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Abstract: With the rapid development of technology, unmanned aerial vehicles (UAVs) have become
more popular and are applied in many areas. However, there are some environments where the
Global Positioning System (GPS) is unavailable or has the problem of GPS signal outages, such as
indoor and bridge inspections. Visual inertial odometry (VIO) is a popular research solution for
non-GPS navigation. However, VIO has problems of scale errors and long-term drift. This study
proposes a method to correct the position errors of VIO without the help of GPS information for
vertical takeoff and landing (VTOL) UAVs. In the initial process, artificial landmarks are utilized to
improve the positioning results of VIO by the known landmark information. The position of the UAV
is estimated by VIO. Then, the accurate position is estimated by the extended Kalman filter (EKF)
with the known landmark, which is used to obtain the scale correction using the least squares method.
The Inertial Measurement Unit (IMU) data are used for integration in the time-update process. The
EKF can be updated with two measurements. One is the visual odometry (VO) estimated directly by
a landmark. The other is the VIO with scale correction. When the landmark is detected during takeoff
phase, or the UAV is returning to the takeoff location during landing phase, the trajectory estimated by
the landmark is used to update the scale correction. At the beginning of the experiments, preliminary
verification was conducted on the ground. A self-developed UAV equipped with a visual–inertial
sensor to collect data and a high-precision real time kinematic (RTK) to verify trajectory are applied
to flight tests. The experimental results show that the method proposed in this research effectively
solves the problems of scale and the long-term drift of VIO.

Keywords: data fusion; non-GPS navigation; scale correction; visual inertial odometry; artificial
landmark; extended Kalman filter

1. Introduction

UAVs are unmanned, thereby reducing casualties caused by accidents, and they
have many applications, including 3D mapping, entertainment, object detection, aerial
photography for various purposes, logistics, military, and agriculture. However, there
are some environments where the GPS or Global Navigation Satellite System (GNSS)
signals are unavailable or have the problem of signal outages, such as indoor and bridge
inspections. Therefore, finding an alternative localization method for UAVs in GPS-denied
environments is necessary. Many non-GPS navigation methods have been proposed in
these years [1,2]. Most of them can be used in indoor and outdoor environments, but
their performance strongly depends on the environment conditions, coverage area, and
sensor characteristics. Sensor selection is a crucial step for mission execution and is directly
affected to task performance. UAVs with light detection and ranging (LiDAR) sensors can
yield accurate measurements [3]. However, LiDAR sensors are not suitable for small or
micro UAVs because they are heavier and more expensive than other sensors.
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On the other hand, radio has the advantages of low price and lightweight. However,
researchers have used radio frequency (RF) in specified areas or limited indoor environ-
ments because of its requirement for network infrastructure and fingerprint, trilateration, or
triangulation methods [4]. A camera is also a popular device for UAV navigation in a GPS-
denied environment due to its low cost, small size, and provision of rich information [4,5].
In contrast to RF navigation, visual simultaneous localization and mapping (vSLAM) [5]
and VO do not need to set up the infrastructure and build the coverage map in advance. A
real-time visual SLAM is proposed by Davison [6]. In this study, the algorithm adopts only
a monocular camera and multiple pictures to rebuild the map and estimate localization
and the attitude of the camera. Some popular SLAM methods including ORB-SLAM [7–9],
LSD-SLAM [10], and DSO-SLAM [11] have been developed in these years. Most of them
have high accurate results in specified environments. However, some studies indicate that
there are still some challenges in vSLAM [12,13]. For example, pure rotation, fast motion,
high computation cost, and scale problems. The studies [13–15] have shown that VIO,
which is the integration of vSLAM and IMU, is more accurate and reliable than the other
image-based methods and can solve the problems of fast motion and pure rotation.

An IMU can estimate the attitude information of the target objects and has the advan-
tages of low cost, lightweight, and a high data rate. Nevertheless, IMU suffers from data
drifting and inaccuracy issues. Many researchers use IMU data for multi-sensor fusion
for UAV navigation [16–18]. One of the recent popular research fields that fuse IMU and
camera data is the visual–inertial navigation systems (VINS), including VIO and visual–
inertial simultaneous localization and mapping (VI-SLAM) [15,19–21]. VINS utilizes the
high IMU data rate and the camera’s rich visual information to estimate a UAV’s accurate
and robust state. Two types of cameras are often used for VINS, including monocular
and stereo. Monocular cameras are flexible, lightweight, and low-cost but do not provide
depth information. On the other hand, a stereo camera can provide a depth map, but it is
equivalent to two monocular cameras mounted side by side, which results in higher power
consumption and computation cost. This study focuses on the monocular VIO navigation
systems due to their efficiency and lightweight, which is more suitable for small UAVs.

The VINS can be categorized into two types, optimization-based and filtering-based.
Popular algorithms for optimization-based and filtering-based are VINS-Mono [15] and
robust visual inertial odometry (ROVIO) [22], respectively. Both are open-sourced and
state-of-the-art monocular visual–inertial navigation algorithms. VINS-Mono is a robust
and nonlinear visual–inertial state estimator that utilizes IMU preintegration, sliding
window, and global optimization. ROVIO is an iterated extended Kalman filter (IEKF)-
based approach where patch features are tracked by considering the IMU-predicted motion,
and photometric errors are implemented as innovation terms in the IEKF update steps.

Several open-sourced monocular VIO algorithms were compared in the study [14], and
VINS-Mono was the most accurate VIO algorithm among all the ones it compared. However,
a UAV needs to move fully in three axes to ensure the completion of the initialization process
of VINS-Mono, and the process would take up a lot of computer resources. In the real
tests, VINS-Mono is updated at 9 Hz and cannot run in real-time for low-cost devices. On
the other hand, the ROVIO algorithm had relatively inaccurate results and the highest
frequency data rate in the study [14]. In contrast to the VINS-Mono algorithm, ROVIO
was updated at 33 Hz and can run in real-time for low-cost devices in the actual test.
ROVIO adopts a new idea for the feature points propagation and update of camera frames.
However, it encounters some challenges. IMU is not able to obtain an accurate position
and velocity. Even IMU is able to remove the bias and noise, but it still has scale factor
and long-term drift problems. ROVIO performs better than the other VIO algorithms in
small environments, such as the EuRoc dataset and indoor environments. However, some
studies have started to test on large-scale environments, such as ADVIO datasets [23] or
TUM datasets [24]. The results show that ROVIO does not perform well in ADVIO and
TUM datasets, and scale and long-term drift problems obviously occur. However, due
to the advantages of the high data rate and real-time capability, ROVIO is selected to be
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implemented in this study. An approach is proposed to reduce the scale problem and
long-term drift, and scale correction is a solution.

To estimate the scale correction, some research [25–28] used range sensors such as
ultrasonic, altimeter, radar, and depth camera to evaluate the metric scale of a feature point
in the camera frame. However, these works often assumed that cameras horizontally look
downward at the feature points, which was usually not the case since UAVs flew with
angles. Stereo or multiple cameras were also popular options for VIO algorithms for the
extra depth information [29,30]. However, additional sensors mean extra cost, weight,
space, power, and processing time.

Using artificial landmarks to improve and correct UAV positioning is also a popular
and efficient method. QR-code was used to calibrate the position of a mobile robot nav-
igated via vSLAM in [31], and the proposed method was verified to improve the robot
positioning when vSLAM is implemented. However, this method must ensure that the
camera faces the artificial landmark perpendicularly to detect it. Lebedev et al. presented a
technique that used the ArUco marker to adjust UAV’s position at the landing phase [32].
In [33], Xing et al. used the ArUco marker to correct the long-term drift problem of an
underwater robot. Artificial landmarks are efficient and reliable assistants for calibrating
and repairing robot positions. To the authors’ best knowledge, no research had tried to
improve ROVIO algorithm’s long-term drift problem by an artificial landmark. The goal of
this study is to develop a practical non-GPS navigation for the delivery UAVs to provide the
services in urban area where GPS signal is unreliable and easy to be blocked by buildings.

In summary, the primary objective of this study is to propose a landmark-based
method that can estimate the scale correction and reduce the long-term drift problem
produced by the ROVIO algorithm without any external sensor. The scale estimation and
correction with a landmark-based VO algorithm assistant are integrated with the output of
ROVIO algorithm by using the EKF. The proposed method is proven to outperform the
original ROVIO algorithm.

2. Scale Estimation and Correction with a Landmark Assistant
2.1. Flow Chart of the Proposed Approach

The methodology of this study is divided into two parts, scale estimation and the
EKF integration, as shown in Figure 1. The VIO algorithm used in this research is the
ROVIO algorithm. In scale estimation, a known landmark and VO algorithm are adopted
to estimate the relative precision trajectory. Then, this trajectory is used to obtain the scale
correction by the measurements of ROVIO and the VO algorithm with landmark detection.
The difference between VIO and VO is that VIO is fused with IMU data but VO does not.
After the scale correction is obtained, it is used to correct the original ROVIO, and the EKF is
utilized to integrate the sensor data and the scale estimation results to predict the dynamic
motion and position of the UAV. Figure 1 shows the flow chart of the overall approach.
pVIO and plandmark represent the positions of the UAV estimated from the VIO algorithm
and the known landmark, respectively. The vector, λ, is the vector of scale correction,
estimated using the least-squares method to reduce trajectory errors of the ROVIO during
the takeoff and landing phases of the UAV. The state vectors, p, v, and q, are the estimated
position, velocity, and quaternion vectors, respectively.

2.2. Coordinate Systems and Landmark Detection

The application scenario of the proposed approach focuses on the UAVs operated in a
GPS-denied environment and taking off and landing at the same location with an ArUco
marker to improve the stability and reliability of the vision-based navigation system. The
proposed method solves the scale correction and long-term drift problem of VIO during
the takeoff phase and provides relatively accurate position information to UAVs, which
can let UAVs return to the takeoff location. The integrated sensor fusion system is defined
by four different coordinate frames, IMU sensor frame {I}, East-North-Up (ENU) frame
{E}, camera frame {C}, and UAV frame {U} as shown in Figure 2. ENU frame, {E}, is the
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world frame in this study, and its origin is set on the ArUco marker, which is placed near
the takeoff location. Camera frame, {C}, is utilized to estimate the translation and rotation
between the camera and the ArUco landmark.
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The marker detection and Perspective-n-Points (PnP) methods are utilized to accom-
plish the trajectory estimation. Figure 3 shows the flow chart of the landmark detection
and the camera’s pose estimation based on the ArUco marker. The center of the marker is
defined as the origin of the world frame, and the size and identifier of the applied landmark
are defined in the database. The contour detection function of the OpenCV library is used
to detect square shapes. After detecting the square contour, the cv2.findContours function
will return the feature points of the detected contour on the image. Since the PnP method
can determine the camera pose and location with respect to a marker, it is used to estimate
the dynamic motions, which are translation and rotation, of the camera. Therefore, the
plandmark is the position of the UAV determined by using the VO estimation of the camera
with respect to the ArUco marker at the takeoff and landing location.
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2.3. VIO Algorithm and Scale Estimation

Both ROVIO and the proposed approach utilize the EKF to combine different data
sources, but the data sources and state vectors of them are different. ROVIO tightly fuses
inertial measurements and visual data with the means of an IEKF [13]. The proposed
approach fuses the inertial measurements with two measurements, which are the VO
outputs from the landmark and the corrected ROVIO outputs using the estimated scale
correlation. When the landmark is detected, the VO algorithm is triggered and outputs the
data to update the EKF. When the scale correction is determined and the landmark is not
detected, the corrected ROVIO outputs are used to update the EKF.

In the scale estimation process, a known landmark is applied to estimate the accurate
trajectory. However, the scale estimation process is only executed when the UAV is flying
over the takeoff location and the landmark is detected by the VO algorithm. Because the
landmark is placed at the takeoff location, the scale estimation process and the position
update are only activated in the takeoff and landing phases. The estimated trajectory
and the VIO algorithm are integrated to estimate the scale correction of the positioning
results. In this study, the ROVIO is the selected VIO algorithm, which will compare the
performance with the VINS algorithm. It uses the photometric error in the innovation
term of the IEKF in the ROVIO algorithm, and the dynamics of the bearing vector and
distance parameter are the novelty of ROVIO. It also derives a new math formula for the
feature-point propagation term in the IEKF. Further detail on ROVIO can be found in the
study [13].

The state of the ROVIO is defined as:

x = (p v q ba bω RCI TCI µ0 · · · µN ρ0 · · · ρN), (1)

where p is the position, v is the velocity, q is the orientation presented in quaternion, ba
is the additive bias of acceleration term in IMU frame, bω is the additive bias of angular
velocity term in IMU frame, RCI is the rotation matrix from IMU from to camera frame,
TCI is the translation matrix from IMU from to camera frame, µi is the bearing vector in
the image frame, and ρi is the distance parameter of feature points in the world frame.
More details of ROVIO are shown in the study [13]. The position outputs of ROVIO are the
estimated trajectory of VIO, PVIO, in Figure 1.

After estimating trajectory by landmark and VIO, the relative trajectory is used in a
simple cost function as shown in Equations (2)–(4) to estimate the scale correction with the
ordinary least-squares method:

λPVIO + b = Plandmark , (2)

λ =

λx 0 0
0 λy 0
0 0 λz

 (3)

minimize ‖λx− y‖2 =
m

∑
〉=1

(
aixi − y〉

)2
, (4)
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where x is PVIO, the output trajectory from VIO, and y is Plandmark , the relative trajectory
estimated by VO algorithm with landmark detection. λ is the matrix of scale estimation in
3 axes. b is the position bias vector of PVIO. Since we set the landmark is the origin of the
world frame, the b is set to zero vector in our study. After detecting the landmark and using
Perspective-n-Points, the position of the camera with respect to the origin of the landmark
is estimated in the world frame. When the initial point is estimated, this study uses it to
define the new origin point of the camera frame and a new trajectory of VO.

2.4. Sensor Fusion

To accelerate the scale correction and the proposed sensor fusion process as shown in
Figure 1, EKF is used to integrate the IMU, VIO with scale correction, and VO estimated
by landmark. IMU is used in the time update, and the positions estimated from VIO with
scale correction and VO estimated by landmark are used in the measurement update. In
this study, the camera faces downward. The problem with the gimbal lock will occur.
The quaternion is selected to propagate the attitude iteration instead of Euler angles to
overcome the problem.

q = qw + qx
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time applications. Some fix-lag methods use the optimization method in the update phase, 
such as IEKF in the ROVIO algorithm, to make the system more accurate. However, IEKF 
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are unit vectors. Then, the rotation matrix
to convert the body frame to the world frame can be represented by the quaternion, as
shown below:
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In this study, the Kalman filter-based method is considered instead of the optimization-
based or fix-lag-based method to process sensor fusion due to the constraints of computing
power and weight on the onboard computer of UAVs for real-time applications. Some fix-
lag methods use the optimization method in the update phase, such as IEKF in the ROVIO
algorithm, to make the system more accurate. However, IEKF requires more computing
power and memory size, which will increase power consumption and reduce the endurance
of the UAV operation.

In the EKF time-update process, the information on IMU is used to propagate the
states. The state vector of the EKF is as shown below:

X =
[
Vx Vy Vz Px Py Pz qw qx qy qz

]
(7)

where V and P denote the velocity and position in the VIO frame, and q is the quaternion in
the body frame. The outputs of IMU are the acceleration and the angular velocity, denoted
as a and ω, respectively. The calibration and correction of the biases for inertial sensors have
been carried out in the ROVIO algorithm and sensor calibration process. In Equation (7),
the position vector is corrected by using the measurements from ROVIO and landmark
updates. The continuous dynamic model of the state vector can be represented as:

.
V = a (8)

.
P = V (9)

.
q =

1
2

q
⊗

ω (10)

Then, the continuous dynamic model is digitalized to a discrete form for implementa-
tion on an onboard computer.

P−k = Pk−1 + Vk−1∆t +
1
2
(Rw

b (a) + g)∆t2 (11)
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V−k = Vk−1 + (Rw
b (a) + g)∆t (12)

q−k = qk

⊗
q[ω∆t] (13)

where the Rw
b is the direct cosine matrix from the body frame of the UAV to the world frame.

When receiving the new data from IMU, the system starts to iterate propagation steps
and predict. Quaternion will be updated by integrating angular velocity to the delta angle
and transferring the delta angle to quaternion derivatives. Then, the nonlinear equations
are used to drive the Jacobian matrix with the system transition matrix Ak.

x̂k|k−1 = f
(

x̂k−1|k−1, uk

)
(14)

Pk|k−1 = FkPk−1|k−1FT
K + Qk (15)

The size of the Jacobian matrix, Fk, in this study, is 10×10 and it is defined as:

Fk =
∂ f
∂x

=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂xm

· · · ∂ fn
∂xm

, (16)

In this study, the EKF can be updated with two measurements, which are the position
outputs of ROVIO and the VO algorithm. One is the VO outputs estimated by landmark.
The other is the VIO with scale correction after the scale correction is estimated and
the landmark is not detected by the VO algorithm. When the UAV is returning to the
takeoff location, the trajectory estimated by the landmark is used again to update the
scale correction.

On the other hand, after estimating the scale correction, VIO with scale correction is
applied to the measurement update process. In this study, only the position is utilized
to update the scale correction without additional pose information. When receiving mea-
surement information, the system starts to compute the measurement matrix, H, and the
correction term.

K = PHT
(

HPHT + R
)−1

(17)

r = zk+1 − zk+1|k (18)

∆X = Kr (19)

After estimating ∆X term, the system starts to correct the propagated state

X = Xk+1|k + ∆X (20)

3. System Setup and Ground Test
3.1. System Setup

The block diagram of the developed VIO system for UAVs is shown in Figure 4. In
the flight tests, a laptop is used to be the ground control station (GCS) for monitoring the
flight tests, and the putty software and Wi-Fi are used to be the remote-control interface of
the onboard computer (Intel NUC) to collect the data from different sensors, such as the
VI-sensor and RTK rover receiver. In the flight tests, RTK data are not feedbacked to the
flight control computer. A RTK base station is set up at GCS to transmit the RTK correction
data to the rover on the UAV.

Intel NUC is running with Linux Ubuntu 16.04, and some tools and packages, such as
ROS, are installed. The MYNT-EYE-D-120 Camera is selected as the VI-sensor to collect
the image and IMU data because it can provide calibrated IMU outputs, and the SDK is
available with some VIO algorithms. The image resolution is 2560× 720, and the frame rate
is up to 60 FPS. The sampling rate of calibrated IMU outputs is 200 Hz. The RTK system
provides the ground truth for the tests of the proposed landmark-based scale correction
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of VIO for UAVs. The base station equips a Hemisphere MD Eclipse P328 and the rover a
Mindware MD Eclipse P327, enabling the simultaneous tracking of a lot of satellite signals,
including GPS, GLONASS, and Galileo, making it the most robust and reliable solution for
different applications. After the base station completes the survey, the rover will converge
to centimeter level in 30~60 s. The real test results show that the 3D precision achieved an
accuracy of 0.01 m, which is defined in one sigma statistical probability. The overall UAV
system and its onboard equipment are shown in Figure 5.
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3.2. Sensor Calibration

The reliability of ROVIO and the VO algorithm with landmark detection relies on
the outputs of the camera and IMU; therefore, accurate data are essential to improve the
output quality of the sensors. The proposed scale correction process adopted the calibrated
IMU data and outputs of ROVIO and the VO algorithm to improve the position output of
ROVIO, and the scale correction does not feedback to the states of the ROVIO algorithm.
Therefore, before the flight tests, the adopted sensors, such as the camera and IMU, must
be calibrated. The calibration flowchart is shown in Figure 6. The Kalibr visual–inertial
calibration toolbox [34] is used to calibrate the camera intrinsic and camera–IMU extrinsic
parameters. The imu_utils toolbox [35] is used to estimate IMU extrinsic parameters.
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In practice, the types of cameras can be divided into a fisheye, wide angle, monocular,
and stereo camera. Some cameras can produce high distortion, and the distortion can be
divided into radial distortion and tangential distortion. While the distortion is zero at the
optical center of the image plane, it increases with the distance away from the optical center.
The correction of radial and tangential distortion parameters, denoted as dr and dt, are
represented below:

dr = 1 + k1r2 + k2r4 + k3r6 (21)

dt =

[
2p1v + p2

(
r2 + 2u2)

p1
(
r2 + 2v2)+ 2p2u

]
(22)

where k1, k2 and k3 are the radial distortion coefficients, r is the Euclidean distance between
the distorted image point and the optical center, [u; v] is the distorted image point, and
p1 and p2 are the tangential distortion coefficients. The distortion coefficients can be used
to correct the acquired images. The corrected distorted image point can be determined
as below: [

ucorrected
vcorrected

]
= dr

[
u
v

]
+ dt (23)

For the IMU calibration, only the noise term is calibrated in this study, and the scale
and misalignment of the three axes are referred to the calibrated matrix offered by the
manufacturer. The IMU is kept static for more than two hours to collect the accelerations
and angular rates data. Then, the collected IMU data are calibrated in the imu_utils toolbox
to estimate white noise and bias instability.

In the ROVIO algorithm, since the visual and IMU data are the main data source,
precise rotation and translation relationships of the camera and IMU frames are necessary.
If the errors of rotation outputs are larger than three degrees, some VIO algorithms will
fail in the initial step or obtain bad results. The rotation and translation matrices are the
results of the camera–IMU extrinsic parameter calibration, which is essential for data to
be transferred to the same origin for the ROVIO calculation. The Kalibr toolbox is applied
to complete the camera–IMU extrinsic parameter calibration. The adopted VI-sensor is
faced to a desired chessboard with different poses. After receiving the data, the image
and IMU data are inputted into the Kalibr toolbox to estimate the rotation and translation
relationship between the camera and IMU. The results of the IMU calibration are as follows:

RI
C =

 0.0175676806 0.9998138786 −0.0079739995
−0.999843192 0.0175493192 −0.0023691525
−0.002228773 0.0080143697 0.99996540062

 (24)

tI
C =

 0.0655053034
−0.0163654956
−0.0016507275

 (25)

where RI
C is the rotation matrix and tI

C is the translation matrix.
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3.3. Ground Test

The ground test is carried out before the flight test to verify that the proposed
landmark-based VIO is viable in real tests and performs better than the ROVIO and
VINS-mono. The evaluation can be divided into two parts: scale correction estimation and
the EKF integration, which simulates the operation of the UAV in a GPS-denied environ-
ment to take off and return to the launch location. The testing environment has a small
150 mm × 150 mm landmark attached to the wall, and the VI-sensor always looks forward
at the same wall to simulate that the VI-sensor installed on the UAV looks downward
when the UAV takeoffs and returns to the launch location, as shown in Figure 7. The
proposed VIO and original ROVIO algorithms are compared by using root-mean-square
errors (RMSE).
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Figure 7. Ground test environment (square loop). The orange line denotes the wall, the red line is the
scale estimation process, and the blue lines are the trajectory without the landmark assistant.

The test platform moves slowly in a square loop. The results are shown in Figure 8. The
ROVIO algorithm has scale and long-term drift problems, and the VINS-Mono algorithm
has precision problem. The proposed VIO algorithm with the landmark update improves
the scale and long-term drift problems. In Figure 8, ROVIO with EKF denotes the proposed
method that integrates the scale correction estimation with the landmark assistant and EKF
to improve the outputs of ROVIO. The scale estimation results are shown in Figure 9.
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To examine how efficient the algorithm can solve the long-term drift problem, the final
estimated location of the original ROVIO, ROVIO with the GPS-based scale estimation,
ROVIO with the landmark-based scale estimation, and the proposed algorithm are com-
pared with the ground truth. The results of “ROVIO with GPS”, “ROVIO with landmark”,
and “ROVIO with EKF” are obtained from the fusion of EKF with different measurements,
which are the positions from GPS, VO algorithm with landmark detection, and the com-
bination of the VO algorithm with landmark detection and the corrected ROVIO outputs
using the estimated scale correlation, respectively. The target location in Table 1 shows the
distance between the final estimated location and the ground truth. The results show that
the final estimated location of the proposed algorithm, ROVIO with landmark assistant
to estimate the scale correction, is the closest to the ground truth among all the tested
algorithms. To evaluate the performance of the EKF update process with different measure-
ments, the RMSE results of original ROVIO, ROVIO with GPS, ROVIO with landmark, the
proposed scale correction algorithms, and the ground truth are calculated and shown in
Table 1. The location estimated by the proposed approach has fewer scale problems and is
much more accurate than the other approaches.

Table 1. Ground test results.

ROVIO ROVIO with GPS ROVIO with
Landmark ROVIO with EKF

Target Location 4.2167 m 3.9842 m 3.7498 m 0.037 m

RMSE 3.7469 m 1.9756 m 2.1976 m 0.3432 m

4. Flight Test Results and Discussion

In the flight test, the landmark was placed on the ground near the UAV takeoff location,
which is represented as (0,0). A waypoint was sent to the UAV from the ground control
station. The UAV is designed to take off, fly to the waypoint, and return to launch, as
shown in Figure 10. The scale estimation process happened when the UAV took off with the
VI-sensor looking downward and facing the landmark. Two flight cases were conducted.
In the scale estimation process, Case 1 demonstrated that the VI-sensor moved slowly and
fully in three axes, and Case 2 showed that the VI-sensor moved fast and did not fully
move in three axes to conduct different scale estimation conditions.
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Figure 10. Design of the flight test route. The orange line denotes the ground, and the black lines are
the flight trajectory.

In Case 1, as Figure 11 shows, the VINS-Mono algorithm performs well. The ROVIO
algorithm has an obvious scale problem and long-term drift. Moreover, when the UAV
moves quickly, the estimated location of the ROVIO algorithm performs the worst, and
the overshoot occurs when the UAV takes off. As shown in Figure 11, the proposed VIO
algorithm with a landmark update provided an accurate location in the return-to-launch
process and performed better than VINS-Mono. Figure 12 shows the results of the scale
estimation with a landmark in Case 1.
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In Case 2, VINS-Mono also has good performance, and ROVIO still has the scale,
long-term drift, and overshoot problems, as shown in Figure 13. With scale correction,
the proposed algorithm estimates the location closer to the ground truth, but the peak
problem is not solved effectively. Figure 13 also shows that even though the VI-sensor can
only detect the landmark in a few frames when the UAV returns to launch, it still helps to
improve the accuracy of the estimated target location. Figure 14 shows the results of scale
estimation with the landmark in Case 1.

Similar to the ground test, Table 2 shows the distance errors between the final estimated
location and ground truth, and Table 3 shows the RMSE of the performance comparison
between different algorithms and the ground truth.
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Table 2. Flight test results: final estimated location compares with the ground truth.

ROVIO ROVIO with GPS ROVIO with Landmark ROVIO with EKF

Case 1 1.6687 m 1.4254 m 1.4596 m 1.116 m
Case 2 7.1529 m 6.1271 m 5.9645 m 2.4478 m

Table 3. Flight test results: RMSE of the performance comarision between different algorithms and
the ground truth.

ROVIO ROVIO with GPS ROVIO with Landmark ROVIO with EKF

Case 1 3.2097 m 2.2386 m 1.8626 m 1.7431 m
Case 2 8.4588 m 6.0043 m 5.7631 m 5.1649 m
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The results show that the proposed VIO can estimate scale successfully and reduce
long-term drift, especially when the landmark information is captured. However, there is a
peak problem. The scale can be better and effectively corrected by moving the VI-sensor
fully on the three axes.

5. Conclusions

In this study, a landmark-assistant VIO algorithm is presented to be used in a real-
world GPS-denied environment. The proposed VIO algorithm provides a complete scale
correction estimation and uses the landmark to reduce the long-term drift problem. The
proposed method is used to process the dataset collected from the ground and flight tests
and is compared with the ROVIO and VINS-Mono algorithms. In the scale correction
estimation process, the VI-sensor needs to be moved fully on three axes to successfully
estimate the scale correction. In experiments, VIO with scale correction can obtain a better
performance, and the result is close to the ground truth. However, it cannot ideally reduce
the long-term drift problem and the momentary external force.

With the EKF sensor fusion, the rate of output positioning points is increased. With
the landmark update in the measurement update, the VIO algorithm can effectively reduce
the long-term drift, and the target location is closer to the ground truth. Some of the future
considerations to improve the performance are shown:

1. Add more experiment designs to complete full movements in three axes.
2. Add external force estimation in the algorithm.
3. Use a GPS timestamp to synchronize the time of the camera and IMU.
4. Add external pose information in the measurement update process.
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