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Abstract: The attitude sensor of the aircraft can give feedback on the perceived flight attitude
information to the input of the flight controller to realize the closed-loop control of the flight attitude.
Therefore, the fault diagnosis of attitude sensors is crucial for the flight safety of aircraft, in view of
the situation that the existing diagnosis methods fail to give consideration to both the diagnosis rate
and the diagnosis accuracy. In this paper, a fast and high-precision fault diagnosis strategy for aircraft
sensor is proposed. Specifically, the aircraft’s dynamics model and the attitude sensor’s fault model
are built. The SENet attention mechanism is used to allocate weights for the collected time-domain
fault signals and transformed time-frequency signals, and then inject the fused feature signals with
weights into the RepVGG based on the convolutional neural network structure for deep feature
mining and classification. Experimental results show that the proposed method can achieve good
precision speed tradeoff.
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1. Introduction

The complex structure, numerous equipment, system cross-linking and diverse flight
environment of aircraft make it easy to have faults. The flight control system is the core
system of the aircraft, in which the sensor is used to transmit the real-time measured aircraft
flight state parameters to the flight control system. Therefore, the state of the sensor will
directly affect the flight state [1,2]. Once a fault occurs, it will cause the sensor to transmit
the wrong information to the flight control system, which may cause greater economic
losses and even endanger people’s lives. Therefore, the diagnosis of aircraft sensors is
essential to ensure aircraft flight safety [3,4].

The traditional fault diagnosis methods consist of mainly two types, one is based on
signal analysis or artificial feature extraction [5,6], and the other is based on models [7,8].
Among them, a common application of the first method is to determine whether a fault
occurs by designing a threshold value and comparing whether the signal reaches the thresh-
old value [9]. Other methods based on manual feature extraction have also been widely
studied. A fault diagnosis method based on signal decomposition and two-dimensional
feature clustering is designed to diagnose battery status [10]. The data processing method
of high-speed railway fault signal diagnosis based on MapReduce algorithm was de-
signed [11]. Statistical method and wavelet packet decomposition method are used for
feature extraction of vibration signal to identify the fault type of rotor [12].

The model-based method refers to establishing the model of the object to be diagnosed,
and analyzing the situation when various faults occur by setting different types of faults
in the model. Fault diagnosis is realized through the corresponding relationship between
the output difference of the model in different faults and the fault type. A review of
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model-based fault diagnosis methods was published, focusing on fault detection and
fault estimation [13]. N. Valceschini et al. proposed a model-based fault detection and
isolation scheme for the transmission components of electro-mechanical actuators, which
was applied to the drive of sliding doors [14]. In addition, a model-based battery fault
diagnosis method is proposed, which is based on multiple equivalent circuit models [15].
In addition, Wang et al. established the equivalent circuit model of battery pack insulation
fault diagnosis using the high fidelity unit model [16].

However, the two traditional methods mentioned above have some limitations, specif-
ically , the method based on signal analysis diagnoses by manually selecting feature types,
which is difficult to avoid the problem of insufficient representation of selected features [17].
The main problem of model-based method is that it requires high accuracy of the model,
and it is no longer applicable when the object changes a little. With the development of
machine learning and artificial intelligence technology, data-driven fault diagnosis method
is very popular in recent years because of its advantages of automatically exploring the
characteristics of signals and high applicability. More and more data driven diagnostic
methods with higher accuracy have emerged [18–23]. A data driven method based on
improved Elman neural network was proposed to realize the fast diagnosis of open circuit
fault of IGBT [18]. Nicholas et al. [19] proposed a general robust data-driven scheme for
fault detection, isolation and estimation of multiple sensor faults, and verified it with
multiple flight data records. A fault diagnosis method based on Deep belief network (DBN)
to generate local random graph to intuitively explain the fault action mechanism was pro-
posed, which realized the diagnosis of different faults of air conditioner [20] Guo et al. [21]
established a predictive model for photovoltaic power generation under normal conditions
through clustering algorithm and long short-term memory neural network (LSTM), and
used the predictive model to conduct quantitative fault diagnosis through transfer learning.
In addition, some work related to fault diagnosis combines signal based and data-driven, or
uses the transfer learning strategy [24–27] to achieve high-precision fault diagnosis results.

Different types of machine learning models have been targeted for development and
used in data-driven diagnosis. However, there are still two problems in the processing of
input data: the type of input signal data is single, which has no advantage in ensuring
the integrity of data information; in a small amount of work considering multiple input
signals, the importance of different signals is rarely considered, which is not conducive to
subsequent feature extraction and fault classification. In addition, in view of the fact that
most of the deep learning diagnosis models cannot give consideration to both time cost
and computational efficiency, this paper also proposes a targeted scheme.

Specifically, the innovation points of this paper are as follows:

(i) The time sequence signal of aircraft attitude sensor is transformed into time-frequency
domain, and the time-domain signal and time-frequency domain signal are taken as
the feature mining object.

(ii) A signal representation weight analysis and allocation strategy is designed, and the
representativeness of each channel of time-domain signal and time-frequency signal
is analyzed by using Squeeze-and-excitation networks (SENet) attention mechanism.

(iii) A fast and high-precision diagnostic technology based on Re-parameterization visual
geometry group (RepVGG) is proposed, which achieves a good diagnostic accuracy
speed tradeoff.

The following text is arranged as follows: the relevant theories and methods are given
in Section 2. Section 3 describes the experimental setup and the preparation process of the
fault data set, including fault model building and data collection, experimental parameter
settings, etc. The Section 4 presents the experimental results and discussions. Section 5
summarizes the full text.
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2. Relevant Theories and Proposed Methods
2.1. RepVGG

The maturity of the “convolutional” neural network has made it a solution to many
mainstream tasks. The commonly used convolutional neural network models in image
classification include VGG-16 and ResNet. The performance of VGG network model will
increase with its depth, which may lead to over fitting and gradient disappearance, and
the accuracy will decline. ResNet model’s residual element can solve the gradient disap-
pearance phenomenon well, but it is powerless for the common over fitting phenomenon
of deep network. The multi-level branches in the residual structure in ResNet make the
model difficult to implement. RepVGG network is a single path convolutional network
architecture, which integrates the ideas of VGG and ResNet, and only adds 3 times. The
3-volume integration layer can also achieve simple and more efficient performance [28].

2.1.1. RepVGG Block

As shown in Figure 1, RepVGG uses a multi branch model similar to ResNet style
during training, and converts it into a single path model of VGG style during reasoning.
Figure 1a shows the network structure used in RepVGG training, while Figure 1b is used
in reasoning. Figure 1b shows the RepVGG network in the reasoning stage. The structure
of the network is very simple. The whole network is composed of convolution with kernel
size 3× 3 and ReLu activation function, which is easy for model reasoning and acceleration.
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Figure 1. Schematic diagram of partial structure of RepVGG. (a) RepVGG training. (b) RepVGG
inference.

RepVGG is formed by continuously stacking RepVGG Blocks. During the training,
RepVGG Block paralleled three branches: a main branch with a convolution core size of
3 × 3, a shortcut branch with a convolution core size of 1 × 1, and a shortcut branch with
only BN connected. Since the residual structure has multiple branches, it is equivalent to
adding multiple gradient flow paths to the network. Such a network is trained, which is
similar to training multiple networks and integrating multiple networks into one network.
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It is similar to the idea of model integration, which can improve the training effect of
the network.

2.1.2. Structural Reparameterization

RepVGG reparameterization transforms the multi branch structure in the training
process into 3 × 3 convolution with deviation, which improves the reasoning speed of the
network, reduces the network parameters and reduces the memory occupation. The process
of reparameterization is shown in Figure 2, which includes four processes: merging Conv2d
and BN; Convert 1 × 1 convolution to 3 × 3 convolution and BN to 3 × 3 convolution, and
fuse multiple branches.
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Figure 2. Schematic Diagram of Reparameterization.

At the stage of merging 3 × 3 convolution layer and BN layer, the formula of convolu-
tion layer and BN layer is as follows:

Conv(x) = W(x)
BN(x) = γ× (x−µ)√

σ2
i +ε

+ β (1)

where the input is x, the fusion of Conv into BN can be expressed as:

BN(conv(x)) = γ× W(x)− µ√
σ2

i + ε
+ β = (

γ×W(x)√
σ2

i + ε
) + (

γ×W(x)√
σ2

i + ε
+ β) (2)

The above formula can be regarded as the convolution layer incorporating BN opera-

tion, where
√

σ2
i is the variance of BN layer, γ Is the scale factor of BN layer, β Indicates the

offset factor of BN layer. If the content in the first bracket of the above formula is regarded
as W ′, and the content in the second bracket is regarded as B′, then:

W ′ =
γ×W

σi
(3)

B′ = β− γ× µ

σi
(4)

Finally, it can be rewritten as:

BN(Conv(x)) = W ′(x) + B′(x) (5)

When converting 1 × 1 convolution to 3 × 3 convolution form, take a convolution
core in 1 × 1 convolution layer as an example, just add a circle of zeros around the original
convolution core weight, which becomes a 3 × 3 convolution layer. Note that in order to
ensure that the height and width of the input/output feature map remain unchanged, the
padding is usually set to 1. Finally, the above convolution layer and BN layer can be fused.

When converting BN to 3× 3 convolution, as there is no convolution layer for branches
with only BN, a 3 × 3 convolution layer needs to be constructed first, and the convolu-
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tion layer only carries out identity mapping, that is, the input and output characteristic
maps remain unchanged. With this convolution layer, BN layer can be converted into
3 × 3 convolution.

Finally, multi branch fusion is carried out. The process of merging is relatively simple.
The parameters of the three convolution layers are added together. In this step, the weight
W and offset B of all branches are superposed to obtain a fused 3 × 3 Convolutional
network layer.

2.2. SENet Attention Mechanism

Convolution often focuses on the fusion of scale information in space. Through the
introduction of an attention mechanism, SENet focuses on the connection between different
channels, so that it can learn the importance of each channel feature [29]. For the fault
classification task in this paper, an attention mechanism is introduced to improve the
attention of different characteristic channels of input signals. The SE module contains two
operations: Squeeze and Exception; the global characteristics of each trace in the feature
map can be obtained by the Squeeze operation. The relationship between channels can be
learned through the Exception, and the weights between different channels can be obtained.

Its implementation is shown in Figure 3. The input feature layer is pooled globally.
Then two full connections are made. The number of fully connected neurons in the first
time is less, and the number of fully connected neurons in the second time is the same as
the input feature layer. A ReLU layer is set between two full connections. Then, another
sigmoid is performed to fix the value between 0–1. At this time, the weight value of each
channel of the input feature layer is obtained. Finally, the weighted feature layer can be
obtained by multiplying this weight value by the original input feature layer.
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2.3. The Proposed Strategy

In order to fully exploit the characteristics of sensor fault signals, the fault diagnosis
strategy shown in Figure 4 is proposed in this paper. First, different faults are injected
into the flight control system model of the aircraft, and then the signals under the fault
state are collected. The time-frequency characteristic diagram is obtained by processing
one-dimensional time-domain residual signal through S-transform. The one-dimensional
time-domain residual signal is sliced and stacked into a 50 × 50 × 1 format. As the first
channel data, the data size of the RGB three channels of time-frequency characteristic map
is 50 × 50 × 3. The data of these four channels 50 × 50 × 4 are used as the processing
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data of the subsequent SENet attention mechanism and RepVGG. Because RepVGG only
obtains features in spatial dimension, SENet module is integrated into RepVGG to obtain
feature association between different channels. The proposed diagnostic algorithm consists
of two parts: training and testing. The training part is to learn the model’s parameters by
using the training data set, and the testing part is to test the effect of the proposed model
by using the testing data set.
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Add SE attention module to the 3 × 3 channel of RepVGG, and the feature map with
size H ×W × C is obtained after the convolution kernel operation (in the fault diagnosis
task of this paper, the value of parameter C is 4). At this time, the convolution is only the
characteristic diagram obtained by spatial operation, and there is no relationship between
each channel; The 2D feature pc of each channel is mapped to the global feature fc through
a global average pooling, and the formula is as follows:

fc = Fsq(pc) =
1

h× h

h

∑
i=1

h

∑
j=1

pc(i, j), f ∈ RC (6)

Then, two Fully connected (FC) layers are used, one to reduce the dimension charac-
teristics, and the other to upgrade back to the original dimension. Finally, the normalized
weight is obtained through Sigmoid, and the formula is as follows:

s = Fex( f , W) = σ(g( f , W)) = σ(W2ReLU(W1z)) (7)

W1 ∈ R
c
r×C, W2 ∈ R

c
r×C (8)

Finally, the weight s obtained is weighted to each characteristic channel fc. This allows
important channels to gain greater attention and ensure the accuracy of classification.

3. Experiment Setup and Data Set Preparation
3.1. Establishment of Fault Model

Navion aircraft model is built in this paper, and different fault types of its attitude
sensor are set. Navion aircraft model is a navigation aircraft model. By the end of 1947,
more than 1100 aircraft of this type had been produced in the United States. The aircraft
has a total length of 8.38 m, a wingspan of 10.19 m, a height of 2.65 m, a maximum takeoff
weight of 1338 kg, a maximum flight speed of 260 km per hour, and a maximum range of
1120 km. The aircraft was once designated as a training aircraft of the US Air Force. Today,
there are still a large number of such aircraft in civilian use. In this paper, according to
the published aerodynamic parameters of Navion aircraft, the first order Taylor expansion
method is used to linearize the small disturbance equation of fixed wing aircraft at a certain
equilibrium point, and the linearized model of Navion aircraft is obtained. As shown in
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Figure 5, a fault signal generation model is designed, including the normal sensor sensing
part and the fault sensor sensing part. The input control signal is input into the control
model of the aircraft. The attitude sensor in the normal attitude frame can correctly perceive
the attitude information of the Unmanned aerial vehicles (UAV), while the attitude sensor
in the fault attitude frame cannot correctly perceive the attitude information.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 13 
 

 

3. Experiment Setup and Data Set Preparation 
3.1. Establishment of Fault Model 

Navion aircraft model is built in this paper, and different fault types of its attitude 
sensor are set. Navion aircraft model is a navigation aircraft model. By the end of 1947, 
more than 1100 aircraft of this type had been produced in the United States. The aircraft 
has a total length of 8.38 m, a wingspan of 10.19 m, a height of 2.65 m, a maximum takeoff 
weight of 1338 kg, a maximum flight speed of 260 km per hour, and a maximum range of 
1120 km. The aircraft was once designated as a training aircraft of the US Air Force. Today, 
there are still a large number of such aircraft in civilian use. In this paper, according to the 
published aerodynamic parameters of Navion aircraft, the first order Taylor expansion 
method is used to linearize the small disturbance equation of fixed wing aircraft at a cer-
tain equilibrium point, and the linearized model of Navion aircraft is obtained. As shown 
in Figure 5, a fault signal generation model is designed, including the normal sensor sens-
ing part and the fault sensor sensing part. The input control signal is input into the control 
model of the aircraft. The attitude sensor in the normal attitude frame can correctly per-
ceive the attitude information of the Unmanned aerial vehicles (UAV), while the attitude 
sensor in the fault attitude frame cannot correctly perceive the attitude information. 

 
Figure 5. Simulation diagram of attitude sensor fault. 

Among them, the attitude sensor in the normal attitude frame can correctly perceive 
the attitude information of the UAV, while the attitude sensor in the fault attitude frame 
cannot correctly perceive the attitude information. After the sensor fault model is estab-
lished, the attitude information is measured and the fault output is obtained. Then calcu-
late the residual of normal sensor data and fault sensor data, and use the residual time 
series signal as the data processed by the subsequent fault diagnosis model. The fault type 
settings are shown in Table 1, which contains the fault manifestations and corresponding 
labels. Taking the pitch angle sensor of an aircraft as an example, four common faults are 
set, including jamming, lateral gain, lateral deviation and excessive noise. In addition, if 
the fault free state is regarded as a special fault state, there are five fault types in total. 

  

Figure 5. Simulation diagram of attitude sensor fault.

Among them, the attitude sensor in the normal attitude frame can correctly perceive
the attitude information of the UAV, while the attitude sensor in the fault attitude frame can-
not correctly perceive the attitude information. After the sensor fault model is established,
the attitude information is measured and the fault output is obtained. Then calculate the
residual of normal sensor data and fault sensor data, and use the residual time series signal
as the data processed by the subsequent fault diagnosis model. The fault type settings are
shown in Table 1, which contains the fault manifestations and corresponding labels. Taking
the pitch angle sensor of an aircraft as an example, four common faults are set, including
jamming, lateral gain, lateral deviation and excessive noise. In addition, if the fault free
state is regarded as a special fault state, there are five fault types in total.

Table 1. Setting of fault types.

Fault Type Fault Manifestation Fault Label

No fault The fault free state represents the health state and is regarded
as a special fault F0

Stuck The measured value of the sensor output deviates from the
normal value and reaches a stuck position F1

Constant gain The measured value of the sensor output maintains a
constant proportion to the normal output value F2

Constant
deviation

The measured value of the sensor output deviates from the
normal value and keeps the deviation constant F3

Excessive noise The measured value of the sensor output contains large noise F4

3.2. Acquisition of Fault Data

Set the corresponding input control signal to change within a certain angle range,
collect the residual signals of various faults, the length of each residual signal is 2500, and
rearrange them into a 50 × 50 format. In addition, the time-frequency diagram obtained by
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S-transform is also cut to 50 × 50 size, and 50 × 50 × 3 data obtained by extracting RGB
three channels of color time-frequency diagram is used as the input of SENet attention
mechanism model. Figure 6 shows the time-frequency diagram of different fault types after
S transformation.
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In order to explore the influence of different data sets on the fault diagnosis accuracy
of the algorithm proposed in this paper, five data sets with different sizes are set. Table 2
lists the size information of training set, verification set and test set for each fault type.

Table 2. Different data set size for each fault.

Data Set Number of Training Sets Number of Validation Sets Number of Test Sets

1 140 20 40
2 280 40 80
3 420 60 120
4 700 100 200
5 980 140 280

3.3. Basic Parameter Settings of the Proposed Method

The parameters of the proposed method are shown in Table 3, where the kernel size
is the size of the convolution kernel; Padding is the matrix filling value, that is, the filling
is added to all four sides input, and the default value is 0; padding_ Mode is the matrix
filling mode, and the default value is ‘zero’; num_ Blocks is the number of modules, that
is, the number of sub modules in different stages; num_ Classes is the number of fault
classifications, which is set as five fault states; width_ Multiplier is the stage multiplication
coefficient, that is, the different coefficients multiplied at different stages; Groups is the
number of input channel groups, that is, the number of blocked connections from the input
channel to the output channel. The default value is 1; Street is the convolution step, and
the default value is 1; The division is the expansion flag bit, that is, the spacing between
kernel elements. The default value is 1; Bias adds a learnable deviation to the output. This
parameter is a Boolean value. If it is true, a learnable deviation is added to the output,
indicating that the parameters learned in the backward feedback are applied.

Table 3. Size of the dataset.

Parameter Value

kernel size 3
padding 0

padding_mode ‘zeros’
num_blocks [2, 4, 14, 1]
num_classes 5

width_multiplier [0.75, 0.75, 0.75, 2.5]
groups 1
stride 1

dilation 1
bias True
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4. Experimental Results and Discussion

The experiments are conducted with Python 3.9, CUDA 11.6 and Pytorch 1.12.1
libraries on Windows11 operation system. The key experimental hardware configurations
are NVIDIA GeForce RTX 3060 Laptop GPU with 6 GB memory and 12th Gen Intel(R)
Core(TM) i9-12900H 2.50 GHz CPU with 16GB memory.

Accuracy is used to evaluate the diagnostic performance. Two indexes are as follows.

Accuracy =
Ncp

Ncp + Nwp
(9)

where Ncp represents the number of cases whose label is correctly predicted, Nwp refers the
number of cases whose label is wrongly predicted.

4.1. Effect of Data Set on Diagnosis Results

The average precision and average training time are selected as the evaluation indica-
tors of this paper to study the fault diagnosis performance of the method proposed in this
paper under different data sets. The results are shown in Table 4.

Table 4. Diagnostic performance of the proposed method under different data sets.

Different Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Average accuracy (%) 93.45% 96.10% 99.28% 99.37% 99.42%
Average training time (s) 356.08 693.76 1019.73 1754.73 2390.49

Table 4 shows that: (i) As the size of the dataset increases (from dataset 1 to dataset 5),
the model training time of the proposed algorithm becomes longer and longer. (ii) As far as
the average precision is concerned, the precision has reached more than 99% in the case of
data volume shown in dataset 3. Later, as the dataset continues to grow, for example, when
it changes to dataset 5, compared with dataset 3, the average accuracy of the algorithm is
only improved by 0.14%. According to Table 4, for the smallest dataset 1, its accuracy is
the lowest, while for the medium dataset 3, the proposed algorithm has reached a satisfied
accuracy. Therefore, we have added a Table 5 to list the accuracy of each fault type of a test
in detail under the conditions of datasets 1 and 3.

Table 5. Accuracy detail presentation of data sets 1 and 3 in a test.

Dataset 1 Dataset 3

Fault code Accuracy (%) Fault code Accuracy (%)
F0 92.50 F0 98.33
F1 100.00 F1 99.17
F2 90.00 F2 100.00
F3 85.00 F3 98.33
F4 90.00 F4 99.17

Average accuracy 91.50 Average accuracy 99.00

As can be seen from Table 5, the corresponding classification accuracy of each fault
label in dataset 3 is generally higher than that in dataset 1. In addition, in dataset 3, the
number of tests for each fault type is 120, and the number of the wrong classification is less
than 2.

In order to better show the classification of the algorithm proposed in this paper under
different data. The confusion matrix of dataset 1 and dataset 3 in an experiment is shown
in Figure 7.
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It can be seen from Figure 7 that the misclassification of the proposed algorithm in
dataset 3 is obviously better than that in dataset 1. Further, the model training process in
the case of dataset 3 is shown in Figure 8.
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It can be seen from Figure 8 that the training and verification stages of the model of
the proposed diagnostic algorithm achieve the best accuracy at the 7th Epoch. In addition,
the convergence speed of the model is relatively fast.

4.2. Ablation Experiment

In order to explore the role of each module of the method proposed in this paper.
Ablation experiment was set up to conduct ablation research by deleting each module from
the proposed method. (we conduct ablation studies by removing the identity and/or 1 × 1
branch from every block of RepVGG-B0.) Specifically, as shown in Table 6, respectively
cancel the S transform module to use only the time domain signal (No. 1), cancel the time
domain signal to use only the time-frequency domain signal (No. 2), cancel the SENet
module (No. 3), and simultaneously cancel the S transform module and the SENet module
(No. 4). The fault diagnosis accuracy under each condition is listed in this table.
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Table 6. Fault diagnosis accuracy is tested in ablation study.

No. Time Domain Signal S-Transform SENet Average Accuracy

1
√ √

80.68%
2

√ √
86.35%

3
√ √

92.37%
4

√
62.75%

Note: The modules marked with
√

in the table are reserved in the model.

Table 6 shows that the performance is the best when the SENet module is canceled,
reaching 92.37%. Secondly, the performance is the second best when only time-frequency
signals are used, reaching 86.35%. When the S-transform module is cancelled and only the
time-domain signal is used, the corresponding diagnostic accuracy ranks third, only 80.68%.
The performance is the worst when S-transform module and SENet module are canceled at
the same time, which is only 62.75%. It can be seen from the results that the signal processed
by the diagnosis strategy has the greatest impact on the diagnosis performance, and it is
very important to obtain time-frequency diagram signal through S-transform. Secondly,
the SENet module shows some advantages in data preprocessing, which provides a better
basis for RepVGG to mine effective features. In addition, by comparing No. 1 and No. 2,
it can be seen that compared with the timing signal, the time-frequency map obtained by
using S-transform can better reflect the characteristics of the object.

5. Conclusions

In this paper, a fault diagnosis method for aircraft attitude sensor is proposed. Research
shows that sensor residual signals can reflect the difference of various faults and can be
used as a diagnostic signal. One dimension time-domain signals and two-dimensional
time-frequency domain features are processed by SENet attention mechanism, and key
feature categories are enhanced by high weight. Subsequently, the depth RepVGG is
used to conduct in-depth feature mining and achieve a fast and high accuracy diagnosis
effect. Therefore, the SENet attention mechanism is an effective feature importance ranking
scheme, which realizes the weight division of signal categories while ensuring the integrity
of diagnostic signals. In addition, RepVGG has also been proven to be a potential fault
diagnosis algorithm, with obvious advantages in diagnosis speed while ensuring accuracy.
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