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Abstract: The paper deals with a robust sensor fault estimation by proposing a novel algorithm
capable of reconstructing faults occurring in the system. The provided approach relies on calculating
the fault estimation adaptively in every discrete time instance. The approach is developed for the
systems influenced by unknown measurement and process disturbance. Such an issue has been
handled with applying the commonly knownH∞ approach. The novelty of the proposed algorithm
consists of eliminating a difference between consecutive samples of the fault in an estimation error.
This results in a easier way of designing the robust estimator by simplification of the linear matrix
inequalities. The final part of the paper is devoted to an illustrative example with implementation to
a laboratory two-rotor aerodynamical system.

Keywords: fault estimation algorithm; sensor fault estimation; fault estimation; robust fault diagnosis

1. Introduction

In the developing world, the expansion toward Industry 4.0 results in an increase in the
components of the system. Any industrial system cannot be imagined without measuring
devices. Especially these days, measured information is analyzed in many ways to achieve
an optimal performance of the entire technological process. Thereby, industries increase the
number of sensors to have the information of the process as accurate as possible. However,
by increasing the pool of sensors, it increases a chance of fault occurrence in some of them.

The developments concerning fault diagnosis (FD) have received a significant scientific
attention over the last decades, and a large pool of reliable FD strategies is available [1–4].
However, while screening these fundamental works on FD, one can observe that initially,
the research was focused on fault detection and isolation (FDI). This situation was com-
pletely changed along with the number of works devoted toward fault-tolerant control
(FTC) [5–7]. Indeed, fault estimation or identification constitutes the crucial element of all
active FTC schemes FTC [8,9]. This simply means that the FTC performance depends on
the knowledge about the faults, which is provided along with the fault estimation. There
are several approaches devoted to either sensor or actuator fault estimation [10–12]. The
main development trends of fault estimation are oriented toward dedicated observer-based
approaches [13–15]. Their appealing property is that they can realize both FDI and fault
estimation simultaneously. Note also that the problem of simultaneous sensor and actu-
ator estimation has received considerable attention as well [16–20]. However, the design
strategies are usually realized by a simple extension of the actuator/sensor fault estimation
schemes. Moreover, a recent literature review clearly indicated the trends for settling fault
estimation for nonlinear systems. Indeed, in [21–23], the authors transformed a nonlinear
Lipschitz system into a linear parameter-varying (LPV) one with the so-called reoriented
Lipschitz strategy. Such an approach enables optimal H∞ fault estimates in the limited
frequency range. An alternative approach to Lipschitz systems was described in [24]. In
the proposed strategy, the system is split into two subsystems. Each subsystem is affected
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by either an actuator or a sensor fault. This results in a tandem of separated sliding mode
observers (SMOs). The main issue of the approach is that the resulting fault estimation error
converges asymptotically to zero without taking inevitable disturbances into account. This
unappealing property is eliminated in [25,26] by taking into account bounded disturbances.
As an alternative to Lipschitz strategies, one can use LPV or Takagi–Sugeno fuzzy ones. A
representative example of such strategies is provided in [27,28]. This paper proposes the
so-called adaptive fuzzy estimator while considering predefined fault scenarios: drift, bias,
and loss of accuracy along with loss of effectiveness. The main drawback of this approach
is that it is not robust to disturbances, which may significantly impair its performance.
Another interesting Takagi–Sugeno approach is proposed in [29] for switching nonlin-
earities. However, it inherits the same drawback with respect to the lack of robustness.
Subsequently, the work [30] proposes a new Takagi–Sugeno multiple integral unknown
input observer, which decouples disturbances. The final group of strategies deals with
polynomial LPV and Takagi–Sugeno systems [31,32]. The approach reduces to converting
the system into the so-called augmented-state form. To summarize, the dominating number
of fault estimators is based on the following general frameworks:

• Adaptive estimators [33,34].
• High-gain and sliding-mode observers [26,35,36].
• Kalman filter-based [37,38].
• Virtual diagnostic estimators [39].
• Proportional–integral (PI) observers [16].

Nevertheless, a typical way of obtaining the sensor faults estimates is that it is devel-
oped with a set of observers [40,41]. Each observer uses all but one sensor, and estimates
the missing sensor readings. Those estimates are then compared with real sensor mea-
surements and, as a result, the sensor fault is obtained. An obvious drawback of this
scheme is that it is assumed that, within a given time interval, only one sensor reading is
impaired by a fault. The other approaches of course allow for estimating all sensor faults at
the same time, although, the unwelcome rate of change of the sensor fault factor is to be
additionally minimized, which also influences the design involving such an approach, due
to the fact that this additional factor needs to be taken into account during the optimization
process while designing the gain matrices. To sort out such an issue, a novel structure of the
observer is proposed. It merges two previous approaches proposed by the authors, namely
the direct estimation strategy, where the sensor fault is estimated based on the output
equation with the adaptive approach. However, the proposed algorithm minimizes the rate
of change of the fault factor, which is its main advantage. Additionally, the investigated
approach is capable of handling process and measurement uncertainties by an application
ofH∞ theory.

The paper is organized as follows: Section 2 introduces the problem and provides a set
of necessary preliminaries. In Section 3, a novel sensor fault estimation scheme is proposed
along with the stability analysis. Section 4 provides an illustrative example dealing with
a laboratory multi-tank system. Finally, Section 5 concludes the paper.

2. Preliminaries

Let us start by defining the possibly faulty system given by

xk+1 = Axk + Buk + h(xk) + W1w1,k, (1)

yk = Cxk + f f k + W2w2,k. (2)

where k stands for a discrete time instance and xk = [x1, x2, . . . , xn] ∈ Rn, uk = [u1, u2, . . . , ur] ∈
Rr, yk = [y1, y2, . . . , xm] ∈ Rm, stand for the state, control input and measured output vectors,

respectively. Moreover, f k =
[

f1, f2, . . . , fny

]
∈ Rny is the fault vector which affects the

measured output, and for such a reason it will be referred to as a sensor fault. Moreover,
w1,k =

[
w1,1, w1,2, . . . , w1,q1

]
∈ Rq1 and w2,k =

[
w2,1, w2,2, . . . , w2,q2

]
∈ Rq2 are unknown
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exogenous process measurement uncertainty vectors, respectively. Note that both w1,k as well
as w2,k belong to l2 class, and hence, they obey

l2 = {w ∈ Rn| ‖w‖l2 < +∞}, (3)

‖w‖l2 =

(
∞

∑
k=0
‖wk‖2

) 1
2

, (4)

meaning that they have a finite energy. Moreover, a matrix f denotes a sensor fault
distribution one. In the other words, it describes the way the sensor fault vector influences
the system measurements. Furthermore, h(xk) : X→ X represents a non-linear function
with respect to the state. It is assumed that h(xk) is of the Lipschitz form, i.e.,

‖ h(x)− h(y) ‖≤ γg ‖ x − y ‖, ∀x, y ∈ X. (5)

Evidently, a way of dealing with such Lipschitz nonlinearities is described, e.g.,
in [42,43].

The problem stated in this paper is related to reconstructing sensor faults. The sensor
faults are as important as the other ones, such as, for example, actuator faults, due to the fact
that it is hard for any system without measurements. Of course, there are plenty of effective
ways and approaches capable of estimating it; however, adaptive observers presented in
the literature (see [42,44,45]) are burdened with an unwelcome rate of change of the sensor
fault factor. Approaching the problem in such a way determines the minimization of that
additional factor in the design process, which additionally might worsen the final quality
of estimation and as a consequence, a quality of control and final product. The issue stated
in this paper concerns the problem of estimating the state and sensor fault for which the
rate of change factor is eliminated by developing a suitable structure of the observer. In the
subsequent section, an observer design procedure for handling such a problem is provided.

3. Fault Estimation

To settle an issue formulated in the former section, let us propose an observer of the
following structure:

x̂k+1 = Ax̂k + Buk + h(x̂k) + Kx(yk − ŷk), (6)

f̂ k = Zyk − ZCAx̂k−1 − ZCBuk−1 − ZCh(x̂k−1) + Ks
(
yk−1 − ŷk−1

)
, (7)

ŷk = Cx̂k + f f̂ k, (8)

where Kx and Ks are designated state and sensor fault estimation matrices. Moreover, Z
stands for a pseudo-inversion of the sensor fault distribution matrix f such that Z = ( f )†,
Z f = I. The structure of the observer stands for a combination of an estimator enabling
the direct fault estimation [46] with the one able to estimate the fault adaptively [42]. Such
an algorithm inherits the advantages of both these both approaches.

To realize the design procedure, let us start with calculating the state estimation error as

ek+1 = [A− KxC]ek + h(xk)− h(x̂k)− Kx f es,k + W1w1,k − KxW2w2,k, (9)

with es,k indicating a sensor fault estimation error. Before proceeding to the sensor fault
estimation error, let us transform the output Equation (2) in such a way as to obtain the
sensor fault formula:

f k = Z(yk − Cxk −W2w2,k), (10)

and even more specifically

f k = Z(yk − CAxk−1 − CBuk−1 − Ch(xk−1)− CW1w1,k−1 −W2w2,k). (11)
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Thereby, taking into account the sensor fault (11) and its estimate (7), the dynamics of
the sensor fault estimation error can be presented as

es,k = f k − f̂ k = Zyk − ZCAxk−1 − ZCBuk−1 − ZCh(xk−1)− ZCW1w1,k−1

− ZW2w2,k − Zyk + ZCAx̂k−1 + ZCBuk−1 + ZCh(x̂k−1)− KsCxk−1

− Ks f f k−1 − KsW2w2,k−1 + KsCx̂k−1 + Ks f f̂ k−1

= [−ZCA− KsC]e,k−1 − ZCh(xk−1) + ZCh(x̂k−1)

− Ks f es,k−1 − KsW2w2,k−1 − ZCW1w1,k−1 − ZW2w2,k.

(12)

Then, for further analysis, let the sensor fault estimation error be shifted in time by
one sample, resulting in

es,k+1 = [−ZCA− KsC]e,k − ZCh(xk) + ZCh(x̂k)

− Kses,k − KsW2w2,k − ZCW1w1,k − ZW2w2,k+1,
(13)

which is actually equal to (8), an evolution of the sensor fault with the signal at time k + 1.
Having such estimation errors for both state and sensor faults, let us compose a vector
incorporating both of them. However, before doing this, let us introduce the following
lemma:

Lemma 1 ([47]). For h(·), the following statements are equivalent:

1. h(·) is Lipschitz with respect to their arguments with Lipschitz constant γg > 0, i.e.,

‖ h(X)− h(Y) ‖≤ γg ‖ X − Y ‖, ∀X, Y ∈ X.

2. For all i, j = 1, . . . , n, there exist functions gi,j : X×X −→ R and constants γgi,j
and γ̄gi,j

such that, for each X, Y ∈ X

h(X)− h(Y) =
n

∑
i=1

n

∑
j=1

gi,jGi,j(X − Y), (14)

and
γg,i,j ≤ gi,j ≤ γ̄g,i,j, (15)

gi,j , gi,j

(
XY j−1 , XY j

)
, Gi,j = cicT

i , (16)

as well as a scalar function gi,j given by

gij

(
XY j−1 , XY j

)
=

 0 if xj = yj
hi

(
XY j−1

)
−hi

(
XY j

)
xj−yj

if xj 6= yj,
(17)

where ci stands for the i-th column of the n-th order identity matrix, while XY i is defined by

XY i =



y1
...

yi
xi+1

...
xn


, for i = 1, . . . , n (18)

XY0 = X. (19)
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Thus, the compact error vector takes the form

ẽk+1 = X̃(g)ẽk + Z̃d̃k, (20)

where

ẽk =

[
ek

es,k

]
(21)

d̃k =

 w1,k
w2,k

w2,k+1

 (22)

while X̃(g) = Ã(g)− K̃C̃ and Z̃ = W̃1 − K̃W̃2 with

Ã(g) =
[

A + A(g) 0
T A + T A(g)TT 0

]
, K̃ =

[
Kx
Ks

]
, C̃ =

[
C f

]
,

W̃1 =

[
W1 0 0

TW1 0 −ZW2

]
, W̃2 =

[
0 W2 0

]
, T = −ZC.

(23)

In this point, it can be easily noticed the difference of the proposed approach compared
to the classical adaptive observer. The vector d̃k in (22) does not contain the rate of change
of the fault, unlike the strategy proposed in ref. [42]. This simply shows the advantages of
such an approach due to the fact that the unwelcome rate factor does not need to be taken
into account in the optimization process.

Having in mind the above deliberations, an H∞ observer design procedure can be
handled by shaping the following theorem:

Theorem 1. Assume that the nonlinear system satisfies condition 1 of Lemma 1. Thus, it can
be approximated by (20). Then the design problem of the observer (6)–(8) for the system given
by (1)–(2) is solvable for a prescribed attenuation level µ > 0 of the state and estimation error (20),
if there exist matrices P � 0 and N such that the following condition is met: I − P 0 ÃT

(g)P− C̃T NT

0 −µ2 I W̃ T
1 P− W̃ T

2 NT

PÃ(g)− NC̃ PW̃1 − NW̃2 −P

 ≺ 0. (24)

Proof. The problem of designing theH∞ estimator reduces to find the N, U and P matrices
by solving (24) such that

lim
k→∞

ẽk = 0 for d̃k = 0, (25)

‖ẽk‖l2 < µ‖d̃k‖l2 for d̃k 6= 0, ẽ0 = 0. (26)

It is known that for the sake of theH∞ design, a Lyapunov function is equivalent to

∆Vk + ẽT
k ẽk − µ2dT

k dk < 0, (27)

where: ∆Vk = Vk+1 −Vk, Vk = ẽT
k Pẽk and P � 0, which is sufficient to solve that problem.

It is evident that for d̃k = 0, inequality (27) boils down to

∆Vk + ẽT
k ẽk < 0, (28)



Sensors 2022, 22, 9638 6 of 15

with ∆Vk = Vk+1 − Vk, and then leads to (25). Thus, by employing (20), it is easy to
show that

∆Vk + ẽT
i,k ẽi,k − µ2dT

k dk = ẽT
k

(
X̃(g)TPX̃(g) + I − P

)
ẽk

+ ẽT
k

(
X̃(g)TPZ̃

)
d̃k + d̃T

k

(
Z̃TPX̃(g)

)
ẽk

+ d̃T
k

(
Z̃TPZ̃− µ2 I

)
d̃k ≺ 0.

(29)

Then, by establishing a new temporary variable

wk =

[
ẽk
d̃k

]
, (30)

inequality (29) may be reconstructed into the following shape:

wT
k

[
X̃(g)TPX̃(g)− P + I X̃(g)TPZ̃

Z̃TPX̃(g) Z̃TPZ̃− µ2 I

]
wk ≺ 0, (31)

or alternatively into another form:[
X̃(g)T

Z̃T

]
P
[
X̃(g) Z̃

]
+

[
I − P 0

0 −µ2 I

]
≺ 0. (32)

Afterwards, it leads to −P + I 0 X̃(g)TP
0 −µ2 I Z̃TP

PX̃(g) PZ̃ −P

 ≺ 0, (33)

by applying the Schur complement to (32) with left- and right-side multiplication by
diag(I, I, P). Setting up

PX̃(g) = P
(

Ã(g)− K̃C̃
)
= PÃ(g)− NC̃, (34)

PZ̃ = P
(
W̃1 − K̃W̃2

)
= PW̃1 − NW̃2, (35)

and employing this set up into (33) leads to (24), which results in the proof being com-
pleted.

Finally, the design procedure boils down to solving the set of LMIs (24), and then
calculating the gain matrices for the estimator from

K̃ =

[
Kx
Ks

]
= P−1N. (36)

Thus, the arrangement of the entire methodology can be split up into off-line as well
as on-line parts and summarized as the following algorithm:

I. Off-line stage:

Step 1: Find a feasible solution to the problem (24) for obtaining P and N. If there is at
least one feasible solution then go to Step 2 else STOP;

Step 2: Calculate the gain matrices Kx and Ks of the observer with (36);

Step 3: Set time k = 1.

II. On-line stage:

Step 1: Calculate state and fault estimates with (6)–(8);

Step 2: Set k = k + 1, and go to Step 1.
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The main limitations of the proposed approach are caused by the assumptions, which
means that firstly, the uncertainty vectors should belong to the l2 class; hence, it means
they have a finite energy. The other limitation is that the nonlinear function is to be
Lipschitz. It causes that the nonlinear system should satisfy the condition 1 of Lemma 1.
The fundamental constraint is that the pair(A, C) and especially pair(Ã, C̃) should be
observable.

The objective of the subsequent section is to provide an exemplary results containing
the state and sensor fault estimation.

4. Exemplary Results
4.1. Case Study

For the sake of validation purposes, the proposed algorithm was applied to the MT
(multi-tank system) system provided by Inteco Ltd., Kraków, Poland [48] (see Figure 1). It
is worth noticing that the system being under the study is fully computer-based controlled,
which simplifies the control, identification and estimation strategies being investigated. It is
configured in such a way that it consists of three different tanks, which are placed vertically
one above the other. It is supplied with a fully controlled flow water pump, which supplies
water to the upper tank. The water then flows out to the middle one and finally to the lower
one. After that, it flows down to the reservoir. Those tanks are interconnected to each other
with fully controlled solenoid valves, and their adjustment is done with a PWM (Pulse
Width Modulation) signal. The PWM signal is also used to control the pump. The variables
measured in that system are the water levels of the respective tanks. These measurements
are based on the water pressure sensors, and the water level in [m] is provided to the user.

Figure 1. The laboratory multi-tank system.
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During the experiments, the system was operated in a pump-valve mode which relies
on controlling the system by both pump and valves, which is the most interesting and the
most difficult mode. It allows stabilizing the water level in each tank, and every desired
level in each tank is allowed to be achieved. Thus, the control input is given by

uk =


up,k
uv1,k
uv2,k
uv3,k

, (37)

where up,k stands for the control signal for the pump, whilst uv1,k, uv2,k and uv3,k denote the
suitable signals for the drain solenoid valve of the top, middle and lower tanks, respectively,
at time k. Moreover, the system’s behavior is described by the following state vector
xk =

[
: x1,k x2,k x3,k

]T , where x1,k, x2,k and x3,k signify a suitable liquid water of the
first, second and third tank, respectively. The distribution matrices of the process and
measurement uncertainties were achieved with series of tests. This estimated inaccuracies,
and specifically their matrices were established as follows:

W1 =

0.41 0 0
0 0.23 0
0 0 0.19

 · 10−4, (38)

W2 =

0.4059 0 0
0 0.2277 0
0 0 0.1881

 · 10−2. (39)

The sensor fault distribution matrix f is set with components equal to either ones and
zeros in which one denotes that the fault acts onto an appropriate sensor reading whilst
zero signifies an opposite position. As a consequence, it was set as follows:

f =

[
1 0
0 1

]
. (40)

The evaluation was accomplished in such a way that the sensor in the third tank is not
taken into account as a possibly faulty one, why is why the level sensor in the bottom tank
is considered as never existing, which additionally makes the entire estimation process
harder to realize. It entails the output matrix given by

C =

[
1 0 0
0 1 0

]
. (41)

It can be summarized that two out of three liquid levels, namely the level in the top
tank as well as the level in the middle tank, are measured, and they all are impaired by
the faults.

Such a configuration of the system allows defining a scenario for investigating the
fault estimation process, which is given as follows:

f1,k =

{
−0.05 3000 ≤ k ≤ 5000

0 otherwise
(42)

f2,k =


+0.02 4000 ≤ k ≤ 5500
−y2,k 5500 ≤ k ≤ 7000

0 otherwise
(43)

An examination of the fault estimation approach in four manners is allowed in such
a scenario. Firstly, there is a temporary, abrupt fault being biased to the real state. The
readings show the value as 5 cm less than it really is in the tank. The second one is the fault
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in which the measurements in the second tank are impaired by an abrupt fault, in which
the values read from the sensor are by 2 cm higher than they really are. Then, the sensor
readings suddenly run into stuck in place fault. This means that the readings from this
sensor are still very the same irrespective of the actual water level. Specifically, the value
read from this sensor is always 0 in the specified period of time. The other aspect is that
those two above mentioned faults are partly in the same time span, which additionally
might include difficulties during the estimation process. Finally, the fourth aspect is that
the sensor in the bottom tank is not taken into account, as it was already mentioned, due
to a missing level sensor in the third tank which renders the estimation more difficult in
detection.

It is worth noticing that the achieved results by solving the LMI (24) gave the following
gain matrices:

Kx =

0.3749 0.0001
0.0002 0.3437

0 0.0002

, (44)

Ks =

[
−0.4293 0
−0.0002 −0.4106

]
. (45)

For further analysis, it should be emphasized that the experiment was carried out in
an open loop with control signals set as the ones provided in the Figure 2.

0 5000 10,000 15,000
0

0.5

1

0 5000 10,000 15,000
0.2
0.4
0.6
0.8

0 5000 10,000 15,000
0.2
0.4
0.6
0.8

0 5000 10,000 15,000

0.2

0.4

Figure 2. The control signals u during the experiment.

It means that the water pump performed with 50% efficiency throughout the whole
time span of the experiment, while the solenoid valves were changing in some sinusoidal
ways.

4.2. Discussion

Figures 3–5 show the response of the system and specifically its particular state x,
given by blue solid lines, while red dashed lines stand for the estimation x̂ signal. The
measured output y are presented in green dash-dotted lines.
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0 5000 10,000 15,000

0

0.05

0.1

0.15

4950 5000 5050

0.12

0.13

0.14

Figure 3. The liquid level x1,k and its estimate x̂1,k.

0 5000 10,000 15,000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

6950 7000 7050 7100

0.1

0.105

Figure 4. The liquid level x2,k and its estimate x̂2,k.

0 5000 10,000 15,000

0

0.05

0.1

0.15

500 1500

-0.01

0

0.01

0.02

Figure 5. The liquid level x3,k and its estimate x̂3,k.
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It can be easily noticed that the state estimates follow the real states with very high
accuracy, despite the quite big noise present in the measurements. The state estimates
converged to the real state very quickly in all three cases. Only the third state was biased
a bit in the initial phase, but within acceptable limits, although that situation is caused by
the fact that this specific state was immeasurable. Taking such a fact into account, the state
estimation in that case when it was immeasurable can be perceived as being very proper. In
these figures, docked windows show zooms of a specific part of time in which the obtained
results can be seen more precisely.

Another important and interesting thing is the sensor fault and especially its estimate.
These signals are presented in Figures 6 and 7, where blue dashed lines represent the real
faults and red solid lines stand for the estimates of the faults.

0 5000 10,000 15,000
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

5000 5050

-5

0

5

10
-3

Figure 6. Sensor fault f 1,k and its estimate f̂ 1,k.

0 5000 10,000 15,000

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

7000 7050

-6

-4

-2

0

2

4

10
-3

Figure 7. Sensor fault f 2,k and its estimate f̂ 2,k.
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It should be emphasized that the real faults are plotted only for demonstration
purposes, and their estimates are obtained without any knowledge of their shape and
magnitude. They were achieved just on the basis of the model of the system and the
structure of the estimator. It can be easily noticed that the sensor faults were estimated
with quite good precision. It is obvious that the fault estimates are impaired with some
noise, which means that the estimates follow the real ones by oscillating around the
specific value with some relatively small amplitude. It might seem that the inaccuracy
of the fault estimate of the sensor placed in the top tank is bigger then the one placed
in the middle; however, although there is a slight difference, it is not big and could be
perceived as a good quality. Although they have been reconstructed precisely regardless
of if there was an abrupt fault or stack in place one when the sensor reading was at
a constant value, the estimator is capable of reconstructing them appropriately. The
docked windows show zooms of a specified time span in which the precision as well as
fast convergence can be observed. It can be noticed that the fault estimate very precisely
and quickly reacts to changes related to the real faults.

The obtained results for the state as well as sensor faults indicate a very good estima-
tion quality. The achieved results confirm the performance of the proposed approach.

5. Conclusions

The paper dealt with the problem of simultaneous state and sensor fault estimation.
The investigated problem is rather very common; however, in this paper, a proposed
solution in the form of the adaptive observer is slightly different from those presented in
literature. It actually combines two approaches, the direct fault estimation which relies
on achieving sensor fault estimation directly from the output equation, and the classical
adaptive observer. It particularly means that the features of both was received. Firstly, the
sensor fault equation was achieved from the output, and based on this, the observer was
constructed. The proposed observer also contains the correction part, which additionally
stabilizes the estimator contrary to the direct estimator. However, an unwelcome factor of
the rate of change of the sensor fault was vanished, comparing to the classical adaptive way
of estimating this kind of fault. Moreover, the proposed approach was provided for the
class of non-linear systems, and it also can handle the exogenous uncertainties influencing
the system. To solve such a problem, a H∞ approach was utilized. The verification of
the algorithm was made by implementation to the laboratory multi-tank system. The
obtained results clearly confirm the efficiency of the proposed approach. The future works
will focus on integrating the proposed approach with the one capable of actuator fault
estimation, which will result in the simultaneous estimation of the actuator and sensor
faults. Moreover, employing the proposed approach to the FTC scheme is going to be
developed. Furthermore, the authors will focus on combining the proposed approach with
a suitable ILC scheme.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbols
k discrete time
n number of states
m number of outputs
r number of inputs
ny number of sensor faults
q1 number of disturbance inputs
q2 number of noise inputs
xk state of the system
x̂k state estimate
uk control input
yk output of the system
w1,k process uncertainty vector
w2,k measurement uncertainty vector
h(xk) nonlinear function with respect to xk
f k sensor fault
f̂ k sensor fault estimate
ŷk output estimate
ek state estimation error
es,k sensor fault estimation error
ẽk extended estimation error vector composed of ek and es,k
d̃k extended uncertainty vector composed of w1,k, w2,k and w2,k+1
A, B, C system matrices
f fault distribution matrix
W1, W2 process and measurement uncertainties matrices
Kx, Ks state and sensor fault gain matrices
P � (�)0 (semi-) positive definite matrix
FTC fault-tolerant control
LMI linear matrix inequality
LPV linear parameter varying
MT multi-tank
PI proportional–integral
PWM pulse width modulation
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