps.
Liu et al. [18] designed a convolution and bidirectional long short-term memory (LSTM)
and used a local and global pixel-wise attention mechanism, expanding the receptive field
to mitigate errors. Few methods, such as [18,42,56], have used the attention mechanisms
for SOD. However, our approach differs in that previous methods have typically utilized a
single-attention design. Our approach follows a constrained module expansion according to
the inputs received. The subsampled attentional branches independently observe the saliency
importance of each object sub-region and then integrate them according to the guidance of
contextual and contour-based information using residual connections.
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2.5. Contour-Aware Modules

Recently, some studies have attempted to exploit additional boundary information
by adopting contour labels for saliency detection to produce clear boundary saliency
maps. In [45], Luo et al. used an additional intersection over union (IOU)-based edge
loss to further define the boundaries of the predicted saliency maps directly. In [57], the
authors combined multi-level convolutional features following recurrent and edge-based
information guidance. Guan et al. [52] exploited the fine-tuning of the holistically nested
edge detection (HED) [58] network for edge detection and integrated the complementary
information with the saliency detection stream to predict the boundaries of salient objects.
Zhao et al. [25] trained salient edge features by exploiting the IOU loss for salient object
detection tasks. Wang et al. [26] also exploited edge-based features to refine the boundaries
of saliency maps. Most existing methods have used boundary information to enhance
accuracy, and few studies have focused on refining edge features. Unlike existing methods,
we use a unique light-weight module to simultaneously extract high-level and contour-
based information using dense short connections. The integrated information is split into
two branches with channel- and spatial-wise attentions with large asymmetrical kernels to
guide the model towards more precise and accurate saliency maps.

3. Proposed Method

This section provides an overview of AWANet, which comprises three types of sub-
modules: DFEUs, CFIUs, and CSRUs. Figure 2 shows the proposed method’s structure.

Figure 2. Overview of the proposed AWANet: attentive-aware wide-kernels asymmetrical network
with blended contour information for salient object detection.

3.1. Overview of Network Architecture

Our model is based on the FCN encoder–decoder architecture with a pretrained VGG-
16 or ResNet-50 backbone network. We first remove the last global average-pooling layer
and fully connected layers of the backbones to achieve the saliency detection tasks. The
input image dimension is reduced when propagated from the shallower layers to the
deeper layers in the backbone. Therefore, feature maps at the last level of the backbone
are subsampled 32 times as the input image. The feature maps of each backbone level,
that is, n = 2, 3, . . . 5, contain a spatial size of H/2n ×W/2n. The backbone extracts basic
multi-level features and abstractions. The SOD images have significant variations in scale
and locations; thus, the simple backbone network cannot handle these complexities with
a cluttered background. Therefore, the DFEU is applied at different stages to boost the
intra-layer capabilities and overcome gridding concerns caused by sparse connections by
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adopting wide and dense receptive fields. Then, at each step, the unit CFIU collects contex-
tual features following the DFEU and contour-based information via short connections to
avoid the dilution effect of low- and high-level features during bottom-up and top-down
propagation. The sub-sampled constrained-wise attentional modules with wide range
asymmetrical kernels enforces the model to note the object’s sub-regions importance. To
further refine the saliency maps for perplexing and challenging scenarios, the CSRU is
adopted in the same manner as the CFIUs. The CSRU extracts the high- and low-level
contour-based information and then splits the integrated features by adopting channel and
spatial-wise attention to generate more appropriate saliency maps with rigorous boundaries
for complicated scenarios.

3.2. Dense Feature Extraction Unit (DFEU)

The SOD datasets were observed to contain different images of varied scales and
locations. Owing to scale variability, a single-scale convolution has difficult detecting the
correct size of salient objects. Various studies by Chen et al. [24] and Zhao et al. [20]
used multi-scale feature extraction modules, such as the ASPP module and PPM, to obtain
robust segmentation results. In addition, pyramid pooling module (PPMS) [20] uses parallel
convolutions to observe more contextual knowledge, which loses local information and
requires more parameters. In contrast, the ASPP module [24] contains different atrous
parallel convolutional layers with varying dilation rates. The atrous convolutions enlarge
the receptive fields. However, their sparse sampling and high dilation rates may not
capture sufficient context information in the atrous convolution to provide an excellent
performance for the specified task. We propose constructing a dense context extraction,
i.e., the DFEU, to circumvent the sparsity and establish dense connections within a (k× k)
receptive field. As shown in Figure 3, we are inspired by grouped convolution [59] and the
channel shuffling in [60], which may provide significantly richer feature representational
capabilities at a much lower cost.

Figure 3. Dense feature extraction unit (DFEU) with large (k× 1) (1× k) and (1× k) (k× 1) kernel-
size convolutions for k = 3, · · · , 11.

Technically, each DFEU begins with splitting the input features into two lower dimen-
sional branches. Each has half-input channels and applies a (1× 1) grouped convolution.
Then, each unit is followed by a GCB that utilizes two parallel branches, i.e., (1× k), (k× 1)
and (k× 1), (1× k), by adopting spatially separable convolutions to efficiently capture the
local region features. Following each convolution process, batch normalization (BN) with
rectified linear unit (ReLU) functions are applied. Our GCB block provides a large receptive
field without sparsity in the receptive fields to obtain broader context information while
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maintaining reasonable computational limits. Compared with ASPP and other dilated
convolutions, it addresses gridding concerns.

The embedded GCB contains the different values of k for varying stages of the back-
bone. For example, for n = 2, 3 . . . 5, the value of k is fixed at (3, 5),(5, 7),(7, 9) and (9, 11).
The two parallel (k × 1) and (1× k) convolutions are merged by simple concatenation,
and the resulting features are applied to a (1× 1) grouped-wise convolution propelled by
BN and ReLU functions. Similarly, the splitting branches of the DFEU are merged again
by performing channel-wise concatenation and using a (1× 1) grouped convolution to
reduce the number of channels to 64 after resizing their input dimension. Because each
unit concentrates on a particular aspect of a feature, information exchange is limited across
all channels, which may adversely affect the object structure of salient regions. To resolve
this, the DFEUs shuffle channels over the combined features to facilitate cross-channel
information flow.

The proposed DFEU module is efficient and can help locate accurate salient regions. First,
it enlarges the receptive field with a (k× k) region to extract more discriminative features for
subsequent modules. Second, each DFEU randomly shuffles the aggregated feature channels
to enhance the network capability without increasing the computational complexity.

3.3. Cross Feature Integration Unit (CFIU)

The backbone network contains different abstraction stages, in which each set includes
a piece of specific semantic information for salient object recognition. High-level features
include semantic knowledge because of the expanded field of view; hence, these features
help recognize the contextual region of the image. Low-level features contain local and
spatial information because of their small field of view. Therefore, the local information
helps identify salient boundary regions. Based on this, we designed the CFIU to better
utilize different resolution capabilities. The CFIU is a simple and effective module that can
be integrated into any deep network to enhance feature representations. It maintains the
multi-level strategy to integrate different feature representations after the DFEU and applies
a stack of soft attention layers [26,61] with varying rates of downsampling [20] and learns
to update them with residual connections and larger receptive fields. The proposed CFIU
differs from existing modules in that it eliminates the dilution of contextual and low-level
details during top-down and bottom-up propagation. The expansion of the sub-sampling
branches is constrained according to the input received, providing semantically enriched
features with a relatively lower computational cost. Let our encoder side contain k = 2
to N = 5 feature maps for further processing at their corresponding decoder side. Then,
at the kth stage, CFIU-k receives the output of its high-level CFIU-k+1 or top-level of the
encoder as input features. Simultaneously, it obtains the high-level features from DFEU-k
to DFEU-N. The DFEUs contain more enriched contextual features, thereby avoiding the
feature dilution effect in top-down propagation with relatively more accurate object sizes.
Figure 4 visualizes CFIU-4. It receives its inputs from the preceding CFIU-5, DFEU-4, and
DFEU-5. Similarly, CFIU-3 receives inputs from CFIU-4, DFEU-3, DFEU-4, and DFEU-5.
Moreover, as known, the low-level features weaken gradually in the bottom-up paradigm
owing to upsampling and intrinsic convolution layers. The low-level features are essential
for boundary information. The CI learns the boundary information by imposing joint
edge-based supervision to retain the boundary information intact and can be expressed
mathematically as follows:
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Figure 4. CFlU-k block structure. This example shows CFlU-4, which takes inputs from CF-(k+1),
DF-k, and DF-(k+1). CF-k and DF-K denote CFIU and DFIU modules, respectively.

CI = Sig · Conv1
(
Conv1(L2)� Conv1(L3)

)
, (1)

where Sig, Conv1, and Lk represent the sigmoid function, (1× 1) convolution and kth stage
of the encoder, respectively. The CI is input into each CFIU block to guide them towards
accurate boundary regions. Let our CFIUk block receive CFIUk+1, DFEUk, DFEUk+1,· · · ,
DFEUN feature maps. Each input is upsampled according to the given kth stage and then
applied to a (3× 3) convolution layer with BN and a ReLU activation function. Then,
these features, along with contour-based features (CI), are integrated via channel-wise
concatenation to create complementary feature maps pk, as shown in Equation (2). Let
i = k, . . . , N and fi, fi+2, . . . fN be the sub-branches of CFIU-k; then,

{ fi, fi+1, . . . fN} =
δ · λ · Conv3 ·Ψ

(
CFk+1, DFk, DFk+1, · · · , DFN

)
pk = concate

(
CI, fi, fi+1, . . . , fN

)
,

(2)

where symbols Ψ, λ, δ, and Conv3 denote bi-linear interpolation, BN, ReLU, and (3 ×
3) convolution, respectively. CFk and DFk denote the CFIUs and DFEUs at the kth
stage, respectively.

To approach additional scale-specific features, the feature maps pk are first downsam-
pled into f̄ i, ¯fi+1, . . . , ¯fN , distinct sub-resolutions using a soft attention
mechanism [62], as shown in Figure 4 for CFIU-4. Each sub-stage of CFIU-k has a spatially
separable convolution applied with large kernel sizes, i.e., (15× 1) and (1× 15) followed
by a (1× 1) and softmax operations. The softmax operation on the resulting feature maps
empowers the attention mechanism using a residual connection to focus only on essential
regions. These attention maps of each sub-branch are bilinearly upsampled to the size of the
corresponding CFIU-k stage. However, as discussed in [61], the stack of refined attention
maps often contains more numbers near to zero, making back-propagation difficult. To
avoid this, we use a residual connection [63] to integrate each sub-branch feature map
with their original feature maps fi, f(i+1), . . . , f(N) and then reshuffle [60] the channels of
each sub-branch to further increase their capabilities. Mathematically this process can be
expressed as follows:

{ f̄i, ¯fi+1, ¯fN} =
Ψ ·Φ · Conv1(δ · λ · SSconv(Π

(
fi, fi+1, . . . , fN

)
))

+ { fi, fi+1, . . . , fN},
(3)
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where Π, λ, δ, Φ, Ψ, Conv3, and Conv1 denote downsampling, BN, ReLU, softmax, bilinear
interpolation (3× 3), and (1× 1) convolutional operations, respectively. SSconv denotes
spatially separable convolutions.

All sub-branches of Equation (3) are summed and then subjected to a (3× 3) con-
volution with BN and ReLU functions. The resulting feature maps are combined again
with feature DFEU − k to update and enhance their overall capabilities, and a (1× 1)
convolution is then applied on the resulting feature maps to obtain the final refined feature
maps, i.e., Wk as shown in Equation (4).

Wk = Conv1
(
∑( f̄i, ¯fi+1, ¯fN) + DFk

)
, (4)

3.4. Contour-Aware Saliency Refinement Unit (CSRU)

The saliency maps can be directly generated after applying the CFIU by feeding del-
icate features into a basic set of convolution layers with a sigmoid activation function.
However, owing to the high degree of variation between different stages, the accumula-
tion process occasionally propagates additional noise in the case of challenging images,
degrading the performance outcomes. We developed CSRU to address this problem by
incorporating channel- and spatial-wise attention mechanisms. The proposed CSRU is a
novel module that considers the low-level information to refine the edges and progres-
sively extracts all high-level features by adopting light-weight convolution operations.
For a better understanding, we visualized CSRU−3 in Figure 5. The CSRU retrieves the
feature maps from their associated CFIUs via short connections for each decoder level.
The proposed CSRU extracts CI from low-level resolutions. The various composite feature
maps obtained from CFIUs and CI modules are combined to create highly discriminative
feature maps. Subsequently, the integrated features are divided into two distinct narrow
channel- and spatial-wise branches. The channel-wise unit extracts the most salient regions
from a foreground object. It filters the integrated features for the most prominent areas
as foreground objects using a (5× 1) , (1× 5) spatial separable convolution and a (1× 1)
spatial separable convolution, followed by BN, ReLU, and a sigmoid operation with a
residual connection.

Figure 5. Contour-aware saliency refinement unit (CSRU), in which the supervised contour features
(CFs) are integrated with salient features maps to guide the model towards more precise saliency
maps with sharp edges. “CF−i” and “CS−i” indicate CFIU and CSRU modules, respectively.

Moreover, the second branch uses spatial-wise attention with a simple (1× 1) con-
volution followed by a sigmoid function. It offers contour-based supervision to eliminate
unnecessary background regions and maintain only significant contour information. After
combining the two branching features using simple element-wise addition, (3× 3) con-
volution, BN, and ReLU functions are applied. The resulting feature maps are combined
with feature CF− i via a residual connection to empower the features associated with a
certain stage at a given moment. The CSRU generates a saliency map by applying deep
supervision at each stage and progressively upsamples the feature maps to merge with
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their subsequent adjacent resolution in the top-down pathway. The entire procedure is
expressed in Equation (5):

R1 = γ · δ · Conv3
(
ζ
(
CFi, CSi+1, CSi+2, CI

))
,

R2 = γ · δ · SSconv
(
γ · δ · SSconv

(
R1

))
,

R3 = σ · conv1
(

R1
)
∗ R1,

R4 = σ · Conv1
(
γ · δ · Conv3

(
R2 + R3

)
+ CFi

)
,

(5)

where ζ, δ, γ, and σ denote the channel-wise concatenation, BN, ReLU, and Sigmoid op-
erations, respectively. Conv3, Conv1, and SSconv denote the (3× 3), (1× 1), and special
separable convolutions, respectively. ∗ and + are element-wise multiplication and addition
operations, respectively.

3.5. Hybrid Loss Function

To train our network and supervise feature learning in the two CSRU branches, we
used the labels for the salient regions and boundaries. In saliency detection tasks, the loss
of binary cross-entropy (BCE) is widely utilized as

Lbce = −∑
x,y

Gx,y · log(Sx,y) + (1− Gx,y) · log(1− Sx,y), (6)

where Gx,yε(0, 1) are the ground truth values at location (x, y) , and S(x, y) ε[0, 1] represent
the saliency values at location (x, y) in their corresponding output prediction. However, the
BCE loss estimates only the foreground loss for each pixel exclusively without considering
the authenticity of the entire pixel set. To compensate for this, we additionally employ IOU
loss [25,64] to calculate the similarity loss between two-pixel sets.

Liou = 1−
∑H

x=1 ∑W
y=1(Sx,y · Gx,y)

∑H=1
x=1 ∑W

y=1[(Sx,y + Gx,y)− (Sx, y · Gx,y)]
. (7)

Hence, we use the BCE loss function, i.e., LContour for contour-based detection, and for
SOD, we integrate the Liou and Lbce loss functions:

Lsal = (Lbce
i + Liou

i ). (8)

The proposed total loss of our model is calculated by summing the losses of the two
tasks as follows:

LT
sal =

5

∑
i=1

(Lsal) +
6

∑
i=1

(LContour). (9)

4. Experiments
4.1. Datasets and Evaluation Metrics

We performed experiments to evaluate our AWANet model based on five publicly
available datasets: ECSSD [30], HKU-IS [40], DUT-OMRON [32], PASCAL-S [65], and
DUTS [66]. DUTS is the largest dataset with complicated scenes of 10,553 images for
training and 5019 images for testing purposes. The ECSSD dataset contains 1000 natural-
scene complex images. HKU-IS contains 4447 complex scene images having multiple
disconnected images with a similar background or foreground. DUT-OMRON contains
5168 diverse images with complicated and cluttered backgrounds. PASCAL-S consists
of 850 images with more challenging images chosen from PSCAL-S. Table 1 provides a
short description for each dataset. We used five different evaluation techniques to compare
our model’s state-of-the-art performance. These evaluation metrics include the precision-
recall (PR) curve, maximum F-measure (maxF), S-measure (SM), and mean absolute error
(MAE). To calculate the precision curve, we binarized the grayscale prediction maps using
a fixed threshold. The generated binarized saliency maps and ground-truth masks were
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used to determine the precision and recall pairs; that is, Precision =
TP

(TP + FP)
and

Recall=
TP

(TP + FN)
, where TP, FN, and FP indicate true positives, false negatives, and

false positives, respectively. A group of precision and recall scores were calculated to plot
the PR curve when the threshold ranged from 0 to 255. A larger region under the PR
curve indicates a better performance. The SM [67] calculates the region and object-aware
structural resemblances denoted as Sr and So, respectively, between the predicted maps
and ground-truth masks. The SM can be expressed as α · So + (1− α) · Sr, where the value
of α was set to 0.5.

Table 1. Overview of the SOD-based datasets used to evaluate AWANet.

Datasets Year Images Maximum
Resolution

Object
Properties Difficulty Subject

Num-
Binary

Classification

ECSSD [30] 2012 100 400 × 400
Single and
large size

objects

Simple
background

with
disconnected

objects

Manually
annotated by
five subjects

Yes

PASCAL-S
[65] 2014 850 500 × 500

Multiple
objects,

moderate to
large size

Simple
background

with complex
structure
objects

Manually
annotated by
12 subjects

Yes

DUT-
OMRON

[32]
2013 5168 400 × 400

Multiple
objects of a
moderate

size

Complex
background

with
connected

objects

Manually
annotated by

25 subjects
Yes

HKU-IS [40] 2015 4447 400 × 400

Multiple
objects from

small to
moderate in

size

Complex
objects with
moderately
challenging

scenarios

Manually
annotated by
three subjects

Yes

DUTS-TE
[32] 2017 5019 400 × 400

Multiple
objects from

small to large

Complex
objects with
complex and

less
contrastive
background

Manually
annotated by

50 subjects
Yes

4.2. Implementation Details

We trained our model using the DUTS-TR [66] dataset by following the training
protocols of [46,51,68]. All experiments were performed using a single Nvidia GTX TITAN
X GPU. We allowed both vertical and horizontal flipping and image cropping to alleviate
overfitting. We used the PyTorch framework to train and test the proposed model. We
resized both the training and testing images to 320× 320 px. For a reasonable evaluation,
we chose VGG-16 [69] and ResNet-50 [63] as backbone networks. All weights of the
convolution layers were arbitrarily initialized with a truncated normal (σ = 0.01), and
the corresponding biases were initialized to 0. The hyper-parameter weight decay and
momentum were set to 0.0005 and 0.9, respectively, using the stochastic gradient descent
(SGD) optimizer. The mini-batch was set to 18, with 40 epochs and without validation for
training convergence. During inference, salient edge and saliency maps can be obtained.
We summed the prediction maps as the final saliency map.
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4.3. Comparison with State-of-the-Art Methods

We compared the proposed algorithm with 15 state-of-the-art saliency detection
methods based on ResNet-50 and VGG-16 backbones on the five datasets. The com-
parison methods were NLDF [45], Amulet [70], SRM [51], PiCaNet [18], R3Net [23],
BASNet [64], CPD [21], UCF [71], DSS [44], AFNet [22], EGNet [25], PAGENet [26],
F3Net [72], MINet [73], CSB [74], PoolNet+ [75], and CAGNet [53]. To ensure a reason-
able comparison, the proposed method was analyzed based on five different evaluation
techniques.

Quantitative Comparison: To evaluate AWANet with the state-of-the-art methods,
Table 2 lists the experiment results in terms of three metrics: maxF, SM, and MAE. As the
results indicate, our approach exhibits a good performance and considerably outperforms
the other methods, despite some approaches [23,44] using CRF [76] as a post-processing
method. Our proposed method consistently achieves improved results, compared with the
other models, across all five metrics on almost all datasets. Figures 6 and 7 show the P-R
and F-measure curves for the five testing datasets, respectively. Our method (solid red line)
outperforms the other methods on the ECSSD, PASCAL-S, and DUTS-TE datasets and is
notably superior on HKU-IS and DUT-OMRON. Another exciting aspect of the proposed
model is that it requires fewer parameters (i.e., 26.7 M), which benefits applications with
limited memory. We visualized our model’s comparison with state-of-the-art methods, as
shown in Figure 6. Furthermore, the proposed model shows a speed above 31 FPS running
a 384× 384 image, which implies that our model can be used for real-time applications.

Figure 6. PR curve comparison on five different datasets.



Sensors 2022, 22, 9667 14 of 22

Table 2. Maximum F-measure (maxF), S-measure (SM), and mean absolute error (MAE) of the proposed model and 15 state-of-the-art algorithms. ↑ and ↓ indicate
higher maxF and SM values and lower MAE values indicate better outcomes. Top scores are in bold.

Method Year ECSSD PASCAL-S DUT-OMRON HKU-IS DUTS-TE

Metric maxF↑ SM↑ MAE↓ maxF↑ SM↑ MAE↓ maxF↑ SM↑ MAE↓ maxF↑ SM↑ MAE↓ maxF↑ SM↑ MAE↓
VGG-16

NLDF [45] 2017 0.905 0.875 0.063 0.833 0.804 0.099 0.753 0.770 0.080 0.902 0.878 0.048 0.812 0.816 0.065
DSS [44] 2017 0.899 0.873 0.068 0.843 0.795 0.096 0.781 0.790 0.063 0.916 0.878 0.040 0.825 0.824 0.056

Amulet [70] 2017 0.914 0.912 0.059 0.850 0.831 0.099 0.742 0.784 0.098 0.895 0.914 0.051 0.777 0.803 0.085
UCF [71] 2018 0.903 0.884 0.069 0.825 0.807 0.115 0.730 0.760 0.120 0.888 0.874 0.061 0.773 0.782 0.112

PiCANet [18] 2018 0.931 0.914 0.046 0.871 0.851 0.077 0.794 0.826 0.068 0.922 0.905 0.042 0.851 0.861 0.054
CPD [21] 2019 0.936 0.910 0.040 0.873 0.843 0.074 0.794 0.818 0.057 0.924 0.904 0.033 0.864 0.867 0.043

AFNet [22] 2019 0.935 0.914 0.042 0.871 0.850 0.078 0.797 0.835 0.057 0.905 0.906 0.036 0.863 0.867 0.046
PAGENet [26] 2019 0.931 0.912 0.043 0.857 0.839 0.077 0.791 0.824 0.062 0.917 0.903 0.037 0.838 0.853 0.052

EGNet [25] 2019 0.942 0.912 0.040 0.867 0.846 0.077 0.808 0.835 0.056 0.923 0.906 0.035 0.876 0.877 0.044
CAGNet [53] 2020 0.930 0.897 0.040 0.857 0.825 0.073 0.782 0.806 0.057 0.926 0.903 0.030 0.851 0.850 0.043
MINet [73] 2020 0.943 0.926 0.036 0.883 0.854 0.063 0.810 0.833 0.053 0.928 0.910 0.031 0.883 0.874 0.040

POOLNet+ [75] 2021 0.941 0.917 0.040 0.874 0.857 0.070 0.806 0.836 0.056 0.874 0.852 0.036 0.886 0.876 0.042
OURS 2022 0.945 0.924 0.035 0.886 0.865 0.063 0.814 0.842 0.052 0.935 0.912 0.033 0.887 0.879 0.040

ResNet-50/ResNet-101

SRM [51] 2017 0.917 0.895 0.054 0.850 0.866 0.064 0.769 0.798 0.069 0.906 0.887 0.046 0.826 0.836 0.059
PiCANet [18] 2018 0.935 0.917 0.046 0.870 0.855 0.064 0.803 0.832 0.065 0.919 0.905 0.044 0.860 0.869 0.051

R3Net [23] 2018 0.934 0.910 0.040 0.846 0.805 0.094 0.795 0.817 0.062 0.915 0.895 0.035 0.833 0.836 0.057
BASNet [64] 2019 0.942 0.916 0.037 0.863 0.837 0.077 0.805 0.836 0.056 0.930 0.908 0.033 0.859 0.866 0.048

CPD [21] 2019 0.939 0.918 0.037 0.872 0.847 0.072 0.797 0.825 0.056 0.925 0.906 0.034 0.865 0.869 0.043
EGNet [25] 2019 0.947 0.924 0.037 0.875 0.852 0.074 0.808 0.832 0.053 0.925 0.909 0.034 0.885 0.885 0.039

CAGNet [53] 2020 0.937 0.907 0.036 0.871 0.841 0.066 0.791 0.814 0.054 0.926 0.903 0.030 0.865 0.862 0.040
F3Net [72] 2020 0.945 0.924 0.033 0.882 0.860 0.067 0.813 0.838 0.053 0.936 0.917 0.028 0.888 0.886 0.036
MINet [73] 2020 0.947 0.930 0.033 0.878 0.855 0.063 0.809 0.833 0.055 0.935 0.918 0.028 0.886 0.883 0.037

POOLNet+ [75] 2021 0.948 0.926 0.035 0.887 0.865 0.065 0.805 0.839 0.052 0.922 0.913 0.035 0.888 0.887 0.037
CSB [74] 2022 0.944 0.921 0.033 0.885 0.860 0.060 0.811 0.834 0.050 0.938 0.918 0.026 0.889 0.879 0.035
OURS 2022 0.949 0.927 0.034 0.889 0.872 0.062 0.815 0.842 0.053 0.938 0.921 0.030 0.889 0.895 0.036
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Figure 7. F-measure comparison on five different datasets.

Qualitative Evaluation: Figure 8 presents a visual comparison of our model’s repre-
sentative examples with competitive methods. For a better visualization, we highlighted the
critical complications of each image group. We observed that the proposed model performs
well in various challenging scenarios. For example, in Figure 8, the first and second rows show
the capability, in which the image has a low contrast between the object and its background.
The third and fourth rows display images with cluttered environments. The 5th and 8th rows
indicate the capability for the localization of small and large-scale objects.

Figure 8. Visual comparisons with state-of-the-art methods in various circumstances: low contrast,
complicated scene, large objects, small objects, and multiple objects.
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Similarly, the sixth and seventh rows show multiple disconnected objects, and rows
nine and ten show thread-like objects. Figure 8 verifies that AWANet generates more
precise and complete saliency maps. Moreover, note that our model performs exceptionally
well in capturing salient boundaries, owing to the additional CSRU.

4.4. Ablation Study

This section analyzes the effectiveness of the different modules used in our method by
conducting a detailed ablation study. We performed the experiments using DUT-OMRON [32]
and DUTS-TE [66]. For the ablation analysis of the remaining modules, we considered
the ResNet-50 FPN-like architecture [48] to be our baseline network. We performed an
ablation assessment by progressively appending each of our modules to the baseline net-
work. Tables 3–5 present the results in terms of the maxF, SM, and MAE evaluation metrics,
respectively. Figures 9 and 10 visualize the corresponding qualitative improvements.

Figure 9. Examples of visual comparisons among the different modules of the proposed model: (a)
input image, (b) ground truth, and (c–g) are saliency maps generated by the baseline (FPN), DFEUs,
CFIUs, CSR, and CSR *.

Figure 10. Saliency maps with and without contour-based supervision: (a) input Image, (b) ground-
truth, (c) contour-based ground-truth, and (d–f) are the contour, saliency, and joint-supervision
saliency maps generated by the CSRU, respectively.
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Table 3. Ablation analysis on the efficiency of the DFEU module. “B” refers to the baseline network,
and “DFEUs-S” and “DFEUs-D” indicate DFEU modules of the same size with (3× 3) kernels and
with different large kernels. “B+DFEUs” indicates channel shuffling after “B+DFEUs-D”. The PPM
and ASPP modules were compared by replacing the DFEU module. The best results are in bold.

Networks
DUT-OMRON DUTS-TE

maxF SM MAE maxF SM MAE

B 0.775 0.802 0.065 0.826 0.841 0.057
B+DFEUs-S 0.785 0.814 0.062 0.838 0.851 0.047
B+DFEUs-D 0.794 0.822 0.059 0.844 0.860 0.044

B+DFEUs 0.796 0.824 0.059 0.846 0.862 0.043

B+PPMs 0.795 0.822 0.060 0.843 0.858 0.043
B+ASPPs 0.796 0.818 0.061 0.845 0.863 0.044

Table 4. Ablation analysis concerning the efficiency of the CFIU module. “CFIU w/o Att”, “CFIU
w/ Att”, and “CFIU w/ CI” show the CFIU module without an attention mechanism, with an
attention mechanism by embedding the spatial separable convolutions with large kernels instead of
the standard convolution, and with CI, respectively. We observe that the performance improves as
the DFEU and CFEU modules are attached. The best results are in bold.

Networks
DUT-OMRON DUTS-TE

maxF SM MAE maxF SM MAE

B 0.775 0.802 0.065 0.826 0.841 0.057

B+CFIUs w/o Attk=3 0.788 0.816 0.060 0.843 0.860 0.045

B+CFIUs w/ Attk=7 0.796 0.821 0.060 0.851 0.869 0.043
B+CFIUs w/ Attk=11 0.797 0.824 0.059 0.853 0.872 0.043
B+CFIUs w/ Attk=15 0.799 0.826 0.059 0.855 0.873 0.042
B+CFIUs w/ Attk=21 0.798 0.825 0.059 0.853 0.874 0.043

B+CFIUs w/CI 0.801 0.827 0.058 0.856 0.875 0.041

B+DFEUs+CFIUs 0.808 0.836 0.056 0.872 0.881 0.039

Table 5. Ablation analysis on the effectiveness of the CSRU module. “CSR” refers to the CSRU
without any CI supervision, and “CSR *” refers to the supervision of both saliency and CI. We observe
that the performance improves as the different components of our model are attached. “DF”, “CF”,
and “HL” are the abbreviations for the DFEU, CFEU, and hybrid loss, respectively.

Networks
DUT-OMRON DUTS-TE

maxF SM MAE maxF SM MAE

B+DF+CF+CSR 0.810 0.838 0.055 0.878 0.887 0.038
B+DF+CF+CSR * 0.814 0.840 0.054 0.886 0.892 0.037

B+DF+CF+CSR *+HL 0.815 0.842 0.053 0.889 0.895 0.036

Effectiveness of the Dense Feature Extraction Unit (DFEU): To validate the effective-
ness of the proposed DFEU module, we appended this module to the last four levels of
the encoder side. We ignored the first level in terms of appending subsequent modules
because its large dimension rapidly increases the parameters and computational power
without substantial impact. Table 3 summarizes the empirical results for the DFEUs, and
Figure 9d visualizes predicted saliency maps. To further study the underlying details, we
first replaced the convolution layers of the GCB block (shown in Figure 3) with trivial
(3× 3) convolution layers. Table 3 presents the relevant results across B+DFEUs-S. In



Sensors 2022, 22, 9667 18 of 22

the subsequent step, we replaced the convolution layers of the GCBs with asymmetric
convolutions (spatially separable convolutions) using large kernels at various stages. We
utilized the large kernels for the GCB, such as (3,5), (5,7), (7,9), and (9,11) for baseline stages
2 to 5, which can yield the best scores. The results listed in Table 3 for B+DFEUs-D indicate
the enhanced performance of large kernels with dense receptive fields. We presented
the results for the channel shufflings of Figure 3 in Table 3 in terms of the B+DFEUs and
observed a slight performance gain. To further describe the originality and efficacy of
the proposed DFEUs, we compared them with the most prevalent multi-scale modules:
ASPP [24], and PPM [20]. As shown in Table 3, a significant drop in performance is ob-
served if we replace the proposed DFEUs with ASPPs and PPMs. For DUT-OMRON, the
DFEUs improve results to 0.796, 0.824, and 0.059, in terms of the maxF, SM, and MAE
compared with the baseline, respectively. Conversely, the ASPP and PPM improve the
same metrics to 0.796 , 0.818, 0.061 and 0.795, 0.822, 0.060, respectively. Hence, the DFEUs
reduce the parameter size and perform better than PPM and ASPP modules.

Effectiveness of the Cross Feature Integration Unit (CFIU): The proposed CFIU
module differs from other modules in the literature. First, it collects all matching high-level
features via skip connections to learn a specific stage for different regions of a salient object.
The aggregated features are then downsampled according to the number of input features
received from the various stages via skip connections. Table 4 presents the ablation analysis
results of the CFIUs to examine the efficiency of the internal components. The results
labeled with “CFIUs w/o Attk=3” were obtained without sub-branch attentional or CI
information with standard (3× 3) convolutions. We observe a significant performance
lead, i.e., 0.788, 0.816, and 0.060 against the baseline model in terms of the maxF, SM, and
MAE. Similarly, the results presented in Table 4 for CFIUs w/ Att indicate the efficiency
after embedding the spatially separable convolutions with channel-wise attention for each
sub-branch of the proposed CFIUs. We performed multiple experiments with different
kernel sizes (k = 7, 11, 15, and 21) and observed that the kernel size at k = 15 provides the
optimum results. In addition embedded channel attention and large receptive fields further
improve the performance efficiency to 0.799, 0.826, and 0.059 in terms of the maxF, SM,
and MAE for DUT-OMRON against the baseline model. The embedded channel attentions
in our CFIU module filter the challenging salient parts independently and then merge
them, thereby guiding the model towards more accurate salient objects in scale-specific
challenging environments. Furthermore, we present the impact of contour information
integrated by the CFIUs in Table 4 with “CFIUs w/ CI” and observe a slight performance
for each evaluation metric for the DUT-OMRON dataset. As the last row of Table 4,
“B+DFEUs +CFIUs” indicates the overall performance gain of the CFIUs after the DFEUs
and achieved an improved efficiency, i.e., 0.808, 0.836, and 0.056 in terms of the maxF, SM,
and MAE, against the baseline model for the DUT-OMRON dataset. Compared with other
feature integration modules in the literature, our CFIU is a lightweight module with fewer
parameters that performs more robustly and expands only according to the given backbone
levels in the top-down paradigm. For the visual results of the CFIU module, see Figure 9e.

Effectiveness of the Contour-aware Saliency Refinement Unit (CSRU): To verify
the usefulness of the proposed CSRU, we applied it to each stage following the CFIUs.
The CSRU is a novel lightweight module that collects all high-level features from their
respective high levels via skip connections and solves the contextural feature dilution effect
during top-down feature propagation. It then splits information into two branches after
aggregating contextual and contour-based information. One branch generates contour
maps utilizing the contour supervision in a spatial-attention manner. The other branch
focuses on more foreground saliency information in a channel-attention manner. The CI
directs the feature maps towards producing more exact and accurate saliency maps with
sharper boundaries, as seen in Figures 9g and 10e. Table 5 presents the quantified results of
the proposed CSRU. CSR indicates the results obtained by integrating the proposed CSRU
after DFEUs and CFIUs without contour-based supervision. In contrast, CSR * indicates
results with CI. From the second row of Table 5, note that “CSRUs” with contour-based
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supervision (i.e., CSR *) provide the best results with a margin of 0.814, 0.840, and 0.054
against the baseline model, i.e., 0.775, 0.802, and 0.065 on DUT-OMRON.

Effectiveness of Hybrid Loss: We employed a simple hybrid loss function by intro-
ducing the IoU loss function with binary cross-entropy. We observe a slight performance
gain in the results, i.e., 0.815, 0.842, 0.053 shown in the last row of Table 5 that indicate
the importance of the proposed hybrid loss function. In particular, it performs best in
MAE reduction.

Memory and Speed Comparison: The size of a deep learning model plays a signifi-
cant role compared with other characteristics of deep learning SOD algorithms. Table 6
compares deep learning methods based on model size against the F-measure and MAE
metrics on the DUTS-TE dataset. A model with fewer parameters, high F-measure, and
low MAE can be considered optimal. Our model requires 26.7 M parameters and achieves
an average speed time of more than 31 FPS on an i7 GPU and Titan X GPU, which is faster
than most state-of-the-art models.

Table 6. Ablation comparison with several known state-of-the-art methods in terms of the number of
parameters in millions (#Par), average speed time (FPS), maxF, and MAE on the DUT-OMRON dataset.

Network Network Size Model Size (#Par) FPS
DUTS-TE

maxF MAE

Amulet [70] 256× 256 31.6 16 0.8603 0.0512
Picanet [18] 226× 226 37.02 7 0.8603 0.0512
BASNet [64] 400× 300 87 25 0.8593 0.0483
EGENet [25] 400× 300 108 14 0.8854 0.0390

POOLNet [77] 384× 384 68.26 30 0.8832 0.0371
CSB [74] 384× 384 27.9 32 0.8892 0.0346

F3Net [72] 384× 384 26.5 31 0.8886 0.0359
CAGNet [53] 384× 384 26.6 28 0.8659 0.0397

OURS 384× 384 26.7 31 0.8894 0.0358

5. Conclusions

This study introduced AWANet, a novel end-to-end deep saliency model for SOD. The
proposed model comprises three novel units: DFEUs, CFIUs, CSRUs. The DFEU extracts
multi-scale features for each backbone level to accommodate scale variations in SOD tasks.
The CFIU extracts multi-level contextual features via skip connections and leverages a stack
of attention mechanisms to motivate the representative capability of the corresponding layer
with multi-scale contextual features for precise and reliable SOD. The CSRU propagates
salient contour details by learning accurate and precise boundary estimation to refine
salient object segmentation. Experiments on five well-known benchmarks indicate the
superiority of our proposed model against state-of-the-art methods.
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