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Abstract: A high-speed and high-power current measurement instrument is described for measuring
rapid switching of ferroelectric samples with large spontaneous polarization and coercive field.
Instrument capabilities (±200 V, 200 mA, and 200 ns order response) are validated with a LiTaO3

single crystal whose switching kinetics are well known. The new instrument described here enables
measurements that are not possible using existing commercial measurement systems, including
the observation of ferroelectric switching in large coercive field and large spontaneous polarization
Al0.7Sc0.3N thin films.
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1. Introduction

Ferroelectric switching dynamics have been of interest since the emergence of fer-
roelectric materials [1–5]. Kolmogorov–Avrami–Ishibashi (KAI) and nucleation limited
switching (NLS) models have been developed to explain the phenomena based on experi-
mentally measured polarization evolution [2,4]. Switching polarization is quantified by
measuring charge flow in external circuits. The classic Sawyer–Tower circuit stores and
reads the charge on a reference capacitor, essentially integrating the switching current
over time [6]. Camlibel reported a voltage transient attributed to polarization switching
across a reference capacitor following voltage pulse application in ms order using the
Sawyer–Tower circuit [7]. However, to obtain the switching response in < µs order, a direct
measurement of switching current flowing through a circuit is suitable for time-resolved
observation of current/polarization dynamics. Measuring the voltage drop across a simple
shunt resistor due to the flowing current introduces a tradeoff between measurable signal
and circuit load effects, which are particularly problematic for the rapid dynamic change
in impedance and the dynamic current range seen in ferroelectric switching [8]. Thus,
a transimpedance amplifier is frequently used because its virtual ground avoids circuit
load effects across the wide impedance changes inherent to devices such as photodiodes
and switching ferroelectrics [9–11]. Observation of sample-limited ferroelectric switching
behavior requires integration of an appropriate voltage source in addition to time-resolved
charge measurement.

The emerging wurtzite ferroelectrics [12] exacerbate such measurement challenges
because they exhibit massive switchable polarization values (>100 µC/cm2) and very
square loops, which translate into large switching currents, as well as large coercive fields
combined with degraded film quality at very thin layers [13], which together necessitate
relatively large voltages for switching. For example, Al0.7Sc0.3N typically exhibits coercive
fields of 5000 kV cm−1, which requires 150 V for a film of 300 nm thickness [12,14]. Maxi-
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mum switching current can be estimated under the assumption of triangular current peak,
which is

is =
Ps A

tFWHM

where Ps is the spontaneous polarization, A is the capacitor size, and tFWHM is the cur-
rent peak width. The switching current of a 100 µm diameter capacitor of Al0.7Sc0.3N
(Ps = 110 µC cm−2 [14–18]) reaches approximately 100 mA for a 100 ns switching time.
Thus, a measurement system capable of measuring the intrinsic behavior of the sample
without the circuit itself dominating the measurement requires a total design including
large current and voltage capabilities. Commercially available current measurement sys-
tems are usually limited by either the speed or voltage; a high speed pulse I–V system has
a lower voltage range (±40 V) [19] and a high voltage instrument shows a slow slew rate
(~0.5 V/µs) [20].

In this study, we report the development and demonstration of a high speed, high
power current measurement instrument capable of sub-microsecond measurements of fer-
roelectric switching even for high coercive voltage (Vc) and high Ps thin film samples, which
stands in the gap between commercially available high speed and high voltage current
measurement systems. The ±200 V, 200 mA instrument demonstrates sample-controlled
current without interference of the external circuit down to at least 200 ns. After validation
using a well-characterized 60 µm thick LiTaO3 single crystal, the instrument is used to
measure anomalous switching kinetics of a 250 nm thick Al0.7Sc0.3N film, characteristics
that would remain overlooked without such measurement capabilities.

2. Measurement Instrument

Figure 1 shows the schematic of the measurement instrument described here. A voltage
sequence coming from the function generator is amplified by a commercially available
high voltage/high speed voltage amplifier (maximum output: ±200 V and 200 mA, cutoff
frequency: 1.2 MHz). This signal goes to both the sample and the high impedance input
of an oscilloscope for reference. The voltage applied to the sample drives the ferroelectric
switching, and current flows into the virtually grounded transimpedance amplifier input.
The current is converted to voltage in the transimpedance amplifier and measured at a high
rate by the oscilloscope.
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The feedback circuit constants Rf and Cf in the transimpedance amplifier are deter-
mined by initial estimations of the switching current and capacitance of the saturated
ferroelectric. Based on the spontaneous polarization and relative permittivity, the switching
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current for a 50 µm diameter capacitor of Al0.7Sc0.3N is estimated to be roughly 20 mA
at 100 ns, and the capacitance is roughly 1 pF [12,14,21]. Thus, given the output voltage
range (±5 V) of the operational amplifier (OPA657), Rf is set to 47 Ω. The Cf is set to
>5 pF to compensate the phase and create phase margin to stabilize the operation amplifier
and avoid oscillation [22]. Based on these values and the gain bandwidth product of the
operational amplifier, the cutoff frequency of the transimpedance amplifier is calculated
to be <950 MHz at maximum without any parasitic component consideration [22], which
is much faster than that of the voltage amplifier, so that current detection is not limited
by the transimpedance amplifier. Therefore, the cutoff frequency of the voltage amplifier
(1.2 MHz) represents the maximum frequency (minimum time) capability of the circuit,
and measurements at slower speeds will be dominated by the sample response rather than
the circuit capabilities.

3. Materials

Circuit capabilities were verified via measurements on samples exhibiting well-known
switching characteristics. Figure 2 shows ferroelectric P–E loops measured for a com-
mercially available 60 µm thick vapor transport equilibrated (VTE) LiTaO3 single crystal
with a top contact diameter of 100 µm (Figure 2a) and a 250 nm thick Al0.7Sc0.3N film
with a 50 µm diameter top contact (Figure 2b). The polycrystalline textured Al0.7Sc0.3N
film is deposited via radio frequency reactive sputtering method on a Pt/TiOx/SiO2/Si
substrate (the details of the deposition condition can be found elsewhere [14]). Both exhibit
robust ferroelectricity with a coercive voltage of 63 V for LiTaO3 and 110 V for Al0.7Sc0.3N
under a 10 kHz triangular excitation voltage. The LiTaO3 loop is well saturated as the
sample exhibits a high resistance after switching, whereas the much thinner Al0.7Sc0.3N
sample shows evidence of leakage current contribution to the hysteresis loop. Thus, a
positive-up-negative-down (PUND) method is employed to subtract the leakage current
contribution [23,24].
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4. Results and Discussion

Typical PUND measurement results for the Al0.7Sc0.3N thin film using this instrument
are shown in Figure 3. Along with the applied voltage sequence (black line), the current
response (red line) is shown in Figure 3a. The significant positive current (14 mA) and nega-
tive current (−27 mA) peaks associated with the P and N pulses correspond to polarization
reversal (ferroelectric switching) within the sample. The asymmetric responses point to
the imprint seen in the P–E loops in Figure 2b and reported previously [14]. Figure 3b,c
shows the magnified current and voltage evolution for the P and U pulses. For both pulses,
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capacitive current is clearly measured during the voltage rise, confirming that the tran-
simpedance amplifier does not limit the current flow during this stage as designed in the
Measurement Instrument section. Note that the CR time constant is orders of magnitude
faster than the applied voltage rise time due to the pF order of capacitance of the measured
devices. A large current peak appears after the capacitive current only for the switching
pulses (P and N). This switching current is not disturbed by the external circuit; the current
is below the current supply limit (200 mA) of the voltage amplifier, and no voltage drop
associated with power shortage at the current peak is seen in the measured applied voltage
curve in Figure 3b.
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Switching current is determined by subtracting the non-switching (capacitive plus
leakage) currents of the U (or D) cycles from the large (switching plus capacitive plus
leakage) currents of the P (or N) cycles. Switched polarization as a function of time, P(t), is
simply expressed as

P(t) =
1
A

∫ (
ip,n(t) − iu,d(t)

)
dt

where A is the capacitor area, ip,n(t) is the current of the P or N pulse, and iu,d(t) is the current
during the U or D pulse. For a complete switching event, the total P(t) equals 2Pr.

Figure 4 shows the time-resolved polarization evolution of the LiTaO3 single crystal
and Al0.7Sc0.3N thin film samples studied here. Voltage rise time is often defined as either
the time required for the voltage value to go from 0–100% of its max or from 10–90%. In
order to define t = 0 for our polarization–time plots, we use these two definitions of rise
time as uncertainty bounds, as shown in Figure 4a: tr1 = 200 ns for when voltage reaches
90% of amplitude and tr2 = 330 ns for when voltage reaches 100% of amplitude. These
values are reasonable based on the voltage amplifier cutoff frequency fc = 1.2 MHz and the
rise time–cutoff frequency relationship tr = 0.35/fc [25]. Figure 4b shows the polarization
evolution curves for the LiTaO3 single crystal for maximum applied voltages between
60 and 200 V. In this figure, t = 0 is defined as the applied voltage pulse starting time at
V = 0. Sample polarization reversal both starts sooner and occurs more quickly as the
applied voltage increases; for an applied voltage of 200 V, the polarization evolution starts
between tr1 and tr2, indicating that the circuit capabilities contribute meaningful uncertainty
to the measurement at that point. Hereinafter, t = 0 is defined using both tr1 and tr2 as
bounds represented by error bars. Figure 4c shows polarization evolution curves for the
LiTaO3 sample with a 130 ns uncertainty range for t = 0 as redefined using tr1 and tr2.

The polarization evolution curves in Figure 4c can be described using the classic KAI
model [2] and are consistent with prior analysis of LiTaO3 switching dynamics [5]. The
KAI model is expressed as

f = 1 − exp
{
−
(

t
t0

)n}
where t0 is the characteristic time and n is the Avrami exponent that represents the curve
slope. The Avrami exponents for the curves are n = 2 for all different voltages, as shown
in Figure 4d. This indicates two-dimensional domain growth and coalescence, which is
commonly seen in thin films, polished specimens, and single crystals where nucleation
is essentially limited to specimen surfaces [26]. This result further validates both the
measurement circuit capabilities and the definition of t = 0 based on the voltage rise time.

Polarization evolution curves for the Al0.7Sc0.3N film are shown in Figure 4e, for
voltages from 105 to 125 V. The applied voltage is limited to the sample breakdown
occurred >130 V. Similar to LiTaO3, the curves shift to shorter times with higher voltage
applied. However, unlike LiTaO3, the slopes of the curves increase for higher voltages
as well. Figure 4f shows the Avrami exponent as a function of the applied voltage. At
105 V, the Avrami exponent is 2, consistent with two-dimensional domain growth and
coalescence, which is reasonable for a thin film. This result is in good agreement with
slower switching dynamic measurements (>1 ms) reported by Fichtner on similar films [15].
At 125 V, however, the Avrami exponent reaches 5–7 (range due to the uncertainty of t = 0),
which is beyond the classic n = 1 + D interpretation of the KAI model that assumes D is
the dimensionality of kinetically limited domain growth and coalescence. The NLS model
of ferroelectric switching kinetics is also not directly applicable because it rationalizes
smaller Avrami exponents n < 1 based upon kinetics limited by only nucleation without
growth and coalescence. Thus, the large Avrami exponents measured here imply that a
model beyond the classic KAI and NLS models is required to explain the switching of
Al0.7Sc0.3N ferroelectrics.
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5. Conclusions

In summary, a high-speed and high-power current measurement instrument is devel-
oped for measuring the rapid polarization reversal of ferroelectric samples that exhibit large
spontaneous polarization values and high coercive fields. The operation of this instrument
is validated using a LiTaO3 single crystal with well-described switching characteristics.
The KAI model appropriately describes the switching of LiTaO3 with an Avrami exponent
of n = 2 up to 200 V across a 60 µm thick crystal for applied voltage rise times down
to 100 ns. The results validate the instrument capability (±200 V and 200 mA response
time on the order of 200 ns). The instrument use is then extended to the measurement
of polarization reversal in an Al0.7Sc0.3N thin film that also shows robust ferroelectric
hysteresis loops and switching behavior at low speeds, consistent with prior reports. Mea-
surements of the rapid (<1 µs) switching behavior of Al0.7Sc0.3N enabled by this new
measurement instrument reveal non-physical switching dynamics with the classic KAI and
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NLS models. The instrument developed and validated here enables measurement and an
improved understanding of the switching kinetics of the growing family of large coercive
field square-loop ferroelectrics.
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