
Citation: Ivkin, N.; Liberty, E.; Lang,

K.; Karnin, Z.; Braverman, V.

Streaming Quantiles Algorithms with

Small Space and Update Time.

Sensors 2022, 22, 9612. https://

doi.org/10.3390/s22249612

Academic Editor: Dan Feldman

Received: 26 October 2022

Accepted: 1 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Streaming Quantiles Algorithms with Small Space and
Update Time
Nikita Ivkin 1,*, Edo Liberty 2, Kevin Lang 3, Zohar Karnin 1 and Vladimir Braverman 4

1 Amazon, New York, NY 10001, USA
2 Pinecone, San Mateo, CA 94402, USA
3 Yahoo Research, Sunnyvale, CA 94089, USA
4 Department of Computer Science, Rice University, Houston, TX 77005, USA
* Correspondence: ivkin@amazon.com

Abstract: Approximating quantiles and distributions over streaming data has been studied for
roughly two decades now. Recently, Karnin, Lang, and Liberty proposed the first asymptotically
optimal algorithm for doing so. This manuscript complements their theoretical result by providing a
practical variants of their algorithm with improved constants. For a given sketch size, our techniques
provably reduce the upper bound on the sketch error by a factor of two. These improvements are
verified experimentally. Our modified quantile sketch improves the latency as well by reducing the
worst-case update time from O( 1

ε ) down to O(log 1
ε ).
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1. Introduction

Estimating the underlying distribution of data is crucial for many applications. It
is common to approximate an entire Cumulative Distribution Function (CDF) or specific
quantiles. The median (0.5 quantile) and 95-th and 99-th percentiles are widely used in
financial metrics, statistical tests, and system monitoring. Quantiles summary found appli-
cations in databases [1,2], sensor networks [3], logging systems [4], distributed systems [5],
and decision trees [6]. While computing quantiles is conceptually very simple, doing so
naively becomes infeasible for very large data.

Formally, the quantiles problem can be defined as follows. Let S be a multiset of items
S = {si}n

i=1. The items in S exhibit a full-ordering and the corresponding smaller-than
comparator is known. The rank of a query q (with regard to S) is the number of items
in S, which are smaller than q. An algorithm should process S such that it can compute
the rank of any query item. Answering rank queries exactly for every query is trivially
possible by storing the multiset S. Storing S in its entirety is also necessary for this task. An
approximate version of the problem relaxes this requirement. It is allowed to output an
approximate rank, which is off by at most εn from the exact rank. In a randomized setting,
the algorithm is allowed to fail with probability at most δ. Note that, for the randomized
version to provide a correct answer to all possible queries, it suffices to amplify the success
probability by running the algorithm with a failure probability of δε, and applying the union
bound over O( 1

ε ) quantiles. Uniform random sampling of O( 1
ε2 log 1

δε ) solves this problem.
In network monitoring [7] and other applications, it is critical to maintain statis-

tics while making only a single pass over the data and minimizing the communication
and update time. As a result, the problem of approximating quantiles was considered
in several models, including distributed settings [5,8,9], continuous monitoring [10,11],
streaming [12–18], and sliding windows [19,20]. In the present paper, the quantiles problem
is considered in a standard streaming setting. The algorithm receives the items in S one by
one in an iterative manner. The algorithm’s approximation guarantees should not depend
on the order or the content of the updates st, and its space complexity should depend on n
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at most poly-logarithmically (Throughout this manuscript, we assume that each item in the
stream requires O(1) space to store).

In their pioneering paper [21], Munro and Paterson showed that one would need
Ω(n1/p) space and p passes over the dataset to find a median. They also suggested an
optimal iterative algorithm to find it. Later Manku et al. [14] showed that the first iteration
of the algorithm in [21] can be used to solve the ε approximate quantile problem in one
pass using only O( 1

ε log2 n) space. Note that, for a small enough ε, this is a significant
improvement over the naive algorithm, which samples O( 1

ε2 log 1
ε ) items of the stream

using reservoir sampling. The algorithm in [14] is deterministic; however, compared with
reservoir sampling, it assumes the length of the stream is known in advance. In many
applications, such an assumption is unrealistic. In their follow-up paper [15], the authors
suggested a randomized algorithm without that assumption. Further improvement by
Agarwal et al. [12] via randomizing the core subroutine pushed the space requirements
down to O( 1

ε log3/2 1
ε ). Additionally, the new data structure was proven to be fully merge-

able. Greenwald and Khanna in [17] presented an algorithm that maintains upper and
lower bounds for each quantile individually, rather than one bound for all quantiles. It is
deterministic and requires only O( 1

ε log εn) space. It is not known to be fully mergeable.
Later, Felber and Ostrovsky [22] suggested non-trivial techniques of feeding sampled items
into sketches from [17] and improved the space complexity to O( 1

ε log 1
ε ). Recently, ref. [13]

presented an asymptotically optimal but non-mergeable data structure with space usage
of O( 1

ε log log 1
ε ) and a matching lower bound. They also presented a fully mergeable

algorithm whose space complexity is O( 1
ε log2 log 1

ε ).
In the current paper, we suggest several further improvements to the algorithms

introduced in [13]. These improvements do not affect the asymptotic guarantees of [13],
but reduce the upper bounds by constant terms, both in theory and practice. The suggested
techniques also improve the worst-case update time. All the algorithms presented operate
in the comparison model. They can only store (and discard) items from the stream and
compare between them, and can not “compute” using averaging or going over entire
dictionary. For example list of strings of unbounded length can not be enumerated, thus if
some item was “forgotten”, it cannot be returned as an output. For this reason, we keep
aside a line of work finding quantiles under a fixed dictionary: [23–25] and others. For
more background on quantile algorithms in the streaming model, see [16,18].

2. A Unified View of Randomized Solutions

To introduce further improvements to the streaming quantiles algorithms, we will
first re-explain the previous work using simplified concepts of one pair compression and
a compactor. Consider a simple problem in which your data set contains only two items
a and b, while your data structure can only store one item. We focus on the comparison-
based framework where we can only compare items and cannot compute new items via
operations such as averaging. In this framework, the only option for the data structure is to
pick one of them and store it explicitly. The stored item x is assigned weight 2. Given a rank
query q the data structure will report 0 for q < x, and 2 for q > x. For q /∈ [a, b] the output
of the data structure will be correct; however, for q ∈ [a, b], the correct rank is 1 and the
data structure will output with 0 or 2. It, therefore, introduces a +1/−1 error depending
on which item was retained. From this point on, q is an inner query with respect to the
pair (a, b) if q ∈ [a, b] and an outer query otherwise. This lets us distinguish those queries
for which an error is introduced from those that were not influenced by a compression.
Figure 1 depicts the above example of one pair compression.
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a b
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Figure 1. One pair compression for (a,b) introduces ±1 rank error to inner queries and no error to
outer queries.

The example gives rise to a high-level method for the original problem with a dataset
of size n and memory capacity of k items. Namely, (1) keep adding items to the data
structure until it is full; and (2) choose any pair of items with the same weight and compress
them. Notice that if we choose those pairs without care, in the worst case, we might end up
representing the full dataset by its top k elements, introducing an error of almost n, which
is much larger than εn. Intuitively, pairs being compacted (compressed) should close ranks,
thereby affecting as few queries as possible.

This intuition is implemented via a compactor. First introduced by Manku et al. in [14],
it defines an array of k items with weight w each, and a compaction procedure which
compress all k items into k/2 items with weight 2w. A compaction procedure first sorts all
items, then deletes either even or odd positions and doubles the weight of the rest. Figure 2
depicts the error introduced for different rank queries q, by a compaction procedure
applied to an example array of items [1, 3, 5, 8]. Notice that the compactor utilizes the same
idea as the one pair compression, but on the pairs of neighbors in the sorted array; thus
by performing k/2 non-intersecting compressions, it introduces an overall error of w as
opposed to kw/2.

The algorithm introduced in [14], defines a stack of H = O(log n
k ) compactors, each

of size k. Each compactor obtains as an input a stream and outputs a stream with half
the size by performing a compact operation each time its buffer is full. The output of the
final compactor is a stream of length k that can simply be stored in memory. The bottom
compactor that observes items has a weight of 1; the next one observes items of weight 2
and the top one 2H−1. The output of a compactor on h-th level is an input of the compactor
on (h + 1)-th level. Note that the error introduced on h-th level is equal to the number of
compactions mh = n

kwh
times the error introduced by one compaction wh. The total error

can be computed as: Err = ∑H
h=1 mhwh = H n

k = O
( n

k log n
k
)
. Setting k = O( 1

ε log εn) will
lead to an approximation error of εn. The space used by H compactors of size k each is
O( 1

ε log2 εn). Note that the algorithm is deterministic.

Compactor

Keeping odd positions

Keeping even positions

Introduced rank error

q1

0

q2

±w

q3

0

q4

±w

q5

0

1 3 5 8

1 5

3 8

Figure 2. Compacting [1, 3, 5, 8] introduces ±w rank error to inner queries q2,4 and no error to outer
queries q1,3,5.

Later, Agarwal et al. [12] suggested the compactor to choose the odd or even posi-
tions randomly and equiprobably, pushing the introduced error to zero in expectation.
Additionally, the authors suggested a new way of feeding a subsampled streams into the
data structure, recalling that O( 1

ε2 log 1
ε ) samples preserve quantiles with ±εn approxima-
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tion error. The proposed algorithm requires O( 1
ε log3/2 1

ε ) space and succeeds with high
constant probability.

To prove the result the authors introduced a random variable Xi,h denoting the error in-
troduced on the i-th compaction at h-th level. Then, the overall error is
Err = ∑H

h=1 ∑mh
i=1 whXi,h, where whXi,h is bounded, has mean zero and is independent

of the other variables. Thus, due to the Hoeffding’s inequality:

P(|Err| > εn) ≤ 2 exp
−ε2n2

∑H
h=1 ∑mh

i=1 w2
h

.

Setting wh = 2h−1 and k = O
(

1
ε

√
1/(εδ)

)
will keep the error probability bounded by

δ for O
(

1
ε

)
quantiles.

The following improvements were made by Karnin et al. [13].

1. Use exponentially decreasing size of the compactor. Higher weighted items receive
higher capacity compactors.

2. Replace compactors of capacity 2 with a sampler. This retains only the top O(log 1
ε )

top compactors.
3. Keep the size of the top O(log log 1/δ) compactors fixed.
4. Replace the top O(log log 1/δ) compactors with a GK sketch [17].

(1) and (2) reduced the space complexity to O( 1
ε

√
log 1/ε), (3) pushed it further

to O( 1
ε log2 log 1

ε ), and (4) led to an optimal O( 1
ε log log 1

ε ). The authors also provided a
matching lower bound. Note, the last solution is not mergeable due to the use of GK [17]
as a subroutine.

While (3) and (4) lead to the asymptotically better algorithm, its implementation is
complicated for application purposes and mostly are of a theoretical interest. In this paper,
we build upon the KLL algorithm of [13] using only (1) and (2).

In [13], the authors suggest the size of the compactor to decrease as kh = cH−hk,
for c ∈ (0.5, 1), then ∑H

h=1 ∑mh
i=1 w2

h ≤ n2/(k2C) and P(|Err| > εn) ≤ 2 exp
(
−Cε2k2) ≤ δ,

where C = 2c2(2c − 1) (In fact [13] has a fixable mistake in their derivation. For the
sake of completeness in Appendix A, we clarify that the original results hold, although
with slightly different constant terms). Setting k = O

(
1
ε

√
log 1/ε

)
leads to the desired

approximation guarantee for all O(1/ε) quantiles with constant probability. Note that
the smallest meaningful compactor has size 2, thus the algorithm will require k(1 + c +
. . . + clog1/ck) + O(log n) = k

1−c + O(log n) compactors, where the last term is due to the
stack of compactors of size 2. The authors suggested replacing that stack with a basic
sampler, which picks one item out of every 2wH−log1/ck updates at random and logically is
identical, but consumes only O(1) space. The resulting space complexity is O( 1

ε

√
log 1/ε).

We provide the pseudocode for the core routine in Algorithm 1.

Algorithm 1 Core routines for KLL algorithm [13]

1: function KLL.UPDATE(item)
2: if SAMPLER(item) then KLL[0].APPEND(item)
3: for h = 1 . . . H do
4: if LEN(KLL[h] ≥ kh) then KLL.COMPACT(h)
5: end for
6: end function
7: function KLL.COMPACT(h)
8: KLL[h].SORT(); rb = RANDOM({0,1});
9: KLL[h + 1].EXTEND(KLL[h][rb : : 2])

10: KLL[h]= []
11: end function
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3. Our Contribution

Although the asymptotic optimum is already achieved for the quantile problem,
there remains room for improvement from a practical perspective. In what follows, we
provide novel modifications to the existing algorithms that improve both their memory
consumption and run-time. In addition to the performance, we ensure the algorithm is easy
to use by having the algorithm require only a memory limit, as opposed to versions that
must know the values of ε, δ in advance. Finally, we benchmark our algorithm empirically.

3.1. Lazy Compactions

Consider a simplified model, when the length of the stream n is known in advance.
One can easily identify the weight on the top layer of the KLL data structure, as well as
the sampling rate and the size of each compactor. Additionally, these parameters do not
change while processing the stream. Then, note that while we are processing the first half
of the stream, the top layer of KLL will be at most half full, i.e., half of the top compactor
memory will not be in use during processing first n/2 items. Let s be the total amount
of allocated memory and c be the compactor size decrease rate. The top layer is of size
s(1− c), meaning that a fraction of (1− c)/2 is not used throughout that time period. The
suggested value for c is 1/

√
2, which means that this quantity is 15%. This is of course a

lower estimate as the other layers in the algorithm are not utilized in various stages of the
processing. A similar problem arises when we do not know the final n and keep updating it
online: When the top layer is full, the algorithm compacts it into a new layer; at this moment,
the algorithm basically doubles its guess of the final n. Although after this compaction k/2
items immediately appear on the top layer, we still have 1/4 of the top layer not in use until
the next update of n. This unused fraction accounts for 7% of the overall allocated memory.

We suggest all the compactors share the pool of allocated memory and perform a
compaction only when the pool is fully saturated. This way, each compaction is applied
to a potentially larger set of items compared to the fixed budget setting, leading to less
compactions. Each compaction introduces a fixed amount of error, thus the total error
introduced is lower. Figure 3 visualizes the advantage of using a shared pool of memory.
In Figure 4, you can see that the memory is indeed unsaturated even when we compact the
top level.

memory usage: 60%va
ni

lla
K

LL

memory usage: 90%

la
zy

K
LL

Figure 3. Compactor saturation: vanilla KLL vs. lazy KLL. Empty bar depicts the max capacity of
the layer while filled bar depicts utilized capacity of that layer: vanilla KLL ensures that individual
layer utilization is never crossing the max capacity of the layer, while lazy KLL ensures only than
total utilization across all layers is never higher that total max capacity across all layers.

Figure 4. Portion of unsaturated memory when compacting the top layer.
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Given the need to have a shared memory comes the question of how to perform the
compact operations. The idea is to find the lowest layer that has more items in its buffer
than its minimum capacity, and compact it. This scheme is formally defined in Algorithm 2.

Algorithm 2 Update procedure for lazy KLL

1: function KLL.UPDATE(item)
2: if SAMPLER(item) then
3: KLL[0].APPEND(item); itemsN++;
4: end if
5: if itemsN > sketchSpace then
6: for h = 1 . . . H do
7: if LEN(KLL[h]) ≥ kh then
8: KLL.COMPACT(h); break;
9: end if

10: end for
11: end if
12: end function

3.2. Reduced Randomness via Anti-Correlations

Consider the process involving a single compactor layer. A convenient way of analyz-
ing its performance is viewing it as a stream processing unit. It receives a stream of size
n and outputs a stream of size n/2. When collecting k items, it sorts them and outputs
(to the output stream) either those with even or odd locations. A deterministic compactor
may admit an error of up to n/k. A compactor that decides whether to output the even
or odds uniformly at random at every step admits an error of

√
n/k in expectation as the

directions of the errors are completely uncorrelated. Here, we suggest a way to force a
negative correlation that reduces the mean error by a factor of

√
2. The idea is to group the

compaction operations into pairs. At the (2i)-th compaction, choose uniformly at random
whether to output the even or odd items, as described above. In the (2i + 1)-th compaction,
perform the opposite decision compared to the (2i)-th compaction. This way, each coin flip
defines 2 consecutive compactions: with probability 1

2 , it is even→ odd (e→ o), and with
probability 1

2 , it is odd→ even (o → e).
Let us analyze the error under this strategy. Recall that for a rank query q and a

compaction operation, q is either an inner or outer query. If it is an outer query, it suffers
no error. If it is an inner query, it suffers and error of +w if we output the odds and −w if
we output evens. Consider the error associated with a single query after two consecutive
and anti-correlated compactions. We represent the four possibilities of q as io(inner-outer),
oi, ii, oo.

Clearly, in expectation, every two compactions introduce 0 error. Additionally, we con-
clude that instead of suffering an error of up to ±w for every single compaction operation,
we suffer that error for every two compaction operations. It follows that the variance of the
error is twice smaller, hence the mean error is cut by a factor of

√
2.

3.3. Error Spreading

Recall the analysis of all compactor-based solutions [12–14,16]. During a single com-
paction, we can distinguish two types of rank queries: inner queries, for which some errors
are introduced, and outer queries, for which no error is introduced. Though the algorithms
use this distinction in their analysis, they do not take an action to reduce the number of
inner queries. It follows that for an arbitrary stream and an arbitrary query, the query may
be an inner query the majority of the time, as it is treated in the analysis. In this section,
we provide a method that makes sure that a query has an equal chance of being inner or
outer, thereby cutting in half the variance of the error associated with any query, for any
stream. Consider a single compactor with a buffer of k slots, and suppose k is odd. On each
compaction, we flip a coin and then either compact the items with indices 1 to k− 1 (prefix
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compaction) or 2 to k (suffix compaction) equiprobably. This way each query is either inner
or outer equiprobably. Formally, for a fixed rank query q: with probability at least 1

2 , it is
an outer query and then no error is introduced, with probability at most 1

4 , it is an inner
query with error −w; and with probability at most 1

4 , it is an inner with error +w. We thus
still have an unbiased estimator for the query’s rank, but the variance is cut in half. We
note that the same analysis applies for two consecutive compactions using the reduced
randomness improvement discussed earlier: The configuration (ii, io, oi, oo) of a query in
two consecutive compactions described in Table 1 will now happen with equal probability,
hence we have the same distribution for the error: 0 with probability at least 1

2 , +w and
−w with probability at most 1

4 each, meaning that the variance is cut in half compared to
its worse case analysis without the error-spreading improvement. Figure 5 visualizes the
analysis of the error for a fixed query during a single compaction operation.

Table 1. Error of a fixed rank query during two anti-correlated compactions.

ii io oi oo
even→ odd 0 −w +w 0 w.p. 1/2
odd→ even 0 +w −w 0 w.p. 1/2

Keeping
odds

Keeping
evens

Pr
efi

x
co

m
pa

ct
io

n

Keeping
odds

Keeping
evens

Su
ffi

x
co

m
pa

ct
io

n

q1

0

0

0

0

q2

+w

−w

0

0

q3

0

0

+w

−w

q4

+w

−w

0

0

q5

0

0

+w

−w

q6

0

0

0

0

1 3 5 8 11

1 5
11

3 8
11

1
3 8

1
5 11

Figure 5. Error analysis for a single query during a compaction. There are now four possibilities:
prefix/suffix compaction, keep even/odd positions.

3.4. Sweep-Compactor

The error bound for all compactor-based algorithms follows from the property that
every batch of k/2 pair compressions is disjoint. In other words, the compactor makes
sure that all of the compacted pairs can be partitioned into sets of size exactly k/2, the
intervals corresponding to each set are disjoint, and the error bound is a result of this
property. In this section, we provide a modified compactor that compacts pairs one at
time while maintaining the guarantee that pairs can be split into sets of size at least k/2
such that the intervals corresponding to the pairs of each set are disjoint. Compacting a
single pair takes constant time; hence, we reduce the worst-case update time from O( 1

ε ) to
O(log 1

ε ). Additionally, for some data streams, the disjoint batch size is strictly larger than
k/2, resulting in a reduction in the overall error.

The modified compactor operates in phases we call sweeps. It maintains the same
buffer as before and an additional threshold θ initialized as a special null value. The
items in the buffer are stored in non-decreasing sorted order. When we reach capacity, we
compact a single pair. If θ is null we set it to −∞ (Notice that −∞ is still defined in the
comparison model) or to the value of the smallest item uniformly at random. This mimics
the behavior of the prefix/suffix compressions described earlier (If we wish to ignore
prefix/suffix compactions, θ should always be initialized to −∞). The pair we compact is
a pair of consecutive items where the smaller item is the smallest item in the buffer that
is larger than θ (We ignore the case of items with equal value. Note that if that happens,
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these two items should be compacted together, as this is guaranteed not to incur a loss).
If no such pair exists due to θ being too large, we start a new sweep, meaning we set θ to
null and act as detailed above. We note that a sweep is the equivalent to a compaction of a
standard compactor. Due to this reason, we consistently keep either the smaller or larger
item when compacting a single pair throughout a sweep. To keep true to the technique of
reduced randomness, we have sweep number 2i + 1 draw a coin to determine if the small
or large items are kept, and sweep number 2i + 2 does the opposite. The pseudo-code for
the sweep-compactor is given in Algorithm 3, and Figure 6 visualizes the inner state of the
sweep-compactor during a single sweep.

1 2 3 7 8

θ

0 3 5 7 8

θ

0 4 7 8 9

θ

0 2 4 9 12

θ

Figure 6. The inner state of a sweep-compactor during a single sweep operation. Notice that in this
example, although we have a buffer of size k = 5, a single sweep managed to compress 4 pairs, rather
than bk/2c = 2.

Algorithm 3 Sweep compaction procedure

1: function KLLSWEEP.COMPACT(h)
2: KLL[h].SORT()
3: i∗ = argmini (KLL[h][i] ≥ KLL[h].θ)
4: if i∗ == None then i∗ = 0;
5: KLL[h].θ = KLL[i∗ + 1];
6: KLL[h].POP(i∗+ RANDBIT());
7: return KLL[h].POP(i∗)
8: end function

Notice that for an already sorted stream, the modified compactor performs only
a single sweep, hence in this scenario the resulting error would not be a sum of n/k
independent and identically distributed error terms, each of magnitude ±w, but rather a
single error term of magnitude ±w. Though this extreme situation may not happen very
often, it is likely that the data admits some sorted subsequences and the average sweep
would contain more than k/2 pairs. We demonstrate this empirically in our experiments.

4. Experimental Results
4.1. Data Sets

To study the algorithm properties, we tested it on both synthetic and real datasets,
with various sizes, underlying distributions and orders. Note that all the approximation
guarantees of the investigated algorithms do not depend on the order in the data; however,
in practice, the order might significantly influence the precision of the output within
the theoretical guarantees. Surprisingly, the worst-case is achieved when the dataset is
randomly shuffled. Therefore, we will pay more attention to randomly ordered data sets
in this section. We also experiment with the semi-random orders that resemble more to
real life applications. Due to the space limitations, we could not possibly present all the
experiments in the paper and present here only the most interesting findings.

Our experiments were carried on the following synthetic datasets: Sorted is a stream
with all unique items in ascending order. Shuffled is a randomly shuffled stream with all
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unique items. Trending is st = t/n + mean-zero random variable. Trending stream mimics
a statistical drift over time (widely used in ML). Brownian simulates a Brownian motion
or a random walk, which generates time series data not unlike CPU usage, stock market,
traffic congestion, etc. The length of the stream varies from 105 to 109 for all the datasets.

In addition to synthetic data, we use two publicly available datasets. The first contains
text information and the second contains IP addresses. Both object types have a natural
order and can be fed as input to a quantile sketching algorithm.

(1) Anonymized Internet Traces 2015 (CAIDA) [26]: The dataset contains anonymized
passive traffic traces from the internet data collection monitor, which belongs to CAIDA
(Center for Applied Internet Data Analysis) and is located at an Equinix data center in
Chicago, IL. For simplicity, we work with the stream of pairs (IPsource, IPdestination). The
comparison model is lexicographic. We evaluate the performance on the prefixes of the
dataset of different sizes: from 107 to 109. Note that evaluation of the CDF of the underlying
distribution for traffic flows helps optimize packet managing. CAIDA’s datasets are used
widely for verifying different sketching techniques to maintain different statistics over the
flow, and finding quantiles and heavy hitters specifically.
(2) Page view statistics for Wikimedia projects (Wiki) [27]: The dataset contains counts
for the number of requests for each page of the Wikipedia project during 8 months of
2016. The data is aggregated by day, i.e., within each day data is sorted and each item is
assigned with a count of requests during that day. Every update in this dataset is the title of
a Wikipedia page. We will experiment with both the original dataset and with its shuffled
version. Similarly to CAIDA, we will consider for the Wiki dataset prefixes of size from
107 to 109. In our experiments, each update is a string containing the name of the page in
Wikipedia. The comparison model is lexicographic.

4.2. Implementation and Evaluation Details

All the algorithms and experimental settings are implemented in Python 3.6.3. The ad-
vantage of using a scripting language is fast prototyping and readable code for distribution
inside the community. Time performance of the algorithm is not the subject of the research
in the current paper, and we leave its investigation for future work. This in particular
applies to the sweep compactor KLL, which theoretically improves the worst-case update
time exponentially in 1

ε . All the algorithms in the current comparison are randomized, thus
for each experiment the results presented are averaged over 50 independent runs. KLL
and all suggested modifications are compared with each other and LWYC (the algorithm
Random from [28]). In [16], the authors carried on the experimental study of the algorithms
from [12,14,15,17] and concluded that their own algorithm (LWYC) is preferable to the
others: better in accuracy than [17] and similar in accuracy compared with [15], while
LWYC has a simpler logic and easier to implement.

As mentioned earlier, we compared our algorithms under a fixed space restrictions. In
other words, in all experiments, we fixed the space allocated to the sketch and evaluated the
algorithm based on the best accuracy it can achieve under that space limit. We measured
the accuracy as the maximum deviation among all quantile queries, otherwise known as
the Kolmogorov–Smirnov divergence, widely used to measure the distance between CDFs
of two distributions. Additionally, we measure the introduced variance caused separately
by the compaction steps and sampling. Its value can help the user to evaluate the accuracy
of the output. Note that for KLL, this value depends on the size of the stream, and is
independent of the arrival order of the items. In other words, the guarantees of KLL are
the same for all types of streams, adversarial and structured. Some of our improvements
change this property; recall that the sweep compactor KLL, when applied to sorted input,
requires only a single sweep per layer. For this reason, in our experiments we found
variance to be dependent not only on the internal randomness of the algorithm, but also
the arrival order of the stream items.
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4.3. Results

Note that the majority modifications presented in the current paper can be combined
for better performance, due to the space limitations we present only some of them. For
the sake of simplicity, we will fix the order of suggested modification as: lazy, reduced
randomness, error spreading and sweeping, and denote all possible combinations as four
0/1 digits, i.e., 0000 would imply the vanilla KLL without any modifications, while 0011
would imply that we use KLL with error spreading trick and sweeping.

In Figure 7a,b, we compare the size/precision trade-off for LWYC, vanilla KLL, and
KLL with modifications. First, we can see that all KLL-based algorithms provide the
approximation ratio significantly better than LWYC as the space allocation is growing,
which confirms theoretical guarantees. Second, from the experiments, it becomes clear
that all algorithms behave worse on the data without any order, i.e., shuffled stream.
Although the laziness gives the most significant push to the performance of the Vanilla
KLL, all other modifications improve the precision even further if combined. One can
easily see it in Figure 7g for the shuffled dataset and Figure 7h for the sorted stream. Same
experiments were carried on for the CAIDA dataset (Figure 7d), and shuffled Wikipedia
page statistics (Figure 7e).

Although, theoretically, none of the algorithms should depend on the length of the
dataset, we verified this property in practice, and the results can be seen on Figure 7f.

In Figure 7c, we verified that although all the theoretical bounds hold, KLL and
LWYC performance indeed depends on the amount of randomness in the stream, more
randomness leads to less precision. Our experiments were held on the trending dataset, i.e.,
the stream containing two components: A × (mean-zero random variable) and B × (trend
t/n). Figure 7c shows how precision drops as A/B start to grow (X-axis). Note that
modified algorithm does not drop in precision as fast as vanilla KLL or LWYC.

(a) (b) (c)

(d) (e) (f)

Figure 7. Cont.
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sketch
size 27 28 29 210 211

LWYC 602 352 198 146 86
KLL-0000 447 299 149 63 40
KLL-1000 321 179 95 47 25
KLL-1100 313 166 82 43 23
KLL-1110 322 165 84 45 23
KLL-1111 256 146 82 43 23

(g) For compactness, each entry is an error·104

sketch
size 27 28 29 210 211

LWYC 117 59 26 15 8
KLL-0000 264 104 53 17 13
KLL-1000 107 62 28 11 8
KLL-1100 102 67 28 14 6
KLL-1110 121 64 34 18 8
KLL-1111 77 43 18 8 5

(h) For compactness, each entry is an error·104

Figure 7. (a,b,d,e) depict the trade-off between maximum error over all queried quantiles and the
sketch size: (a,b) test the performance of the algorithms on shuffled and sorted data streams; (d,e) on
CAIDA and Wikipedia datasets correspondingly. (g,h) show the same trade-off, but make it possible
to see the difference between different combos. (f) demonstrates independence of the algorithms
performance from stream length, dashed lines indicate the sketch size equal 256 and the solid lines
correspond to the sketch of size 1024. Finally, (c) mix the trending data with a different amounts of a
random noise and demonstrates the influence of the stream order on the algorithm precision.

5. Conclusions

We verified experimentally that the KLL algorithm proposed by Karnin et al. [13]
has predicted asymptotic improvement over LWYC [16].We proposed four modifications
to KLL with provably better constants in the approximation bounds. Our experiments
compared suggested techniques against KLL and LWYC under fixed memory settings: all
algorithms obtained the same amount of allocated memory, and we compared the largest
deviation from the ground truth among all quantile-queries. Experiments verified that
the approximation is roughly twice as good in practice compared to KLL and more than
four times better compared to LWYC (and growing with the space allocated to the sketch).
Moreover, the worst-case update time for the presented sweep-compactor-based KLL is
O(log 1/ε), which improves over the rest of the compactor-based algorithms, with vanilla
KLL being the next best competitor with an exponentially slower update time of O(1/ε).
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Appendix A

Fixing the Original KLL Proof

The original paper by Karnin et al. [13] contains a mistake regarding the number of
compactions performed at a single level. Correcting the mistake is trivial and does not
change the authors claim. Nevertheless, we provide a correction of their argument. The
authors use compactors of exponentially decreasing size. Higher weight items receive
higher capacity compactors. The error appeared in the last inequality of the bound on
mh—the number of compaction made at level h (page 6 in [13]):

mh ≤
n

khwh
≤ 2n

k2H (2/c)H−h ≤ (2/c)H−h−1, (A1)

where H is the height of the top compactor, kh = kcH−h is the size of the compactor at
height h. Note, that the last inequality implies n ≤ ck2H−2 = kh−1wh−1, while from the
definition of H it follows that at least one compaction happened on level H − 1. Therefore,
n ≥ kh−1wh−1. Fixing this slightly increases the constant in the final upper bound.

Recall that k ≥ 4 and c ∈ (0.5, 1). We reuse the notation and refer to the height of the
top compactor as H. Additionally, we introduce H′, which denotes the height of the top
compactor of size 2. Due to the choice of k and c, we can conclude that H′ ≤ H − 1.

Every compactor of size 2 contains at most one item, otherwise it would be compacted.
Therefore, the bottom H′ compactors have total weight

H′

∑
h=1

wh =
H′

∑
h=1

2h−1 ≤ 2H′ .

Similarly, every compactor of size kh contains at most kh − 1 = kcH−h − 1 ≤ (k− 1)cH−h

items. Then, the total weight of compactors from level H′ + 1 to H is:

H

∑
h=H′+1

(kh − 1)wh ≤
H

∑
h=1

(k− 1)cH−h2h−1

= (k− 1)cH−1
H

∑
h=1

(2/c)h−1

= (k− 1)cH−1 (2/c)H − 1
2/c− 1

≤ (k− 1)2H

2− c
≤ (k− 1)2H

Putting together the total weight of the bottom H′ and top H − H′ compactors, we
obtain the upper bound on the number of items processed:

n ≤ (k− 1)2H + 2H′ ≤ (k− 1 + 1/2)2H ≤ k2H .

Plugging n ≤ k2H into the last inequality of Equation (A1) leads to mh ≤ 2(2/c)H−h,
which is 4/c times worse than the initial derivation. Repeating the argument as in [13]
and in the Section 2 of the current paper, we obtain ∑H

h=1 ∑mh
i=1 w2

h ≤
2n2/k2

c3(2c−1) . As in [13],
applying Hoeffding’s inequality gives

P(|Err| > εn) ≤ 2 exp
(
−Cε2k2

)
≤ δ.

However, the constant C has changed from 2c2(2c− 1) to C = 1
2 c3(2c− 1). Note that

all asymptotic guarantees stay the same as in [13].
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