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Abstract: With the limited Internet bandwidth in a given area, unlimited data plans can create
congestion because there is no retribution for transmitting many packets. The real-time pricing
mechanism can inform users of their Internet consumption to limit congestion during peak hours.
However, implementing real-time pricing is opex-heavy from the network provider side and requires
high-integrity operations to gain consumer trust. This paper aims to leverage the software-defined
network to solve the opex issues and blockchain technology to solve trust issues. First, the network
congestion level in a given area is analyzed. Then, the price is adjusted accordingly. Devices that
send a lot of traffic during congestion will be charged more expensive bills than if transmitting traffic
during an off-peak period. To prevent over-charging, the consumers can pre-configure a customized
Internet profile stating how many data bytes they are willing to send during congestion. The software-
defined controller also authenticates consumers and checks whether they have enough token deposits
in the blockchain as Internet usage fees. We implement our work using Ethereum and POX controllers.
The experiment results show that the proposed real-time pricing can be performed seamlessly, and the
network provider can reap up to 72.91% more profits than existing approaches, such as usage-based
pricing or time-dependent pricing. The fairness and trustability of real-time pricing is also guaranteed
through the proof-of-usage mechanism and the transparency of the blockchain.

Keywords: real-time pricing; software-defined network; blockchain; smart contract

1. Introduction

Internet Service Providers (ISP) have historically applied a flat-rate pricing (FRP)
mechanism, where consumers pay a monthly bill for a specific amount of bandwidth
capacity in the network. However, as Internet usage becomes more popular and varied,
bandwidth becomes more and more limited. Network congestion then often happens as
a consequence.

To reduce congestion, the ISP shifted its pricing strategy from FRP to usage-based
pricing (UBP) [1], where consumers will be charged based on how much Internet they use.
The intention is to make users aware of their network consumption so that they will wisely
use the network, potentially reduce traffic and alleviate congestion. However, users in
UBP are still expected to spend most of their bandwidth during peak periods, creating
congestion only during that specific period. To further reduce congestion, the ISP offers
time-dependent pricing (TDP) [2] and real-time pricing (RTP) [3], where the ISP adjusts the
UBP price based on the congestion level of the network. The price gets more expensive
when the traffic is congested and cheaper when the network is under-utilized.

In terms of the effectiveness in slowing down traffic congestion, we hypothesize that
the RTP approach is the best compared to the alternatives because RTP can react to the
dynamic of the traffic, providing the most accurate representation of the network state.
However, performing RTP is sophisticated as it requires a feedback-loop mechanism [3].
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The ISP must use current network information and determine the congestion level. Af-
ter that, the ISP applies the updated price based on the detected level. This procedure
must be repeated periodically 24/7. Unless we can automate this process and reduce opex,
performing RTP becomes an unnecessary burden from the ISP side [4].

On the other hand, consumers may not trust ISP operations because of their heavily
centralized control [5]. In particular, malicious ISPs can tamper with the Internet usage
statistics from users to charge consumers more UBP bills than it is supposed to. The ISP can
also deny Internet access to users even though the users are eligible for access. This may
impose an untrusted relationship between consumers and ISPs [6], which economically
hurts the ISP if this results in losing consumers. Thus, implementing RTP without a trust
guarantee from consumers is a risk for ISP.

Our research is targeted at filling in this important gap by combining the concept of
software-defined network (SDN) [7] and blockchain [8] technology to create an automated
and trustable RTP system. To our knowledge, only a few studies have discussed the
feasibility of RTP systems (e.g., [3]), while other RTP studies focus on the theoretical aspects
(e.g., [9,10]). Still, a solution to solve RTP issues of reducing opex (through automated
processing) and increasing the trust towards the RTP system (through some kind of proof-
of-provisioning) has not been addressed yet. This paper becomes a preliminary attempt
toward those directions.

The rest of this paper is organized as follows. We discuss related works and prelim-
inaries to our work in Sections 2 and 3. After that, the inner workings of our proposal
are thoroughly explained in Section 4. A feasibility analysis through quantitative and
qualitative evaluations is investigated in Section 5. We then discuss the limitations and
possible improvements for future works in Section 6. Finally, we conclude in Section 7.

2. Literature Review

This section discusses several related works, including the pricing plan for Internet
broadband, SDN-based network monitoring strategy, and blockchain-based trusted platform.

2.1. Internet Data Pricing Strategy

Several types of pricing schemes for Internet bills exist in the literature, and we mainly
discuss UBP, TDP, and RTP.

Usage-Based Pricing: In UBP, consumers are charged based on how much Internet they
use (can be calculated per KB/MB/GB rate) [1]. When consumers do not apply for an
Internet plan, the ISP typically applies this UBP scheme out of the box. Another variant
of UBP includes combining UBP with the quota mechanism [11]. For example, users can
subscribe to a 10 GB monthly plan. The ISP will check if the users have consumed the
available quota. Only after the cap is breached will the ISP charge users using UBP. This
quota scheme is generally priced cheaper than the pure UBP approach.

Time-Dependent Pricing: Similar to UBP, TDP consumers are still charged based on the
traffic they consume. However, the ISP varies the prices based on the time when the users
access the Internet [2]. Typically, the ISP wants to charge users more expensive bills during
peak than off-peak periods. This way, the ISP can mitigate traffic congestion as we can
expect fewer people are willing to use the Internet at rising prices. For example, the ISP can
charge 0.001 USD per 100 KB from 12 a.m. to 6 a.m. (off-peak), 0.005 USD per 100 KB from
6 a.m. to 6 p.m. (normal), and 0.010 USD per 100 KB from 6 p.m. to 12 a.m. (peak). The ISP
put this plan ahead of time so that the users know the price schedule beforehand.

Real-Time Pricing: RTP is a variant of TDP, where instead of using static pricing
across the day, the ISP adjusts the price dynamically according to the current congestion
or demand level in the network [9,10]. Thus, in some literature, this RTP is often also
known as “dynamic TDP” [3]. Before starting the network, the ISP publishes a price plan
throughout the day similar to TDP (the plan should be predicted based on day-to-day
traffic history) [12]. Then, the ISP monitors the current network condition; if the ISP finds
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sudden traffic congestion, the ISP updates the price accordingly. Similarly, the ISP reduces
the prices when it finds that the network is under-utilized.

2.2. Network State Monitoring Using SDN

A data plan strategy that requires continuous monitoring of users’ network data (e.g.,
UBP, TDP, and RTP) is expected to have high opex costs. Several SDN approaches can be
used to automate this process.

Haxhibeqiri et al. [13] proposed a novel monitoring technique using in-band network
telemetry (INT) tailored explicitly for IEEE 802.11 networks. The authors showed that the
proof of concept INT implementation could be used to monitor real-life SDN-based wireless
networks with good accuracy and low overhead. Yao et al. [14] presented a self-learning
control for network monitoring in an SDN network called NetworkAI. They leverage rein-
forcement learning and INT to produce dynamic control policies and optimal monitoring
decisions. FlowSpy [15] proposed a load-balancing network monitoring for SDN using P4
(Programming Protocol-Independent Packet Processors) language and reduced the interac-
tion overhead between the data plane and control plane in SDN. Therefore, the monitoring
system can be performed in a scalable manner.

The OpenFlow protocol [7] provides a network application programming interface
(API) to collect flow-level statistics from the underlying SDN switches. Therefore, the SDN
controller can use this API to learn about the state of the network periodically and automate
the UBP, TDP, and RTP process, reducing opex.

2.3. Blockchain and Smart Contract as Trusted Platform

Blockchain has become popular due to the adoption of Bitcoin [8] as the world-first
truly decentralized payment system that does not require third-party intervention. Users
send arbitrary signed transactions to the blockchain platform, which the miners then
aggregate into hash chains of blocks. The consensus algorithm, for example, Proof-of-work
(PoW) [8] or Practical Byzantine Fault Tolerance (PBFT) [16], replicates blocks to all miners,
creating a distributed tamper-proof ledger.

The initial blockchain applications are limited only to cryptocurrencies. However,
with the invention of smart contracts [17] through the Ethereum foundation, developers
can now create decentralized applications (dapp) and further widen the blockchain ap-
plications outside of coins, for example, in supply-chain [18] and healthcare [19] areas.
Most importantly, smart contracts can be utilized as a trusted collaborated platform in
an untrusted environment [20–22]. Similar to the previous studies, we leverage smart
contracts as a trusted platform to run RTP operations such that the system can be audited
and executed fairly for consumers and ISP.

3. Preliminaries

This section details the RTP trust and opex problems, which become the background
and design rationale of the proposed RTP system.

3.1. Problem Statement

Due to the typically centralized governance of the ISP network, the feasibility and
success of the RTP system depend on how much trust the consumers can give to the system.
On the other hand, the consumers may also try to find holes and weaknesses to profit from
the ISP. Thus, the RTP system may become a game-theory problem between the ISP and
consumers [10], and we need to solve trust issues (T) from both sides.

T1 The consumers must know whether the Internet usage calculation has been performed
correctly or not.

The Internet usage per user is typically calculated from the ISP side. Users may not
trust such measurements because they are not involved in the measurement, and there is a
lack of proof to validate the calculation.
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T2 The ISP needs to know if the consumers have the money to pay the Internet bills
before forwarding their traffic.

Ideally, the ISP must only allow well-funded consumers to access the network and
reject users with no funds to prevent economic loss. However, the ISP may not know this
information because there is no user balance verification procedure.

To solve the previously mentioned trust issues, the ISP must perform additional
operations, which as a result, cause several opex problems (O) as follows.

O1 The RTP system is required to monitor the live traffic 24/7, which may result in heavy
overhead.

A typical SDN-based monitoring method uses a pooling strategy, where the controller
sends a FLOW-STATISTIC message to the switches periodically to query flow table states in
the switches and then obtain the Internet usage per user from the flow rules. Depending
on the query frequency, this approach may cause overhead because many packets must be
transmitted between the controller and switch.

O2 The RTP system must provide verifiable proofs that the Internet usage measurement
has been performed correctly.

The ISP needs to provide trustworthy and auditable proof of Internet usage. The proof
must be generated by a trusted third party (not the ISP nor the consumer) and protected by
a tamper-free mechanism to guarantee the proof’s integrity.

O3 The RTP system needs to authenticate the users and determine whether the consumers
have money to pay for the Internet bills.

The user authentication and balance verification must be automated, accurate, and pro-
duce low overhead. Given a 24/7 real-time system, the ISPs must determine how to verify
users, when to authenticate them, and how frequently such authentication must be per-
formed. More frequent checks generally result in more overhead.

3.2. Design Consideration

SDN should help automate the RTP system and reduce opex, while blockchain can
improve the system’s trustworthiness. We devised the following design decisions by
leveraging both technologies for our proposed RTP system.

Domain-Based Architecture: We define a “domain” as an area coverage of a single-edge
SDN switch. Inside this domain, there will be our potential consumers. The size of the
domain depends on the number of devices that this switch serves. Ideally, we should have
multiple smaller domains instead of a few big domains. This domain type can also vary
depending on the physical network (e.g., residential, enterprise, cellular, or IoT network).
The proposed RTP system will manage the network on a per-domain basis.

Timeslot-Based Microprocessing: For easy management, we divide the time of the day
into smaller time units that we call a “timeslot”. This timeslot can be adjusted freely; for
example, 1 h, 30 min, or 15 min. The proposed RTP system will manage the network
operation on a per-timeslot basis.

Asynchronous Internet Usage Monitoring: Instead of using the FLOW-STATISTIC pooling
method, we leverage FLOW-REMOVED messages to get the users’ Internet usage information
when the flow rules expire. As a result, we can reduce the communication overhead by half
and solve O1. Recall that FLOW-REMOVED is an asynchronous message from switches to the
controller, and unlike FLOW-STATISTIC, the controller does not need to initiate a request
message to trigger it.

Off-Chain OpenFlow Messages and On-Chain Data Interaction Log: We leverage the
OpenFlow messages generated from the edge SDN switches as our verifiable proofs to
support the RTP operations. This way, the switch becomes the trusted entity that generates
RTP proofs. Through the produced FLOW-REMOVED messages, trusted validators can check
the users’ byte usages from the messages and compare them with the ones claimed by
the ISP. Furthermore, through the PACKET-IN messages, validators can also check that the



Sensors 2022, 22, 9639 5 of 24

users are indeed within the domain and judge whether the ISP is correct in providing the
FLOW-MOD messages that result in the given FLOW-REMOVED messages. The hash of those
messages will be stored in the blockchain as a tamper-proof log. The blockchain is also
used to store any other related interactions between the ISP and consumers regarding the
RTP operations. Therefore, this design solves T1 and O2.

User Verification Before Installing Flow Rules: Since our RTP system manages the network
on a per-timeslot basis, we take this chance as a window to perform user verification. We
leverage the smart contract to build our customized cryptocurrency tokens as payment
methods in our RTP method. Users must first deposit some tokens to the smart contract
before using the Internet. Then, when receiving PACKET-IN messages from users, the system
will authenticate and make sure that the users’ have deposited enough funds before sending
FLOW-MOD messages to forward users’ traffic. The flow rules will expire at the end of the
timeslot, and users must be re-authenticated if they want to continue using the Internet in
the subsequent timeslots. Thus, this design can potentially solve T2 and O3.

4. RealPrice Framework

In this section, we present our proposed RTP framework named RealPrice. Specifi-
cally, we briefly summarize the overall workflow of our proposal, and we then elaborate
on the detailed design of SDN applications and smart contracts. In the end, we compare
our work with the existing works.

4.1. Framework Overview

Figure 1 depicts the overall architecture of RealPrice, and Table 1 describes important
notations in this paper. Note that the information provided here is only the essential
requirement. Because the actual implementation inside a given domain can vary from one
case to another, developers can further tweak this framework when necessary. In each
given timeslot, RealPrice has three objectives.
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Figure 1. The system architecture of RealPrice consisting of SDN edge domains, SDN switches,
SDN controllers, and the Ethereum blockchain network. RealPrice can be used in any edge network,
such as residential, enterprise, cellular, or IoT networks.

First, the system checks the current congestion level inside the domain. For a given
interval, the SDN controller sends PORT-STATISTIC request messages to all underlying
switches. The switches respond with PORT-STATISTIC reply messages, which contain
information about the current transmitted and received bytes per port. From this statistic,
the controller can calculate the current byte rate per port and determine if congestion
happens in any given port. The controller then updates the congestion level accordingly.
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Table 1. List of notations used in this paper.

Notation Description

RSC/TSC/DSC Registry/Token/Domain smart contract
u/c/s Users (Consumers)/SDN controllers/SDN switches
R/U/C A list of registered Domain contracts/consumers/SDN controllers
µsrc/µdst Source/Destination MAC address
γsrc/γdst Source/Destination IP address
θsrc/θdst Source/Destination TCP or UDP port number
ω/ωcap Bandwidth/Total bandwidth capacity
M/ψu Flow rules matches/Internet profile (Queue identifier)
L/Q/J A list of congestion level/bandwidth thresholds/counters
T/t/tnow Timeslot/Timestamp/Current timestamp
α/p/d Blockchain address/Switch’s port/Density (Congestion) level
δ/β/ρ Deposit/Balances/Price rate
B/P Byte count/Packet count
Bup/Bdown Upload byte usage/Download byte usage
y/Y/b Proof of Internet usage/A list of usage proofs/Internet usage bills
H(·) Hash payload using KECCAK-256 or SHA-256 hash function
X ‖ Y A concatenation of X and Y

Second, the system facilitates Internet routing for valid users. Consumers u (i.e., can
be IoT gateways, IoT devices, PCs, laptops, smartphones, and modems) are previously
registered in an off-chain database by recording their MAC address µu and in an on-chain
database by saving their blockchain address αu. Consumers also add their customized
Internet profiles, which are user-based policies to tell SDN controllers how to limit their
traffic during congestion. During the network runtime, the PACKET-IN messages of traffics
from well-funded registered users will be responded to with FLOW-MOD messages specifying
the correct forwarding path and Internet profile based on the current congestion level in
the given timeslot. Meanwhile, invalid PACKET-IN messages will be rejected, and non-
registered users cannot access the network.

Third, the system records the consumers’ Internet usage in the previous timeslot via
the FLOW-REMOVED messages. In those messages, we can find the byte count per user from
the previously installed FLOW-MOD messages. The controller then calculates the Internet bills
for each user based on the usage and density level in the given timeslot and confiscates the
users’ deposit accordingly.

In the subsequent sections, we explain the inner working of our framework from both
the SDN and the blockchain sides.

4.2. SDN Application Design

The SDN application is built using modular design, with each part playing a role in
processing the network events from OpenFlow protocol [7] and responding to the events
following the previously agreed rules stored in the database or smart contract.

4.2.1. Host Module

The Host module manages users’ related information, such as blockchain address
αu, MAC address µu, and Internet profile. All this information is stored in the local
database. Users can create a customized Internet profile, such as in Table 2. The Off profile
indicates that the user does not perform any restriction on their bandwidth throughout
any density level. The Moderate profile reduces the traffic by 25% in normal and 75% in
peak. Meanwhile, the Aggressive profile cuts traffic by 50% in normal and drops any traffic
during peak. Choosing the Off profile guarantees faster data transfer by paying more bills,
especially when the transfer is made during congestion/peak. On the other hand, choosing
the Aggressive profile is cost-efficient by compromising longer delays.
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Table 2. An example of users’ Internet profile stating how much bandwidth they want to utilize
during various congestion levels.

Type Off-Peak Normal Peak

Off 100% 100% 100%
Moderate 100% 75% 25%
Aggressive 100% 50% 0%

4.2.2. Switch Tracker Module

This module leverages Link-Layer Discovery Protocol (LLDP) messages to determine
whether a given switch’s port is considered an edge port (connected to the host) or not.
Algorithm 1 summarizes the logic of the Switch Tracker module. During operations,
switches will broadcast LLDP messages to their neighboring devices. If a switch receives
LLDP messages in a given port, we can mark this port as a non-edge port. Meanwhile,
ports not receiving LLDP messages are marked as edge ports. From this port configuration,
we can determine edge switches. If a switch consists only of non-edge ports, we can
confirm that this given switch is a non-edge switch. This module monitors the LLDP
messages periodically and updates the edge/non-edge status of the switch over time via
PORT-STATISTIC messages.

Algorithm 1 The Switch Tracker module’s pseudocode.

1: On startup:
2: for all p ∈ s do
3: Mark p as edge port in database . Port is set as edge by default
4: Dispatch PORT-STATISTIC request messages every x s

5: On receiving LLDP messages:
6: Get the switch id s and port number p from LLDP messages
7: Mark p as non-edge port in database

8: On receiving PORT-STATISTIC reply messages:
9: Get the switch id s and port number p from PORT-STATISTIC messages

10: for all p ∈ s do
11: if ISEDGEPORT(s, p) then mark s as edge switch in database return
12: Mark s as non-edge switch in database

4.2.3. Forwarding Module

The Forwarding module is responsible to handle inward and outward packets in the
domain based on the previously agreed policy. Aside from that, the module must also
perform user authentication during the PACKET-IN process so that only valid in-domain
hosts can exist and use the network. Algorithm 2 summarizes our forwarding procedure.

Part 1 Host Authentication

Every time the controller receives PACKET-IN messages from edge switches, we check
the MAC address of the incoming/outgoing port and perform authentication. First, we
ensure that the host is on the list of registered users. Second, we ensure that the host has
deposits so the controller can forward the sent packets without economic loss.

Since we do not know how much traffic this host will transfer in the next timeslot, we
use an upper-bound deposit limit. We make sure that the user has money for maximum
bandwidth transfers ω

cap
u in bit per second (bps) from the current timestamp tnow to the

next timeslot Tn+1. The ρn is the data price rate in this timeslot Tn.
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Algorithm 2 The forwarding module’s pseudocode.

1: On startup:
2: Configure the base value of PRIORITY tag

3: On receiving PACKET-IN messages:
4: Get the switch id s and in-port number pin from PACKET-IN messages
5: Get match informationM from packet header:
6: The source µsrc and destination µdst MAC address
7: The source γsrc and destination γdst IP address
8: The source θsrc and destination θdst TCP/UDP port number
9: Get out-port number pout forM following the L2-SWITCH or L3-SWITCH algorithm

10: if ISEDGESWITCH(s) then
11: if ISEDGEPORT(s, pin) then . Upstream traffic
12: Set µu = µsrc
13: Set wildcard for µdst
14: else if ISEDGEPORT(s, pout) then . Downstream traffic
15: Set µu = µdst
16: Set wildcard for µsrc

17: if not ISREGISTEREDHOST(µu) then return . Ignore non-registered users
18: Calculate required deposit δ = ρn ×ω

cap
u × (Tn+1 − tnow)

19: Get user balance βu ← GETHOSTBALANCE(µu)
20: if βu < δ then return . Ignore users because of insufficient balances
21: Set wildcard for γsrc, γdst, θsrc, θdst
22: Set PRIORITY tag as base value +((Tn − Tstart)/Twindow)
23: Set HARD-TIMEOUT tag as Tn+1 − tnow . Flow rules will expire at Tn+1
24: Get current density d← GETDENSITY(Tn)
25: Set QUEUE-ID to ψu ← GETUSERPROFILE(µu, d)
26: Set FLOW-REMOVED tag to True
27: else
28: Set wildcard for µsrc, µdst, γsrc, γdst, θsrc, θdst
29: Set priority using base value of PRIORITY tag
30: Set IDLE-TIMEOUT tag to 10 s
31: Set FLOW-REMOVED tag to False
32: Set matchM = {pin, µsrc, µdst, γsrc, γdst, θsrc, θdst, pout}
33: if FLOW-REMOVED = True then Save hashcode ofM in database
34: Send FLOW-MOD messages withM to s

Packets from unregistered MAC addresses or packets tied to insufficient deposit
balances will be dropped, and the controller will not create FLOW-MOD messages for such
packets. Furthermore, we do not perform authentication for non-edge switches because we
assume that non-edge switches are always connected to trusted non-host interfaces (e.g.,
switches, routers, servers, etc.). Nevertheless, such authentication can also be implemented
in the future if needed.

Part 2 Flow Rules Installation

The forwarding path is calculated and determined following well-known forwarding
algorithms. For example, using the conventional Layer2-learning (L2-SWITCH) and Layer3-
learning switch (L3-SWITCH) algorithm, commonly present in typical SDN controllers.
However, the forwarding rules are applied differently depending on whether we install the
rules in the edge or non-edge switches.

We must track the users’ Internet consumption to charge them according to their usage.
As a result, we need to install more granular match rules (in the L2 level) for users in the
edge switches. We must use the no-wildcarded value in the destination MAC address field
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for inbound traffic. Conversely, when handling outbound traffic, we use a no-wildcarded
value for the source MAC address. This way, we can track the device’s upstream and
downstream usage information. On the other hand, the rules can be less granular for
non-edge switches. We can use as many wildcards as possible in the match field as long as
it provides basic packet forwarding to/from the adjacent switches.

The controller must also set the correct duration, priority, and queue-id for the flow
rules. They must last only within the current timeslot. For this reason, we use HARD-TIMEOUT
instead of IDLE-TIMEOUT to force the rules to expire when the timeslot ends. To mitigate the
possibility of duplicate or conflicting flow rules, the priority number is set with respect to
the start of the day Tstart. Flow rules installed during the evening will have a higher priority
number than those installed in the afternoon, and so on. Finally, the controller checks the
current density for the given timeslot and applies a queue policy for users depending on
their Internet profiles.

It is also worth noting that the FLOW-REMOVED tag must be set to True in the edge
switch so that we can get the FLOW-REMOVED messages when these rules expire and capture
the byte usage consumption. Meanwhile, since it is irrelevant, the FLOW-REMOVED tag can
be set to False in the non-edge switch. To ensure that the controller can track all installed
rules in the switches, we save the hashcode of match rules in the database before sending
FLOW-MOD messages to the switches.

4.2.4. Usage Tracker Module

The main goal of the Usage Tracker module is to capture the users’ byte usage during a
given timeslot through the FLOW-REMOVED messages, which are generated by the previously
installed FLOW-MOD messages from the forwarding module. Algorithm 3 summarizes our
usage tracker procedure.

Algorithm 3 The usage tracker module’s pseudocode.

1: // Flow rules are installed at Tn−1 and expires at Tn

2: On receiving FLOW-REMOVED messages:
3: Get the switch id s, match rulesM, byte count B and packet count P

from FLOW-REMOVED messages
4: if not ISEDGESWITCH(s) then return . Ignore non-edge switch
5: if B ≤ 0 or P ≤ 0 then return . Ignore empty flow rules
6: if hashcode ofM /∈ database then return . Ignore unknown flow rules
7: Get pin, µsrc, µdst ←M
8: if ISEDGEPORT(s, pin) then . Upstream traffic
9: if not ISREGISTEREDHOST(µsrc) then return . Ignore non-registered users

10: Add upload byte usage B of µsrc for Tn−1 in database
11: else . Downstream traffic
12: if not ISREGISTEREDHOST(µdst) then return . Ignore non-registered users
13: Add download byte usage B of µdst for Tn−1 in database
14: Delete hashcode ofM from database

First, we need to filter the FLOW-REMOVED messages by performing several validations.
Because users reside in edge switches, we ignore FLOW-REMOVED messages that come from
non-edge switches. Furthermore, we also ignore expired flow rules that do not have
any usage during their lifetime (packet count or byte count equals zero). Recall that in
Algorithm 2, we store and track the hashcode of installedM flow rules in the database.
Therefore, we can ignore FLOW-REMOVED messages that are not in our interest. Finally, we
also set aside messages containing flow rules unrelated to our registered users.

Second, we capture the byte count metric B from FLOW-REMOVED messages and update
the users’ upload or download usage accordingly. Note that we must update the usage for
the previous timeslot Tn−1 because these messages correspond to the flow rules we installed
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during the previous timeslot. Once it is added to the database, we delete the hashcode of
this match to prevent duplicate entries. Therefore, supposing that the controller receives
two of the same FLOW-REMOVED messages, only the first one will be processed.

4.2.5. Density Tracker Module

The density tracker module periodically sends and receives PORT-STATISTIC messages
to analyze possible congestion in the domain. Algorithm 4 summarizes our congestion
detection procedure.

Algorithm 4 The density tracker module’s pseudocode.

1: On startup:
2: Configure congestion level L, where L = {L1, L2, L3, ..., Ld, ..., LD}. D is the

total number of congestion level available. L contain softmax values
representing the distribution of total bandwidth threshold used in Q.

3: L1 = Lo f f peak = 0.5; L2 = Lnormal = 0.4; L3 = Lpeak = 0.1

4: Calculate the bandwidth threshold Q for each congestion level, where
Q = {Q1, Q2, Q3, ..., Qd, ..., QD}.

5: Q1 = L1 ×ω
cap
domain . 50% of domain’s bandwidth capacity

6: Q2 = (L1 + L2)×ω
cap
domain . 90% of domain’s bandwidth capacity

7: Q3 = (L1 + L2 + L3)×ω
cap
domain . 100% of domain’s bandwidth capacity

8: Configure counters J for each congestion level, where J = {J1, J2, J3, ..., Jd, ..., JD}.
9: Configure hit-count threshold j for J .

10: j = 3 . The congestion is updated whenever the counter reach 3
11: Dispatch PORT-STATISTIC request messages every x s

12: On receiving PORT-STATISTIC reply messages:
13: Get the switch id s and port number p from PORT-STATISTIC messages
14: if not ISEDGESWITCH(s) then return . Ignore non-edge switch
15: if ISEDGEPORT(s, p) then return . Ignore edge port

16: Get the last byte count rprev and last timestamp tprev for s from database
17: Get the current byte count rnow from PORT-STATISTIC messages
18: Calculate the current rate as R =

rnow−rprev
tnow−tprev

19: Update rprev = rnow and tprev = tnow

20: if R ≤ Q1 then J1 ← J1 + 1 . Increment off-peak counter
21: else if R > Q1 and R ≤ Q2 then J2 ← J2 + 1 . Increment normal counter
22: else if R > Q2 and R ≤ Q3 then J3 ← J3 + 1 . Increment peak counter

23: Get current density level d from database
24: triggered = False
25: if J1 = j and d < 1 then
26: Set d = 1; triggered = True . Set current density as off-peak
27: else if J2 = j and d < 2 then
28: Set d = 2; triggered = True . Set current density as normal
29: else if J3 = j and d < 3 then
30: Set d = 3; triggered = True . Set current density as peak
31: if triggered then
32: Reset counters J1 = 0, J2 = 0, and J3 = 0
33: Create FLOW-MOD message to clear all flow rules in s

34: On new timeslot Tn:
35: Create FLOW-MOD message to clear all flow rules in all edge switches
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We are interested in the inward/outward traffic of our domain. Therefore, we mon-
itor congestion on non-edge ports of edge switches in all domains and ignore irrelevant
PORT-STATISTIC messages. We measure the current traffic rate by comparing the byte
count information from the current PORT-STATISTIC rnow with the last time we received
PORT-STATISTIC rprev. We then determine whether the rate R can be categorized as off-peak
(d = 1), normal (d = 2), or peak rate (d = 3), and increment the counter J accordingly.

To ensure the stability of congestion level within a given timeslot, we enforce three
density rules, as follows:

Rule 1 The counter must be triggered multiple times before the system can change the
current density level.

Because of the possibility of ephemeral burst/dropped traffic, we need to wait for the
counter to be triggered for up to the hit-count threshold j parameter before changing the
current density level in a domain. Without this waiting period, the system may misclassify
traffic patterns.

Rule 2 Within a given timeslot, the density level can only move upward but not downward.

For example, an off-peak can become normal, and normal can become peak. However,
normal cannot move back to off-peak, and peak density cannot return to normal or off-peak.
Without enforcing Rule 1 and Rule 2, the congestion may change many times within a
timeslot. Numerous updates will not efficiently solve the congestion problem and will
confuse consumers.

Rule 3 The density level is reset and replaced with a default value at the beginning of each
timeslot.

This rule is applied to complement Rule 2. We periodically reset the density level to
reduce the density level from the previous timeslot if the traffic slows down.

To change the density level, the controller first creates FLOW-MOD messages to clear/delete
all flow rules in the affected switches. The subsequent packets from the domain will trigger
new PACKET-IN messages, to which the controller responds by creating new flow rules
with the updated density level d and queue id ψu from the database. We perform this
“deletion then insertion” strategy to ensure the safety and correctness of the switch state
and eliminate possible race conditions or flow rules conflicts that may happen in the flow
table. The deletion still triggers the FLOW-REMOVED messages; therefore, the consumers’
usage from the deleted flow rules can still be captured safely.

4.3. Smart Contract Design

Similar to SDN application designs, we design the smart contract to be modular as
well by using a multi-contract environment. Algorithm 5 summarizes several essential
methods in our smart contract.
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Algorithm 5 The smart contract pseudocode.

1: // For DSC, simple setter or getter methods to implement database operations in
Algorithms 1–4 are omitted here.

2: // TSC is assumed to use standard ERC20 token contract design.
So, we refrain from explaining the detail here.

3: procedure ADDDOMAIN(αDSC) . On RSC
4: if αsender not contract owner then return . Can only be called by owner
5: Save αDSC inR, list of trusted domain contracts

6: function ISREGISTEREDDOMAIN(αDSC) . On RSC
7: if αDSC ∈ R then return True
8: else return False

9: procedure DEPOSIT(token amount f ) . On DSC
10: if αsender /∈ U , list of registered users then return . Only for user
11: Get balance βu from TSC using αsender
12: if βu < f then return . Insufficient balance
13: Increase ALLOWANCE and lock deposit f for αsender in TSC

14: procedure REFUND( f ) . On DSC
15: if αsender /∈ U then return . Can only be called by user
16: Decrease and unlock ALLOWANCE of αsender for f amount from TSC.

17: procedure WITHDRAW(αu, Tn) . On DSC
18: if αsender /∈ C, list of registered controllers then return . Only for controller
19: if tnow < Tn then return . Can only be called after the timeslot ends
20: Get usage proof y← GETPROOFUSAGE(αu, Tn)
21: if y not found then return . Must submit proof before withdrawal
22: Get density level d← GETDENSITY(Tn)
23: Get price rate ρn at Tn based on density d
24: Get upload Bup

u and download Bdown
u usage← GETUSAGE(αu, Tn)

25: Calculate bills b = (ρn × Bup
u ) + (ρn × Bdown

u )
26: Call TRANSFERFROM method in TSC to withdraw b amount from αu

27: procedure ADDPROOFUSAGE(αu, Tn, y) . On DSC
28: if αsender /∈ C then return . Can only be called by controller
29: if tnow < Tn then return . Can only be called after the timeslot ends
30: Add y at Tn for αu to Y , a list of stored proofs.

4.3.1. Domain Smart Contract

Each domain should deploy its own domain smart contract DSC, which dictates the
rules to be explicitly executed for their domain. In particular, all negotiated parameters
between users and the SDN controller, for example, deposit fund, Internet usage, and cur-
rent density level (see Table 3 for a complete list) must be recorded and processed in the
smart contract. All setter/getter methods for “database” in Algorithms 1–4 can also be
implemented in smart contracts for high integrity guarantee.

Table 3. List of metadata stored on-chain.

Category Contract Metadata Type of Proof

Identity RSC, DSC αDSC, αu, αc Verify that such entity exist
Location DSC {αu, αDSC} A mapping that shows users are inside DSC
Bandwidth DSC ωu, ωdomain, Bu Verify that the user Internet usage is valid
Pricing DSC, TSC Bu, ρn, dn Prove that the bill is calculated correctly at Tn
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Aside from storing data, DSC must provide three essential methods for our system.
First, DSC must have a deposit method, where users can allocate funds to be charged
for their Internet usage. Calling to this method will freeze specified funds for future use.
DSC also has a refund method, which allows users to unfreeze funds and return their
deposits. Second, the controller can add proof of usage by hashing the FLOW-REMOVED
message it receives from the switch. The controller uploads the hash proof to DSC to
finalize operations within a timeslot. Third, the controller can withdraw the deposits from
users after submitting the proof. DSC calculates the bills based on users’ upload/download
Internet usage and the congestion level at the time.

4.3.2. Registry Smart Contract

Since many deployed DSC can co-exist in our environment, we need a separate
contract to track DSC. The registry smart contract RSC is owned and maintained by a
trusted third party (e.g., government or shareholders) and is responsible for holding the
contract address of deployed DSC. Those third parties should audit and authenticate DSC
before they are approved. Once a DSC’s address is registered in RSC, we can safely trust
this DSC.

4.3.3. Token Smart Contract

The token smart contract TSC is implemented as an ERC20 token [23] and functions
as the payment method in our system. The contract provides basic methods such as mint,
burn, transfer, and allowance features. Because many ERC20 token contracts exist in the
blockchain network, the admin must specify which kind of TSC currency is accepted in
DSC by registering the TSC address in DSC.

Furthermore, for safety reasons, we slightly modify the logic in TSC from the original
ERC20 token to add a minor authentication during the contract calls. The ALLOWANCE(·)
and TRANSFERFROM(·) methods can only be called by a trusted DSC, which can be verified
through the ISREGISTEREDDOMAIN(·) method in the RSC.

4.4. Proof of Usage Design

The proof of usage is used to verify whether the SDN controller has processed the
Internet usage correctly. The proof can be verified in two ways: from the OpenFlow
messages and the recorded metadata in smart contracts, as shown in Table 3.

Proof that users exist in a given domain. At the beginning of each timeslot, all users that
want to consume the bandwidth in a given domain must be authenticated (see Algorithm 2).
In particular, the user must be registered in DSC and have enough tokens deposited for
data transfer within a timeslot. Once authenticated, the controller sends the FLOW-MOD
messages to the switches to forward the users’ traffic. Based on these explanations, we can
guarantee that only registered users are processed in the domain.

Proof that users have consumed given amounts of upload and download Internet usage. At
the end of each timeslot, the SDN controller records the users’ Internet usage based on the
statistics from the FLOW-REMOVED messages (see Algorithm 3). In particular, the controller
may receive a set of FLOW-REMOVED messages such as Z = {Z1, Z2, ..., Zi}. The controller
then must hash them together such that y = H(Z1 ‖ Z2 ‖ ... ‖ Zi). i is the number of
FLOW-REMOVED messages within Tn. Finally, the controller uploads the hash proof y to DSC
to finalize operations within a timeslot.

Once the proof is submitted, the controller can charge the Internet usage bill by
withdrawing from the users’ deposit (see Algorithm 5). The bill calculation is performed
on-chain for high integrity. During validations, a validator must check if the submitted
proof y is valid by inspecting the original messages Z . For this reason, the SDN controller
must prepare some physical storage to temporarily store received OpenFlow messages
for auditing.

Additionally, the controller can also put the original PACKET-IN message into the
mix when generating y. This way, we can provide even stronger reasoning for why
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such FLOW-MOD messages (and eventually FLOW-REMOVED messages) exist in the first place.
To provide an even stronger integrity guarantee, a further modification can also be made to
switch hardware such that all PACKET-IN and FLOW-REMOVED messages from the switches
must be accompanied by their own signature and timestamp. This way, we can strongly
prove that only the switch can generate such messages at the mentioned time.

4.5. Comparison with Previous Work

Table 4 summarizes the comparison between our work and the existing works. Similar
to ours, References [3,9,10] also have client configuration settings to control how the clients
behave on different congestion levels. In particular, they configure user applications with a
delay-sensitive setting. Applications that are not urgent and can be delayed will be put on
low priority by transmitting their data only when the system detects off-peak congestion
levels. This configuration requires the ISP to know client information (e.g., the list of
applications and the clients’ delay preferences per application). Meanwhile, our client
configuration is performed on the network level in an application-agnostic way, where we
limit user traffic from all applications based on the current congestion level. By managing
this way, the ISP does not have to know any information about applications installed on
user devices, providing better privacy settings for clients.

Table 4. Feature comparisons with existing RTP works.

Reference Client Config Proto. SDN. Block. Auth. Bill. Proof.

Gu et al. [9] Delay-based – Yes – – – –
Gu et al. [10] Delay-based – Yes – – – –
Ha et al. [3] Delay-based Yes – – Yes Yes –
Ours QoS-based Yes Yes Yes Yes Yes Yes

Proto.: Prototype implementation. SDN.: Software-defined networking. Block.: Blockchain. Auth.: User authentica-
tion. Bill.: Internet bill charge. Proof.: Proof of Internet usage.

The RTP works of [9,10] focus on the mathematical modeling of the proposed system
to show that the proposed dynamic pricing is effective compared to UBP. Technical aspects
and prototype implementation from their proposal have not been proposed yet. Contrary
to the mentioned proposals, we propose a complete design and implementation of RTP
and pay more attention to the technical aspect and feasibility of the RTP system.

Finally, our proposal is the only one that offers integration of the RTP system with
SDN and blockchain, where we can provide many features such as user authentication,
deposit, refund, Internet usage storage, Internet bill charging, and auditing in a single
platform. All of those features can be performed seamlessly and are automated, effectively
reducing the opex costs of conventional RTP systems.

5. Experimental Results

We perform quantitative and qualitative analyses to show the usefulness of our pro-
posal. The experiment is performed on hardware with the following specifications: Intel
Core i7-10700K CPU @ 3.80 GHz and Samsung DIMM @ 2667MHz RAM. Figure 2 summa-
rizes the testbed environment for our evaluation.

Host Host Host
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POX Core
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DApp (Docker)
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Ganache (Docker)
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Redis (Docker)
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(Linux VM)
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Figure 2. The testbed environment used for our evaluation. Mininet, POX SDN controller, and our
SDN application reside in a single Linux virtual machine (VM). Meanwhile, the decentralized
application (dapp) exists in a separate Docker container along with Ganache (for with-blockchain
case) and Redis (for without-blockchain case).
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5.1. Off-Chain Performance Analysis

We analyze parts of our paper that do not relate to blockchain in this subsection,
mainly regarding the feasibility of our proposal from the SDN side, which is implemented
as an application in the POX SDN controller [24].

5.1.1. Internet Bill Calculation Analysis

Setup: We first add a traffic density schedule in the system for the TDP scenario, with a
1:2:1 ratio of off-peak, normal, and peak distribution over 24 timeslots, as shown in Figure 3
(third figure from top). We then control four hosts (each has 10 Mbps bandwidth with
about 40 Mbps total bandwidth domain) in Mininet to generate dummy traffic such that it
will generate a traffic pattern as shown in Figure 3 (second figure from top). This traffic
pattern does not follow the original TDP plan, which is intentional as we want to capture
the flexibility of RTP to react to the current traffic.
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Figure 3. The experiment results for calculating the Internet bill (from (top) to (bottom)) showing
the accumulated token and the byte usage per timeslot for UBP, TDP, RTP-v1, and RTP-v2, and the
recorded density level for TDP, RTP-v1, and RTP-v2.

The off-peak, normal, and peak pricing rates are set to 50, 100, and 200 token/KB. Based
on the previously recorded byte usage and price information, we analyze the accumulated
token that the system receives when they implement UBP, TDP, RTP-v1, and RTP-v2.
Figure 3 (top) summarizes the accumulated token for each scenario, while the two bottom-
most charts depict the analyzed density level for RTP-v1 and RTP-v2.

In RTP-v1 (proactive approach), the system executes Rule 3 from the Density Tracker
module by resetting/replacing the current density with a previously planned schedule
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from TDP. In other words, the network administrators perform a proactive approach by
installing density levels based on their prediction results. The ISP may judge future density
by observing previous traffic patterns’ history.

Meanwhile, in RTP-v2 (reactive approach), the system performs Rule 3 by setting a
default off-peak density at the beginning of each timeslot. This way, the system learns
and detects the traffic congestion in the given timeslot and then applies the corresponding
responses accordingly based on Rule 1 and Rule 2.

Results: From our experiment, we confirm that the proposed RTP approach can adapt
to the current traffic conditions by updating the initial plan from TDP to match the traffic
(see two bottom-most charts in Figure 3). The system also generates more revenue when
implemented in RTP than in TDP or UBP, as seen in Table 5. For UBP, we use the pricing
rate of normal density, 100 token/KB. The RTP-v1 produces more tokens than the RTP-v2
because, at the last runs (from T19 onward), the system does not apply the density level
according to the congestion level but follows the original TDP plan. Recall that Rule 2
prevents the density level from decreasing within a given timeslot, so the RTP-v2 applies
peak density to the rest of the timeslot.

Table 5. Total accumulated tokens from our experiment in Figure 3.

RTP-v1 RTP-v2 TDP UBP

Total Accumulated Tokens 114,442,792 104,495,907 67,856,817 66,185,036
% Increase to UBP 72.91% 57.88% 2.53% 0.00%

5.1.2. User’s Internet Profile Analysis

Setup: One host in Mininet with a 10 Mbps bandwidth runs iperf [25] continuously
to a server outside the domain. At the same time, other hosts in the same domain perform
different tasks such that collaboratively they generate a congestion level pattern, as recorded
in Figure 4 (bottom). Throughout this scenario, the host running the iperf is installed with
three different Internet profiles, as previously described in Table 2. We measure the average
throughput per timeslot for the iperf host, which is depicted in Figure 4 (top).

0

5

10

15

1 3 5 7 9 11 13 15 17 19 21 23

Th
ro
u
gh
p
u
t

(M
b
p
s)

Timeslot

off
moderate
aggressive

1 3 5 7 9 11 13 15 17 19 21 23

D
en

si
ty

Le
ve
l

Timeslot

off-peak
normal
peak

Figure 4. The experiment results for the Internet profile (from (top) to (bottom)) show the average
throughput per timeslot using different Internet profiles and the recorded density level per timeslot.

Result: Based on the displayed results, we confirm that our implemented SDN ap-
plication can dynamically adjust the bandwidth of iperf host according to the currently
installed Internet profile. In the case of an Aggressive profile, the app can drop the traf-
fic when the peak congestion level is detected. The traffic is then resumed when the
congestion dissipates.
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5.2. On-Chain Performance Analysis

In this second part of the evaluation, we analyze parts of our proposal related to
blockchain and smart contracts.

5.2.1. Smart Contract Complexity Analysis

We analyze the contract sizes and the gas usage consumption per method to assess
the complexity of our implemented smart contract.

Setup: We run a Ganache [26] network in a Docker container with the specification
of 1 core of CPU and 1 GB of RAM. We use Truffle J.S. [27] to deploy our contracts to
Ganache and measure the recorded byte sizes per contract and the gas usage per method.
Tables 6 and 7 summarize the result.

Table 6. The sizes of all deployed smart contracts. We assume the contract size limit is 24 KiB.

Contract Name Type Used For Size (KiB) % Limit

Registry Contract RSC 0.82 3.42
IRegistry Interface RSC 0.00 0.00
ERC20 Contract TSC 5.34 22.25
IERC20 Interface TSC 0.00 0.00
Region Contract DSC 9.35 38.96
IRegion Interface DSC 0.00 0.00
SafeMath Library All 0.08 0.33

Results of Byte Size: All of our deployed contracts are within the byte size limit of
24 kilobytes (KiB), which is the upper bound limit to be deployed in the main the Ethereum
network [28]. Thus, we can confirm that our contracts can be run in production cases.
The Interface has no implemented methods, resulting in zero byte sizes.

Results of Gas Consumption: Our methods are also within the upper bound limit of
30 million gas in Ethereum network [29]. Therefore, we can also confirm that all imple-
mented methods are executable in the production cases.

The resulting gas usage gusage and the block interval binterval have influences on the
total number of transactions per second (TPS) that the blockchain network can process.
Because of the gas limit glimit, the higher the gas usage, the lesser transaction can be inserted
into the block, resulting in overall TPS decreases. On the other hand, the faster we create
blocks (lesser block interval value), the more transactions can be processed, increasing the
TPS. Therefore, we can calculate the expected TPS per method using the following formula.

tps = (glimit/gusage)/binterval (1)

We present the projected TPS per method in Table 7 if using Mainnet (13-s block inter-
val [30]), Kovan (4-s block interval [31]), and Klaytn (1-s block interval [32]) blockchain network.

The initialization cases (Case I and II) are the most expensive operations since they
include contract deployment. However, they are only performed once in a lifetime; hence,
the higher gas usage and low throughput should be manageable. Similarly, the user
setup (Case III) is also performed less frequently than others. Once users are registered,
the number of calls to these methods will be reduced drastically.

On the other hand, Case IV is a collection of routine operations per timeslot, which
users and SDN controllers will perform many times during a timeslot. Calls to these
methods must then be processed as fast as possible. The given numbers in Case IV of
Table 7 are specific for one user and recorded as a per-second value. Since we process
Case IV for only one time per user per timeslot, the given low TPS value is actually still
manageable. For example, if we set the timeslot as 1 hour, then we should multiply the raw
TPS values by 3600× to get the approximation of the actual number of executions that can
be made within a timeslot.
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Table 7. List of writable smart contract methods and their gas consumption. We assume the block
limit of 30 million gas. The estimated throughput in transactions per second (TPS) is calculated based
on the block interval in Mainnet, Kovan, and Klaytn networks.

Description C* Contract Method Gas Usage % Limit
Throughput (TPS)

Mainnet Kovan Klaytn

Case I: Registry Initialization
Deploying SafeMath library contract a SafeMath deploy 71,933 0.24 32.08 104.26 417.05
Deploying Registry contract a Registry deploy 255,184 0.85 9.04 29.39 117.56
Deploying Token contract a ERC20 deploy 1,320,662 4.40 1.75 5.68 22.72

Total 1,647,779 5.49 1.40 4.55 18.21
Case II: Domain Initialization
Deploying Domain contract a Region deploy 2,230,667 7.44 1.03 3.36 13.45
Linking Domain contract to Registry a Registry addRegion 44,606 0.15 51.74 168.14 672.56
Updating pricing rate in domain a Region setPricingRate 41,840 0.14 55.16 179.25 717.02
Updating timeslot window a Region setWindow 29,315 0.10 78.72 255.84 1023.37

Total 2,346,428 7.83 0.98 3.20 12.79
Case III: User Setup
Registering user u Region addUser 44,688 0.15 51.64 167.83 671.32
Updating Internet profile u Region setProfile 30,962 0.10 74.53 242.23 968.93
Updating usable bandwidth u Region setBandwidth 45,096 0.15 51.17 166.31 665.25
Minting tokens for users a ERC20 mint 66,265 0.22 34.83 113.18 452.73
Depositing tokens for Internet usage u Region deposit 52,346 0.17 44.09 143.28 573.11

Total 239,357 0.79 9.64 31.33 125.34
Case IV: Day-to-Day Operational per Timeslot
Updating current congestion level c Region setDensity 45,643 0.15 50.56 164.32 657.27
Adding download byte usage c Region addDownload 47,685 0.16 48.39 157.28 629.13
Adding upload byte usage c Region addUpload 47,729 0.16 48.35 157.14 628.55
Adding hashes of FLOW-REMOVED c Region addProof 46,984 0.16 49.12 159.63 638.52
Withdrawing the deposited tokens c Region withdraw 57,066 0.19 40.44 131.43 525.71
Taking back deposited tokens u Region refund 25,918 0.09 89.04 289.37 1157.50

Total 271,025 0.91 8.51 27.67 110.69
Case V: Others
Token transfers between accounts u ERC20 transfer 51,967 0.17 44.41 144.32 577.29
Burning tokens u ERC20 burn 37,256 0.12 61.94 201.31 805.24

Callers (C*). a: Admin. u: User. c: SDN Controller.

5.2.2. Processing Delay Analysis

We measure the processing delay from our prototype to assess the overhead of per-
forming tasks with and without blockchain.

Setup: We run a Ganache [26] network in a Docker container with the specification of
1 core of CPU and 1 GB of RAM. For a fair comparison, we also run Redis [33] with the
same specification in a separate Docker container. The decentralized application (dapp) is
also using a separate Docker container with 1 core of CPU and 1 GB of RAM (see Figure 2
for testbed layout). The dapp is implemented as REST API endpoints using Node JS. We
ensure that the logic from the RSC, TSC, and DSC are all replicated similarly for our Redis
cases. We then performed writable and read-only operations in our system 50 times and
summarized the results in Tables 8 and 9.
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Table 8. Processing delay (in milliseconds) for writable operations in RealPrice when implemented
as non-blockchain (Redis DB) and blockchain (Ganache) approaches.

Description Method
Redis DB Ethereum (Ganache)

Average STD Average STD Gap to Redis

Set timeslot window setWindow 1.71 0.46 30.34 3.29 17.75×
Update pricing rate setPrice 1.69 0.46 35.58 5.17 21.11×
Add new user addUser 2.19 0.60 27.51 3.46 12.56×
Set Internet profile setProfile 1.89 0.39 27.63 1.80 14.63×
Set user bandwidth setBandwidth 1.94 0.43 27.66 2.97 14.29×
Update congestion setDensity 2.24 0.73 32.29 3.25 14.43×
Add upload usage addUpload 2.12 0.54 27.91 1.80 13.18×
Add download usage addDownload 2.24 0.57 27.55 3.17 12.28×
Add hash proof usage addProof 2.01 0.40 26.96 1.79 13.39×
Deposit funds deposit 2.05 0.49 28.63 2.18 13.95×
Refund deposited fund refund 1.76 0.46 30.69 4.52 17.46×
Withdraw bill withdraw 3.23 0.52 37.47 2.34 11.59×

Table 9. Processing delay (in milliseconds) for read-only operations in RealPrice when implemented
as non-blockchain (Redis DB) and blockchain (Ganache) approaches.

Description Method
Redis DB Ethereum (Ganache)

Average STD Average STD Gap to Redis

Get timeslot window getWindow 1.44 0.31 10.63 1.67 7.40×
Get pricing rate info getPrice 1.46 0.41 11.93 2.27 8.17×
Get user information getUser 1.89 0.58 10.93 1.39 5.79×
Get bandwidth usage info getUsage 1.76 0.55 12.48 1.55 7.08×
Authenticate user isUserValid 2.86 0.63 15.14 1.77 5.29×

Result: Due to the high integrity of the blockchain process (i.e., signed transaction,
consensus, and EVM stack), we can see a trade-off of higher processing delay by up to
21× compared to the conventional database (Redis). In particular, we can see an increase
of 14.72×more delay (on average) for all writable operations and 6.74× for all read-only
operations. The read-only methods are about 2× quicker than writable ones because they
consist of more straightforward logic. Furthermore, read-only methods also do not modify
the blockchain network’s state, so creating transactions is unnecessary. Therefore, this delay
represents the raw query delay for data stored in EVM.

Note that despite Redis yielding lower delay, implementing our system in Redis does
not have any meaningful benefits due to a lack of security and integrity. For example,
the ERC20 token implemented as a database object is insecure and prone to tampering.
Thus, the tokens should not have any economic value because no people will trust them.
Finally, we also have to mention that this delay is recorded in our local testbed. Real-world
latency may increase the delay further in production cases.

5.3. Security and Fairness Analysis

The followings are several design decisions made in this paper to guarantee the
security and fairness of the proposal.

5.3.1. Density Level Policy Analysis

This section analyzes the effectiveness of our density level policy (i.e., Rules 1–3 in
Section 4.2.5) when reacting to the simulated traffic pattern.

Setup: The IoT domain only contains two consumers; each is assigned about 10 Mbps
bandwidth capacity. Therefore, the domain’s total bandwidth capacity is 20 Mbps. We use
the density parameters (e.g., L, j) as specified previously in Algorithm 4. The user policy is
also configured such that consumers send 100% of capacity during off-peak and normal.
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Meanwhile, consumers 1 and 2 send 10% and 50% of capacity during peak. The timeslot
window is set as 12 min, and we receive PORT-STATISTIC messages every 1 min.

The consumers send arbitrary traffic throughout the scenario. However, starting
at t = 8 min, we assume that the consumer stops all running process and only send
900 MB of data in the domain. This should result in 10 Mbps data transfers over 12 min
(if no data restriction is applied). After all 900 MB data is transferred, consumers resume
the previous activity, sending random traffic at about 2 Mbps data rate. We performed
three scenarios: the system only applies Rule 1 (Scenario 1), Rules 1–2 (Scenario 2), and
Rules 1–3 (Scenario 3). The traffic patterns from those scenarios are depicted in Figures 5–7.
We assume that the density starts with an off-peak level at T1.
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Figure 5. An example of a traffic pattern that only follows Rule 1 (Scenario 1). Green, blue, and red
bars point to density changes in off-peak, normal, and peak. The red color of Tn indicates the
point-of-interest timeslot, where we sent the 900 MB data.
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Figure 6. An example of a traffic pattern that only follows Rules 1 and 2 (Scenario 2). Green, blue,
and red bars point to density changes in off-peak, normal, and peak. The red color of Tn indicates the
point-of-interest timeslot, where we sent the 900 MB data.
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Figure 7. An example of a traffic pattern that follows Rules 1–3 (Scenario 3). Green, blue, and red
bars point to density changes in off-peak, normal, and peak. The red color of Tn indicates the
point-of-interest timeslot, where we sent the 900 MB data.

Results: The first peak density is detected at t = 10, and consumers react by reducing
traffic. In Scenario 1, this traffic reduction means that the system recalculates the current
rate and detects a normal density at t = 13. Therefore, the consumers increase the traffic
again to overload the network at t = 16. These back-and-forth density level changes
happen continuously until all the 900 MB of data are fully transferred, making it confusing
for consumers to determine the current density level at a given timeslot.

On the other hand, the density level is unchanged after the first peak in Scenario 2.
However, because there is no policy to reduce the density level, the peak status is carried
over to the subsequent timeslots, resulting in a stagnant level. Scenario 3 fixes the problems
in Scenario 2, where the density resets at the beginning of each timeslot. This allows the
system to recalculate the density briefly and adjust the density more accurately, especially
when the traffic congestion is reduced, such as in T4 of Figure 7.

Lesson Learned: By complying with all Rules 1–3, we solve the trade-off between ensur-
ing that the system can accurately detect the dynamics of traffic patterns while providing
clear pointers for consumers regarding the current density level in a given timeslot. Fur-
thermore, consumers willing to take the risk (and pay more bills) by transmitting more
bytes during peak hours will receive benefits such as a faster data transfer completion rate
than saving-oriented consumers. Figure 7 shows that consumer 2 completes about 37%
faster than consumer 1.

Note that the system takes 3 min (or 25% of the timeslot window) to determine the
density level. This is performed for the sake of easy explanations, where everything is
calculated in minutes. In the production case, the detection can be made in seconds instead
of minutes, so it does not take much time to detect the density level.

5.3.2. Token and User Interaction Analysis

Only registered and well-funded clients can access the Internet. Because we design the
Internet bill in a pre-paid fashion, users must have token deposits in the system before
accessing the Internet. In particular, users must prepare funds for at least one timeslot.
Otherwise, the controller will reject users’ access.

An SDN controller can withdraw the deposited funds from users only after submitting the
proof. This policy is to ensure that the SDN controller has some proofs that they have
performed the usage byte measurement correctly.

All critical negotiations must be made on-chain. The token deposit, refund, and withdrawal
must be made through DSC and TSC. The users’ byte usage and proof of usage must also
be uploaded to the blockchain. Therefore, all essential parameters can be securely audited
when needed.
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6. Discussion and Future Works

Our paper can be extended in five ways, mainly regarding privacy-preserving, fault-
tolerance, integrity, user identification, and pricing mechanism.

First, the use of blockchain can be a double-edged sword. On the one hand, blockchain
transparency helps audit the system securely. On the other hand, it also means that user
privacy is at risk. While blockchain users’ identity is masked with anonymous blockchain
addresses, if adversaries can reveal the true identity behind those addresses, then users’
Internet usage history can be leaked. Adversaries can also spot rich/poor domains by
observing the total deposited funds in the contract. This can be used as an avenue to pick
their criminal target. A possible solution is limiting access to the stored ledger data using a
permissioned blockchain. Other solutions include improving the privacy-preserving aspect
of the blockchain network itself.

Second, the system may lose ongoing Internet usage metrics when switch failures
happen. Recall that the edge switch records users’ Internet usage through the inserted
flow rules. Unless there is a method to save/cache the state of the Flow Table in the switch
locally, this information might be deleted when the switch fails, and the controller will not
obtain an accurate usage metric during this period.

Third, further modifications to the SDN switch and controller hardware can be made
to provide a stronger integrity guarantee. In particular, typical SDN switches do not
have trustful timestamp resources and a robust cryptography module. Putting a Trusted
Execution Environment (TEE) module can boost the Internet usage proof generated from
switches. Furthermore, the SDN controller needs additional storage to temporarily save
OpenFlow messages submitted by switches for auditing.

Fourth, our proposed system relies heavily on the MAC address for user identification
and usage monitoring. However, this paper only provides minimal user authentication
setup required to perform RTP. Because of this, performing MAC spoofing attacks is still
possible in the system, and further advanced MAC spoofing detection, such as in [34,35],
must be integrated into the system. Furthermore, using a NAT gateway or similar proxy
systems is not possible inside the domain because they will translate users’ MAC addresses
into proxies MAC addresses. The system then cannot detect users sitting behind proxy
servers unless the servers share some information with the SDN controller. Therefore,
the developers are encouraged to put the SDN switch as close to the edge as possible.

Finally, the optimal formula to define dynamic pricing has not been proposed yet.
This step requires real user trial and feedback to determine the best pricing scheme for
consumers and ISP.

7. Conclusions

This paper proposed a novel real-time pricing mechanism that leveraged SDN and
blockchain. We tracked the congestion level in an SDN edge domain and adjusted the
pricing rate dynamically. The controller generated bills for users through smart contracts
based on their Internet consumption and the congestion level at that time. Furthermore,
to prevent overcharging, users could create an Internet profile, which limits how much
bandwidth is to be delivered across various congestion levels.

Through our prototype evaluation, we have shown that the system is feasible and can
perform all of the proposed workflows correctly. The smart contract byte sizes and gas
costs to execute all smart contract methods were within the boundary of Ethereum’s main
network limit. Integrating the POX SDN controller and Ethereum blockchain to track users’
Internet usage and charge the bill also worked seamlessly.

More importantly, we showed that by using our approach, the ISP could get up to
72.91% more profit compared to the existing approach. This highlighted the efficiency of our
system in detecting real-time network congestion and adjusting the pricing rate accordingly.
The use of blockchain added, on average, 14.72×more delay on writable operations and
6.74× more on read-only operations compared to using a conventional database such
as Redis DB. This showed the trade-off developers need to consider when deploying
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our system for production cases such that the high integrity guarantee from blockchain
comes with a longer processing delay. Thus, a strategy to minimize the blockchain delay
includes a hybrid approach, where we offload some parts of our system that do not need a
high-integrity guarantee to the Redis DB.

Finally, future works from our paper include solving the privacy issues, enhancing
switch failure robustness, adding a lightweight module to the switch’s hardware for
generating secure cryptography and timestamping, and alleviating the MAC spoofing
attacks. Real user trials and feedback through real-hardware implementation can also be
performed in the future to test the usability and practicality of the proposed RTP system.
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