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Abstract: Full-duplex (FD) communication systems allow for increased spectral efficiency but require
effective self-interference cancellation (SIC) techniques to enable the proper reception of the signal
of interest. The underlying idea of digital SIC is to estimate the self-interference (SI) channel based
on the received signal and the known transmitted waveform. This is a challenging task since the SI
channel involves, especially for mass-market FD transceivers, many nonlinear distortions produced
by the impairments of the analog components from the receiving and transmitting chains. Hence,
this paper first analyzes the power of the SI components under practical conditions and focuses
on the most significant one, which is proven to be produced by the I/Q mixer imbalance. Then,
a widely-linear digital SIC approach is adopted, which simultaneously deals with the direct SI
and its image component caused by the I/Q imbalance. Finally, the performances achieved by
linear and widely-linear SIC approaches are evaluated and compared using an experimental FD
platform relying on software-defined radio technology and GNU Radio. Moreover, the considered
experimental framework allows us to set different image rejection ratios for the transmission path
I/Q mixer and to study its influence on the SIC capability of the discussed approaches.

Keywords: full-duplex communications; self-interference; I/Q imbalance; image rejection ratio;
software-defined radio; widely-linear adaptive filter

1. Introduction

Full-duplex (FD) operation mode represents a new paradigm in the radio communi-
cation field, which promises a significant increase in spectral efficiency in response to the
emerging problem of radio frequency (RF) spectrum overload. Involving simultaneous
transmission and reception on the same RF carrier, the FD transceivers are subject to a
strong self-interference (SI) signal induced in the reception path by its own transmission,
which overwhelms the signal of interest (SoI).

To suppress the SI, various electromagnetic, analog, and digital self-interference
cancellation (SIC) solutions have been proposed in the FD-related literature [1–3]. The
electromagnetic SIC is performed directly on the radiated RF signal and basically consists of
increasing the isolation between the receiving and transmitting antennas [4,5]. The next SIC
stage acts at the analog signal processing level and makes use of the SI estimation provided
by adaptive or non-adaptive multi-tap filters from the signal induced in the transmitting
antenna on the uplink [6].

Based on the known transmitted signal, most digital SIC solutions [7–11] aim to elimi-
nate the residual SI remaining after the first two cancellation stages, whose performance is
limited by the analog components’ complexity and impairments. Therefore, a realistic SI
model, taking into account all the important nonlinearities, is needed to improve the SIC
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capability of FD transceivers. The most significant sources of nonlinear distortions, includ-
ing the power amplifier (PA), in-phase and quadrature (I/Q) mixer, and local oscillator
(LO), have recently received increasing attention.

In order to achieve the best trade-off between cost and performance, the wireless
systems adopt low-cost, direct-conversion transceivers. In addition, since the same carrier
frequency is used for transmission and reception, the shared oscillator configuration is the
most common for an FD transceiver. Therefore, assuming this configuration, the phase noise
that occurs in the transmission path is implicitly compensated after the down-conversion
so that the phase distortion can be considered negligible [10,12,13].

The PA nonlinear distortion has been widely studied in simulated and experimental
approaches, and different estimations have been proposed [14–17]. Additionally, the I/Q
imbalance has been identified as another significant distortion source engendering a strong
SI image component in the SI channel of FD transceivers. According to [18,19], apart from
the SI component caused by the SI channel, which can be significantly mitigated by linear
SIC approaches, the SI image component represents the dominant distortion, especially for
mass-market RF transceivers.

The quadrature mixer impairments are quantified by the image rejection ratio (IMRR),
which represents the power ratio between the desired signal and its complex conju-
gate version caused by the I/Q imbalance, called image signal. Differently from the
high-performance laboratory equipment that ensures an image signal attenuation of
60–80 dB, the IMRR associated with mass-market RF transceivers is typically in the range of
20–30 dB [18,20]. Consequently, especially in the case of the direct-conversion architecture
of FD transceivers, the image signal results in severe distortions that can be mitigated using
the conjugated transmitted signal.

The approaches that jointly consider the linear and image components of the SI signal
are known as widely-linear approximations. To the best of our knowledge, the widely-
linear digital SIC was first proposed in [18], where the SI signal is estimated based on the
transmitted signal and its complex conjugate.

Other recent research works aim to decrease the complexity of the widely-linear
adaptive filter. In [21], the adaptive filter’s coefficients are updated based on a complex
dual-channel estimation involving two independent cost functions, which correspond to the
real and imaginary parts of the instantaneous error. In addition, augmented nonlinear LMS
(Least Mean Squares) approaches that jointly consider the PA third-order nonlinearity and
the I/Q imbalance were proposed in [11,17,19,22]. In order to minimize the SIC technique
complexity, a variable periodic frequency-domain update, relying on the instantaneous
square error, was introduced in [8].

However, most digital SIC techniques have been validated in simulated conditions,
and only a few recent papers have reported results obtained using experimental setups
based on the wireless open-access research platform (WARP) [23–25]. Since the WARP
platform provides an IMRR of 40–50 dB [26,27], the effect of the I/Q imbalance can be
considered negligible in all these configurations, while for the mass-market FD transceivers,
the I/Q imbalance remains a serious challenge that deserves more attention.

Hence, in this paper, we first study the I/Q imbalance influence in FD communication
systems. We adopt a SIC method derived from the adaptive filtering theory that aims to
minimize the conjugated SI signal due to the I/Q mixer impairments. Another important
contribution of this paper consists of an experimental testbed developed using Software-
Defined Radio (SDR) technology and GNU Radio (https://www.gnuradio.org/, accessed
on 15 September 2022), which enables the evaluation of the proposed SIC solutions under
realistic conditions. Furthermore, the Universal Software Radio Peripheral (USRP) X310
platform, which is the main element of our experimental framework, allows the software
control of the IMRR value, thus being able to operate as both a mass-market and a high-
performance FD transceiver. The performance of the proposed SIC algorithm is finally
evaluated in terms of SIC capability in the absence of the SoI.

https://www.gnuradio.org/
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The remainder of the paper is organized as follows. Section 2 summarizes the main
distortions due to the FD transceiver hardware impairments and studies the power levels
of the introduced SI signal components. The considered linear and widely-linear SIC
approaches, relying on the Recursive Least Squares (RLS) adaptive filtering algorithm,
are briefly recalled in Section 3. Then, the proposed experimental setup, along with
implementation details and capabilities, are specified in Section 4. Section 5 is dedicated
to the performance evaluation of the proposed SIC methods, under real conditions, for
different IMRR values. Finally, we present some conclusions and plan future work in
Section 6.

In the following, continuous and discrete time signals are expressed in italic lowercase,
while vectors are denoted by bold lowercase symbols. The operators ⊗, (·)*, and (.)T stand
for signal convolution, complex conjugate, and vector transposition, respectively. The
acronyms used throughout the paper are also summarized in Table 1.

Table 1. Acronyms used throughout the paper.

Acronym Signification

ADC Analog to Digital Converter
AWGN Zero-mean Additive White Gaussian Noise

DAC Digital to Analog Converter
FD Full-Duplex

IMD Third-order Nonlinear Component
IMRR Image Rejection Rate
INR Interference to Noise Ratio
LNA Low Noise Amplifier
LO Local Oscillator
PA Power Amplifier
RF Radio Frequency

RLS Recursive Least Squares
Rx Receiver

SDR Software-Defined Radio
SI Self-Interference

SIC Self-Interference Cancellation
SINR Signal-to-Interference and Noise Ratio
SoI Signal of Interest
Tx Transmitter

UHD Universal Hardware Driver
USRP Universal Software Radio Peripheral
VGA Variable Gain Amplifier

2. Self-Interference in Full-Duplex Transceivers

The block diagram of a direct-conversion FD transceiver is depicted in Figure 1, along
with the main continuous and discrete time signals required for describing its operating
principle. The SI, denoted by s(t), is a part of the power amplifier’s (PA) output signal
xPA(t) , which reaches the receiving antenna through an SI channel hSI(t) encompassing
the RF cancellation stage.

As expressed in Equation (1), the received signal y(t) is the superposition of the SoI
r(t), which the FD system aims to receive from the correspondent transceiver, the SI signal
s(t) induced by the transceiver’s own transmission, and an additive white Gaussian noise
(AWGN) z(t).

y(t) = hSI(t)⊗ xPA(t) + r(t) + z(t). (1)

In addition to the SI channel effects, the SI signal includes nonlinear distortions due
to the impairments of the analog components involved in the transmission and reception
chains. According to the FD-related literature, the transmitter I/Q imbalance and the PA
nonlinear effects dominate the residual SI [18,19,28].
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Figure 1. FD transceiver block diagram and associated signals.

2.1. I/Q Mixer Imbalance

The quadrature mixer represents a significant source of nonlinearities, especially in
direct-conversion transceivers. The amplitude and phase mismatches between the parallel
channels dealing with the I and Q components, known as I/Q imbalance, result in an
image signal that corresponds to the complex conjugate of the original signal. According to
Figure 1 and assuming a frequency-dependent model for the up-conversion transformation
on the transmission path, the signal distorted by I/Q imbalance can be expressed as:

xIQ(t) = gTx
1 (t)⊗ x(t) + gTx

2 (t)⊗ x∗(t), (2)

with:

gTx
1 (t) =

gTx
I (t) + γgTx

Q (t)e−jϕ

2
, gTx

2 (t) =
gTx

I (t)− γgTx
Q (t)ejϕ

2
, (3)

where
{

gTx
I (t), gTx

Q (t)
}

represent the impulse responses of low-pass filters for I and Q
channels, respectively, including the amplitude (γ) and phase (ϕ) mismatches [29].

The I/Q imbalance is characterized by the power ratio between the signal and its
image component, known as the image rejection rate, and calculated as:

IMRR( f ) =
E
[∣∣X( f )GTx

1 ( f )
∣∣2]

E
[∣∣X∗(− f )GTx

2 ( f )
∣∣2] =

E
[∣∣GTx

1 ( f )
∣∣2]

E
[∣∣GTx

2 ( f )
∣∣2] , (4)

where GTx
1 ( f ) and GTx

2 ( f ) stand for the transfer functions corresponding to gTx
1 (t) and

gTx
2 (t), respectively [30].

In the same way, at the reception path, the output of the receiver’s I/Q mixer can be
expressed as:

yIQ(t) = gRx
1 (t)⊗ yLNA(t) + gRx

2 (t)⊗ y∗LNA(t), (5)

where
{

gRx
1 (t), gRx

2 (t)
}

are defined similarly to
{

gTx
1 (t), gTx

2 (t)
}

, using the impulse re-
sponses of the down-conversion related low-pass filters, while yLNA(t) is the output
signal of the considered ideal LNA, providing an amplification factor of kLNA:

yLNA(t) = kLNAy(t). (6)

2.2. Power Amplifier Nonlinearity

For energy-efficient communications systems, the PA typically operates close to its
saturation point, leading to significant nonlinear distortions and short-term memory effects.
Thus, the PA nonlinear behavior results in spectral regrowth and new harmonic components
at multiples of the carrier frequency.

The PA nonlinear behavior and its estimation have been widely studied by both
simulated and experimental approaches. Recently, increasingly accurate models have been
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developed based on the Volterra series and involving Taylor series expansion to estimate
the PA nonlinear distortions [14–16].

In order to decrease the model complexity and the number of parameters that need
to be estimated, other derived models, such as Weiner or Hammerstein, which can be
used in different parallel or serial coin terms of complexity and accuracy, are provided
in [31], which concludes that for an AB class power amplifier, the parallel Hammerstein
(PH) model provides the most accurate estimation involving a low number of parameters.
This characteristic makes it particularly suitable for SI cancellation approaches [17,32,33].

According to this approximation model, the PA output signal can be expressed as:

xPA(t) =
P

∑
p=0

NPH

∑
n=0

a2p+1(n)xIQ(t− nTs)
∣∣xIQ(t− nTs)

∣∣2p, (7)

where NPH is the memory length of the PH model with nonlinearity order (2P + 1),
Ts stands for the sampling period, a2p+1(n) is the equivalent filter impulse response for
the (2p + 1)th order harmonic, and xIQ(t) denotes the signal at the output of the I/Q trans-
mitter’s mixer. For simplicity, only the third-order nonlinear component (IMD), further
denoted as xIMD(t), is considered, so that the PA output signal is given by:

xPA(t) =
NPH

∑
n=0

a0(n)xIQ(t− nTs) +
NPH

∑
n=0

a3(n)xIQ(t− nTs)
∣∣xIQ(t− nTs)

∣∣2︸ ︷︷ ︸
xIMD(t)

, (8)

2.3. Power of SI Components

Relying on the SI components discussed above, we can now express the discrete-time
SI signal s(n) at the output of the ADC. To this aim, let us consider the impulse responses of
the channels that encompass all the effects affecting the main SI components, including the
SI mitigation in the analog and RF domains, as in [18]. They are denoted hlin and hlin,conj for
the SI channels seen by the FD transceiver’s own transmitted signal x(n) and its conjugate
x∗(n), respectively. Similarly, hIMD and hIMD,conj correspond to the SI channels seen by
the third-order nonlinear component of the PA output signal xIMD(n) and its conjugate
x∗IMD(n), respectively.

The discrete-time SI signal is then obtained as the sum of the convolution products
between the four signals mentioned above and the associated impulse responses of the
corresponding SI channels:

s(n) = hlin(n)⊗ x(n) + hlin,conj(n)⊗ x∗(n) + hIMD(n)⊗ xIMD(n)

+ hIMD,conj(n)⊗ x∗IMD(n) + q(n) + z(n).
(9)

As can be seen from (9), in addition to the distortions introduced by the PA nonlinearity
and I/Q imbalance, the SI signal s(n) also includes the quantization noise q(n) and the
thermal noise z(n). According to [11,18,22], z(n) is an AWGN, and its variance is computed
as in (10):

σ2
z =

kBBkLNAkIQ psen

SNRreq
. (10)

The quantization noise q(n) is also considered to be an AWGN [34,35] characterized by
its variance given by (11):

σ2
q =

pADC

106.02b+4.76−PAPR/10 . (11)

The physical meaning of the parameters involved in Equations (10) and (11) are
summarized in Table 2.
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Table 2. Typical parameters for FD transceivers and their notations.

Parameter Symbol Value

Receiver sensitivity psen −89 dBm
SNR requirement SNRreq 15 dB
Transmit power px −5–25 dBm
RF cancellation aRF 40 dB

Analog cancellation aanl 30 dB
PA gain a0 27 dB

PA IMD attenuation a1 −80 dB
Rx VGA gain kBB 1–51 dB

LNA gain kLNA 25 dB
Tx and Rx mixer gain kIQ 6 dB

IMRR - 25 dB (Type 1)
40 dB (Type 2)

ADC dynamic range pADC 7 dB
Peak-to-average-power ratio PAPR 10 dB

ADC bits b 12

Based on the suggestions presented in [11,18], the power levels of the SI components
are studied considering two typical direct-conversion FD transceivers, whose main parame-
ters are listed in the table above. In accordance with the 3GPP LTE specifications [18,20], an
IMRR value of 25 dB is chosen for the Type 1 transceiver, which is typical for mass-market
RF transceivers, while an IMRR value of 40 dB, specific for high-tech communications
systems and widely used during laboratory validation tests, is taken for the Type 2 FD
transceiver. With the exception of the I/Q mixer performance, all the other operating
parameters are identical in both considered scenarios.

The SI signal is investigated assuming an FD transceiver with RF and analog SI
cancellation capabilities of 40 dB and 30 dB, respectively. Moreover, to highlight the
influence of the distortions over the SoI transmitted by the corresponding transceiver, its
power at the FD receiver’s input is set at 15 dB above the thermal noise. Assuming the FD
transceiver’s parameters listed in Table 2, the power levels of the SI components induced in
the reception path for mass-market (Type 1) and high-performance (Type 2) FD transceivers
are analyzed comparatively by simulation. The results, shown in Figure 2, are achieved
considering a transmission power of the FD transceiver ranging from −5 dBm to 25 dBm.
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Figure 2. Power of SI components w.r.t. the transmitted power of an FD transceiver of (a) Type 1; (b) Type 2.

It can be noticed that for both FD systems, the dominant SI components are represented
by the linear SI (SI) and the conjugated SI signal (Conjugated SI). Moreover, considering
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a linear digital approach, with 27–57 dB SI cancellation, which is feasible under realistic
conditions [11,18,36,37] depending on the transmit power, the linear SI component can be
further attenuated. Consequently, the residual SI level (Residual SI) achieved after the linear
SIC is below that of the SoI and comparable to the thermal noise.

Assuming only the linear SI cancellation solution is implemented, it is clear that
the distortion produced by the I/Q mixer imbalance still seriously degrades the signal-
to-interference and noise ratio (SINR) of the FD transceiver. Indeed, the power of the
conjugated SI exceeds that of the SoI, making it impossible to perform a coherent reception,
especially in the case of higher transmitted power.

Note that for the Type 1 FD transceiver, this is true over almost the whole range of the
considered transmitted power. Even if it is not such a critical problem in the case of a Type 2 FD
system, when the transmitted power is above 20 dBm, the conjugated SI is still more powerful
than the SoI. Therefore, regardless of the FD transceiver performance, the development of SIC
solutions taking into account the I/Q mixer imbalance effect is mandatory.

3. Adaptive Filtering for Self-Interference Cancellation

The digital SIC approaches derived from the adaptive filtering theory aim to achieve
an accurate estimation of the SI signal based on the known baseband transmitted signal.
The adaptive filter is designed to regenerate the SI signal, including the SI channel effects,
in order to subtract it from the received signal and thus achieve the SIC.

Under practical conditions, the SIC capability of the adaptive filter is limited by the
presence of thermal noise and nonlinear distortions introduced by the impairments of
the analog Tx and Rx components. The SIC performance is strongly related to the SI
approximation accuracy. It is typically evaluated, in the absence of the SoI, as the power
ratio between the SI signal and the residual SI signal:

SICdB = 10 log10

 ∑
n
|s(n)|2

∑
n
|s(n)− ŝ(n)|2

. (12)

3.1. Linear Self-Interference Cancellation

The adaptive filter performs a linear SIC and ignores any non-linear signal distortion.
It regenerates the SI signal according to the equation below:

ŝlin(n) = hT(n)x(n), (13)

where h(n) ∈ C represents the (N × 1) vector of the adaptive filter’s coefficients that
models the SI channel, including the memory effect, while x(n) is a (N × 1) vector formed
by N consecutive samples of the baseband transmitted signal.

3.2. Widely-Linear Self-Interference Cancellation

According to the widely-linear approach [18], the SI signal can be estimated based on
the transmitted signal and its conjugate version according to Equation (14):

ŝwlin(n) = hT
1 (n)x(n) + hT

2 (n)x
∗(n), (14)

where {h1(n), h2(n)} ∈ C represent the (N × 1) vectors of filter’s coefficients modeling
the linear and image channel responses. Furthermore, Equation (14) may be collapsed and
expressed as in Equation (15):

ŝwlin(n) =
[
hT

1 (n), hT
2 (n)

][ x(n)
x∗(n)

]
= hwlin(n)

[
x(n)
x∗(n)

]
, (15)

where the (1 × 2N) vector hwlin(n) simultaneously models the linear and conjugated
channel effects.
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The adaptive filter’s coefficients can then be calculated relying on the Wiener solution
or using its different iterative approximations provided by the Least Mean Squares (LMS),
Normalized Least Mean Squares (NLMS), or Recursive Least Squares (RLS) algorithms.
By comparing these different algorithms, we concluded that the RLS achieves the best
performance in terms of estimation accuracy, stability, and convergence speed [9].

4. USRP-Based Experimental Setup

Due to the SI channel complexity, it is extremely challenging to perform a realistic
simulation of the operation mode of FD communication systems. Thus, it is much more
convenient to develop experimental testbeds for the validation and evaluation of the
proposed SIC approaches. USRP-based platforms [7] embedding SDR technology represent
promising tools for testing and evaluating the performance of state-of-the-art solutions in
the radio communications domain.

4.1. USRP Framework

The experimental testbed, shown in Figure 3, consists of a USRP X310 platform that
operates in FD mode and is driven by GNU Radio via Universal Hardware Driver (UHD).
The USRP X310 platform consists of a UBX 160 USRP daughterboard that covers frequencies
from 10 MHz to 6 GHz with up to 160 MHz of instantaneous bandwidth [38]. GNU Radio
allows controlling the USRP’s transmission power by a gain control tunable parameter,
whose values vary from 0 to 31.5 dB for the USRP X310 platform. Thus, the SI signal power
can be varied in quite a wide range [39].
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Figure 3. Experimental setup for FD transceiver testing.

The FD transceiver, relying on the USRP X310 platform, incorporates log periodic
antennas LP0965 operating in the 850 MHz–6.5 GHz frequency range and having a gain of
5–6 dBi [40]. As can be noticed in Figure 3, the reception and transmission antennas are
arranged out of phase with 90◦, at a distance of 1 m to ensure an additional SI cancellation
in the RF field that prevents the ADC saturation.

The FD transceiver involves a residual SI signal that can be characterized, in the
digital domain, by the self-interference to noise power ratio (INR). In our framework,
under a fixed receiver gain of 5 dB, the INR can be varied linearly, depending on the gain
defined on the transmission path, between 14 and 44 dB relative to a −47.65 dBm noise
floor, measured when no transmission occurs. Hence, we select three representative INR
values, summarized in Table 3, that are further used in the next section to assess the FD
transceiver performance.
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Table 3. Considered transmission gains and the corresponding measured INR values.

Transmission Gain [dB] INR Values [dB]

10 24
20 34
30 44

4.2. Software-Based Control of I/Q Impairments

The USRP X310 platform allows introducing a software-controlled I/Q imbalance
using Ettus’ UHD utility set_iq_imbalance, which is integrated as a function in GNU Radio
companion. The complex correction factor is applied to the RF daughterboard transmit path.
To evaluate the IMRR as a function of the correction factor variation, a single frequency tone
is transmitted, and the power levels of the desired and image components are measured on
the reception path.

The IMRR results, given in Figure 4, are measured at a center frequency of 2.5 GHz for
real and imaginary parts of the correction factor individually swept between −0.5 and 0.5.
It can be noticed that the UBX daughterboard enables a quite wide range of IMRR values,
from 0 to almost 50 dB, and allows evaluating and validating our SIC algorithms, under
realistic conditions, for both mass-market and high-performance operation modes of FD
transceivers. Hence, we selected four representative IMRR values and the corresponding
correction factors, summarized in Table 4, which are further used in the next section to
assess the FD transceiver performance.
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Table 4. Considered IMRR values and the corresponding correction factors.

IMRR [dB] Correction Factor

25 0.098 − j 0.953
30 0.008 − j 0.051
35 0.015 − j 0.015
40 −0.021 + j 0.018

5. Measurements and Results

The adaptive filtering SIC approaches presented in Section 2 have been evaluated
using the experimental setup described in Section 4 in terms of SIC capability expressed in
Equation (12). Each transmitted baseband SI frame consists of a PN11 pseudorandom se-
quence of 2047 bits, followed by a random sequence of 105 bits. In our experimental testbed,
10 frames of the SI signal with this structure are generated using the QPSK modulation.
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All the measurements were performed by setting the RF carrier frequency to 2.5 GHz
and the sampling rate to 5 MHz. The SIC capability achieved by the linear and widely-linear
adaptive filtering approaches was evaluated according to Equation (12) for the different
INR and IMRR values summarized in Tables 3 and 4, respectively. The chosen IMRR
values correspond to transceivers with high (IMRR = 40 dB, IMRR = 35 dB), medium
(IMRR = 30 dB), and low performance (IMRR = 25 dB).

For both adaptive approaches, the filter’s coefficients are continuously updated based
on the RLS algorithm. For each configuration, the linear and widely-linear SIC approaches
are evaluated for a number of coefficients ranging from 50 to 300, with a step size of
50 coefficients.

Figure 5 shows the SIC capability achieved considering different levels of performance
for the I/Q mixer. Note that the SIC capability of both approaches increases linearly with
the adaptive filter length, while the gaps between the SIC capabilities associated with the
various configurations remain constant. It can also be noticed that in most configurations,
the widely-linear adaptive filtering approach outperforms the linear one.
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Figure 5. Digital SIC capability achieved for different IMRR values considering: (a) INR = 24 dB,
(b) INR = 34 dB, and (c) INR = 44 dB.

There are only two exceptions, shown in Figure 5a, which correspond to an INR of
24 dB, i.e., limited transmission power of the FD transceiver. Indeed, in this case, the linear
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approach achieves a higher SIC capability than the widely-linear one for IMRR values of
35 and 40 dB (high-performance transceivers).

This behavior is due to the reduced power of the SI conjugate component, caused
by the I/Q imbalance, which is negligible compared to the linear SI component for low
transmission powers, according to the observations presented in Section 2.3. In this case,
the SIC capabilities obtained by the widely-linear SIC method are slightly reduced because
half of the filter coefficients aim at estimating the conjugated SI component, thus limiting
the accuracy of the linear SI component approximation. However, the results obtained by
the two approaches remain close, the SIC capability gap being only 0.2 dB and 0.3 dB, for
an IMRR of 40 dB and 35 dB, respectively.

Additionally, in the case of medium-performance transceivers, characterized by an
IMRR of about 30 dB, the widely-linear approach slightly outperforms the linear one, with
an increase of about 0.2 dB in SIC capability. The only significant improvement of about
2 dB, provided by the widely-linear SIC method, is achieved in the case of mass-market
transceivers with limited performance, characterized by an IMRR of 25 dB.

Nevertheless, according to the results shown in Figure 5b,c, for higher transmission
powers, represented by INR values of 34 dB and 44 dB, the widely-linear method provides
better SIC capabilities regardless of the I/Q mixer performance. Furthermore, for a given
INR, the widely-linear technique performs similarly for all the considered IMMRs; the SIC
capability variation is less than 0.8 dB and 0.5 dB, respectively, for these two INR values,
while it is about 6 dB and 9 dB, respectively, for the linear SIC technique. We can therefore
conclude that the widely-linear SIC method removes the conjugated SI component in a
fairly efficient manner regardless of its strength, while the linear approach drastically
degrades its cancellation performance as the strength of this component grows.

As expected from the observations reported in Section 2.3, compared to the linear
approach, the widely-linear approach offers the most notable gains in SIC capability (7 dB
and 12 dB for INR values of 34 dB and 44 dB, respectively) in the case of mass-marker
FD transceivers (IMRR = 25 dB). Moderate gains (almost 4 dB and 2 dB for INR values of
44 dB and 34 dB, respectively) are also achieved for medium-performance FD transceivers
(IMRR = 30 dB), while the SIC capability gain is much more reduced in the case of high-
performance FD communication systems.

Overall, the results presented in Figure 5 suggest that the widely-linear approach
outperforms the linear one in terms of SIC capability, especially in the case of mass-market
communication systems transmitting high power. In addition, the widely-linear SIC decreases
the computational burden associated with the cancellation method by reducing the number
of coefficients of the adaptive filter. Indeed, according to Figure 5c, 300 coefficients are
required for a linear adaptive filter to achieve a SIC capability of 47 dB so as to reduce the
SI signal below the noise level in the case of mass-market FD transceivers (IMRR = 25 dB).
In order to reach the same goal, the widely-linear approach only needs 150 coefficients,
which results in decreasing the computational cost by half.

6. Conclusions and Future Work

Digital SIC techniques derived from adaptive filtering solutions represent a promising
solution in the FD communication field. Considering the huge complexity of any analyt-
ical model associated with realistic FD simulations, experimental validation is a highly
attractive alternative for the performance evaluation of the proposed SIC techniques.

Therefore, this paper analyzes the power of the SI components due to the SI channel
and analog component impairments involved in FD communications systems, considering
different performance parameters. After establishing that linear and conjugated SI, caused
by the mixer I/Q imbalance, are the dominant SI components, we evaluate the improvement
in digital SIC capability achieved by an adaptive filtering-based widely-linear approach.

The effectiveness of adaptive SIC solutions strongly depends on the FD transceiver
performance. Hence, the main contribution of this paper is represented by the development
of a testbed platform using USRP X310 SDR modules, which allows evaluating the SIC



Sensors 2022, 22, 9607 12 of 14

effectiveness under realistic conditions and considering different performance parameters
of the FD transceiver. Our work focuses on the analysis of the distortion introduced by the
I/Q mixer, whose performance is characterized using the IMRR.

Thus, the linear and widely-linear approaches are evaluated in terms of SIC capability,
considering low, medium, and high-performance FD transceivers. It has been observed that
the widely-linear approach provides a significant improvement in terms of SIC capability, es-
pecially in the case of mass-market FD communication systems, while for high-performance
FD transceivers, the SIC capabilities achieved by both approaches are rather similar.

There are still many challenging aspects related to FD communications that need to
be further investigated. In our upcoming work, we intend to improve the performance of
the proposed digital cancellation stage by incorporating SIC techniques relying on neural
networks. We also plan to develop our experimental framework, extended with RF and
analog SIC stages, and to evaluate the proposed digital SIC techniques in terms of both SIC
capability and BER.
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