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Abstract: Recent advances in Single Image Super-Resolution (SISR) achieved a powerful reconstruc-
tion performance. The CNN-based network (both sequential-based and feedback-based) performs
well in local features, while the self-attention-based network performs well in non-local features.
However, single block cannot always perform well due to the realistic images always with multiple
kinds of features. In order to take full advantage of different blocks on different features. We have cho-
sen three different blocks cooperating to extract different kinds of features. Addressing this problem,
in this paper, we propose a new Local and non-local features-based feedback network for SR (LNFSR):
(1) The traditional deep convolutional network block is used to extract the local non-feedbackable
information directly and non-local non-feedbackable information (needs to cooperate with other
blocks). (2) The dense skip-based feedback block is use to extract local feedbackable information.
(3) The non-local self-attention block is used to extract non-local feedbackable information and the
based LR feature information. We also introduced the feature up-fusion-delivery blocks to help
the features be delivered to the right block at the end of each iteration. Experiments show our
proposed LNFSR can extract different kinds of feature maps by different blocks and outperform other
state-of-the-art algorithms.

Keywords: single-image super-resolution; non-local self-attention; feedback network; deep
convolutional network; dense skip block

1. Introduction

Single-Image Super-Resolution (SISR) aims to reconstruct a High-Resolution (HR)
image from a single Low-Resolution (LR) input image. The mapping between LR and HR
images is not bijective, leading to an ill-posed problem. The recent success of image SR
can greatly enhance the quality of the generated image result [1]. There are two typical
SISR methods. (1) The traditional methods, which focus on improving the performance
with better PSNR, such as deep convolutional networks [2], residual networks [3], feedback
networks [4] and self-attention [5] based HR. (2) The GAN-based SR, such as SRGAN [6], is
another way to generate SR image. GAN-based SR can generate ‘look more like natural’
SR image [7] by introducing a discriminator network to direct the generator network to
generate more real SR images, but maybe not performing better on PSNR. In this paper we
focus on the traditional methods, improving the performance with better PSNR.

Most of the state-of-the-art SISR algorithms assume all the HR images own similar
features and propose an ingenious design block to extract them, which is not suitable
for all the realistic images, due to the realistic images always having different kinds of
features (such as Local and non-local features, feedbackable and non-feedbackable features).
Generally: Feedback-based SR assumes the padding detail information is repeatable and
can be extracted from the same network with the same weight value iteration by iteration;
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the deep convolutional network assumes the padding detail can be extracted from the
nearby feature of input images (receptive field is limited by kernel size), but failed to make
use of faraway features; self-attention-based SR scoring different features, assuming the
padding detail is composed of higher scoring features, but the discarded low score value
features may be critical for a small amount of image realistically.

Addressing the above shortage, we separate the SR images into five import parts:
(1) The based LR features, which are considered as part of the output by up-sampling to the
desired size. (2) The local feedbackable features, which are within the kernel-size region of
image pixels and feedbackable. (3) Local non-feedbackable features which are unique and
local, these kinds of features are always dropped for most Feedback-based algorithms, but
we keep them. (4) Non-local feedbackable features, which are a distance from each other
and feedbackable. (5) Non-local non-feedbackable features which are a distance from each
other but unique and non-feedbackable features, this part of the features is always dropped
for most self-attention-based and feedback-based algorithms.

Based on the above analysis, in this paper, we choose different network blocks to
extract the five features mentioned above from LR images: (1) The residual network is
a simple but powerful skill, so we take the residual connection to deliver the based LR
features, then up-sample and compose with residual features to HR images. (2) The non-
local feedbackable features can be extracted by self-attention, which can extract the distance
feature-patch, and take use of the distance feature-patch to remedy the loss of feature
details. (3) The convolutional-based feedback network can extract the local feedbackable
features efficiently. (4) The traditional deep convolutional network can extract the local non-
feedbackable features easily. In our proposed algorithm, the deep convolutional network
is considered as a compensation of other blocks and only needs to extract the minority
non-feedbackable features. (5) We choose a reusable strategy, which will reduce the network
scale, to extract the non-local non-feedbackable features.

How to take full use of the above-mentioned features is critical for the network
performance, simply concatenating all the blocks together will reduce the performance. So,
in this paper, we also proposed the up-fusion-delivery block to merge the features together
and then deliver different features to the right block quickly.

In summary, the main contributions of this paper are two-fold:

1. We separate the SR images into five parts and choose three famous blocks (VDSR [3]
block, SRFBN [4] block and CSNL [5] block) to generate the corresponding SR image
parts. Because each block is designed to work on what they do best, this structure can
take full use of each block’s advantage and compensate for its shortage with other
blocks.

2. We proposed the up-fusion-delivery block at the end of each iteration, which will
help the feature be delivered to the right block on the next iteration. Features can be
extracted and delivered to the right block quickly, so our LNFSR algorithm only needs
fewer iterations to achieve comparable performance (6 for our LNFSR, while 12 for
CSNLN).

The experiments show our proposed LNFSR outperforms other state-of-the-art algo-
rithms.

2. Related Works

In this section, we will give a brief introduction to deep convolutional-based, residual
connection-based, feedback-based and self-attention-based SR, all are the basic methods of
our proposed SR method.

SRCNN [2] is well-known as the first deep convolutional layers-based SR algorithm.
VDSR [3] is another deep convolutional-based SR, the VDSR is very deep with 20 convolu-
tional layers and 19 ReLU layers between them. The VDSR shows that a deeper network
will improve the SR performance, but it is difficult to converge, so residuals connection and
gradient clipping skills are introduced. Both SRCNN and VDSR are classical algorithms,
the performances are not superior, but are still an inspiration for other algorithms.
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The Residual Connection-based SR, the SR image is added by its input LR enlarged
with the network output [8], is critical for SR algorithms. The residual connection delivers
the LR image directly to the SR image, so the network only needs to compute the residual
information, which reduces the burden of the network and is easy to converge, so the
network can go very deep. Lim et al. [9] introduced an Enhanced Deep Super-Resolution
Network for SR (EDSR) based on SRResNet [6] architecture, they first optimized the
network by removing unnecessary modules, so there are only two convolutional layers
with ReLU between them. They also proposed a multi-scale deep SR network (MDSR) that
can effectively deal with various scales (×2, ×3 and ×4) of super-resolution in a unified
framework to reduce the model size and training time. The EDSR is powerful in local
features but it failed to extract non-local features, and too many layers of the sequential
stack will lead to large network parameters.

There are extensively studied on the Feedback-based SR. Kim et al. [10] proposed a
Deeply-Recursive Convolutional Network (DRCN) for SR, the DRCN network has a very
deep recursive layer (16 recursions), the deeper recursive layer can extend feature extraction
area without introducing the number of parameters. Liu et al. [11] introduced the Residual
Feature Aggregation (RFA) framework which groups several residual modules output
together, so different levels of residual modules (considered as the hierarchical features on
the residual branches) can take fully used. Li et al. [4] proposed SRFBN which is a feedback
mechanism based on dense connections. The base block, which is the deconvolutional layer
that follows a convolutional layer, can enlarge the feature maps with the deconvolutional
layer and then get rid of useless information with the convolutional layer. The experiments
demonstrate that SRFBN outperforms other selected methods. The feedback-based SR
algorithm’s performance is excellent, especially in local features with small network scales,
but they failed to extract non-local similar features, which is used to further improve the
SR performance.

Self-attention, which plays an important role in human perception, has been studied
extensively in the previous research [12,13]. Due to the self-similarity of images, in reality,
small patches tend to recur within the same image under different scales. In order to use
these features, Mei et al. [5] proposed the Cross-Scale Non-Local (CSNL) attention module.
The CSNL model can extract non-Local features, even if features with different scales. The
CSNL algorithm achieved the best performances in 2020, but they were costly due to the
quadratic computational cost of the input size. Addressing this problem, Xia et al. [14]
introduced sparse into the module and proposed a novel Efficient Non-Local Contrastive
Attention (ENLCA) into SR. The ENLCA achieves comparable performance as the standard
non-local module while merely requiring linear computation and space complexity with
respect to the input size. However, the ENLCA did not consider the different scale’s similar
features, which will limit the performance of the ENLCA-based SR algorithms.

All the blocks mentioned above have their own advantages: the deep convolutional-
based SR focus on extracting local unique feature, the feedback-based SR focuses on
repeating refined local features, self-attention focuses on extracting non-local features,
and the residual connection is a powerful skill to reduce the burden of the network. All
algorithms mentioned above performed best at the right time but failed to cooperate with
other algorithms to composite their shortages. So, in this paper, we take the divide-and-
conquer strategy, making different blocks work on what they do best.

3. Local and Non-Local Feature Based Feedback Network for SR (LNFSR)

In this section, we introduce the proposed local and non-local feature-based feedback
network for SR (LNFSR). First, we will introduce the network structure of the LNFSR
in Section 3.1, then we will give a detailed description of the local and non-local feature
extraction block structure in Sections 3.2 and 3.3. Last, we will discuss the implementation
details not mentioned above in Section 3.4. The acronyms and notations used in this Section
are listed in Appendix A (Table A1).
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3.1. The Network Architecture of our LNFSR

Our LNFSR mainly consists of three parts: The front feature extraction block, the local
and non-local feature extraction block and the reconstruction block. Let us denote ILR as
the input low-resolution image, IHR as the corresponding high-resolution image, and ISR as
the super-resolution image which is the output of LNFSR. We give a detailed introduction
to the network architecture of the LNFSR as Figure 1.

SRSR

LRLR

ConvConv

Attention blockAttention blockFB blockFB blockDeep NetDeep Net

Up-Fusion-Delievery blockUp-Fusion-Delievery blockConv

Attention blockFB blockDeep Net

Up-Fusion-Delievery block

SR

LR

Conv

Attention blockFB blockDeep Net

Up-Fusion-Delievery block

Figure 1. The Network Architecture of our LNFSR.

Front Feature extraction block (FF block): The front feature extraction block is simply
two convolutional layers denoted as FF(·), so the input of the FF block is the LR image
(ILR) while the output of the FF block FFF is:

FFF = FF(ILR) (1)

The FF block is simple but useful: 1. It extracts the shallow features to feed into the
following block. 2. It extends the feature maps into the desired amount. 3. It generates the
base LR features and basic-residual feature maps for the following blocks.

Local and Non-local Feature extraction block (LNF block): The local and non-local
feature extraction block is severed as the main feature extraction block of our LNFSR. The
base LNF block is a feedback mechanism, during each iteration, the current iteration output
of the feedback block is considered as the input of the next iteration. The outputs of all
iterations are concatenated into large feature maps, this is the final output of the LNF block.
The LNF block is denoted as Ln f (·), so the input of the LNF block is the output of the FF
block (FFF) while the output of the LNF block FLn f is:

FLn f = Ln f (FFF) (2)

We will give a detailed description of the LNF block in Sections 3.2 and 3.3. The output
of the LNF block is the up-scaled feature maps, which can be fed into the Reconstruction
block to assemble the despaired SR output directly.

Reconstruction block (Rb block): The reconstruction block is simply one convolu-
tional layer, which reconstructs the SR image by assembling the feature maps of the LNF
block’s output. So, the input of the Rb block is the output of the LNF block (FLn f ), while
the output of the Rb block is the final SR image (ISR), denotes as:

ISR = Rb(FLn f ) (3)

The Rb block is only one convolutional layer which can reduce the vanishing gradient
problem. Due to the LNF block having the most parameters, the gradient needs to be
delivered to the LNF block quickly during the back-propagation process, so one convolution
layer-based Rb block is desired.
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The Loss Function: The LNFSR is optimized to minimize the loss function L(Θ), we
choose the L1 loss function which is the same as most of the previous works. Given a
training image pair <ILR, IHR>, the loss function is defined as:

L(Θ) = ‖LNFSR(ILR)− IHR‖1 (4)

where:
LNFSR(ILR) = ISR = Rb(Ln f (FF(ILR))) (5)

3.2. The Local and Non-Local Feature Extraction Block

In this section, we give a detailed introduction to our proposed local and non-local
feature extraction block (LNF block). The structure of the proposed LNF block is described
in Figure 2.

FLnf

LNF block

FFF

FLnf

F
1
Lnf

SEM

FB

dp[1]

SEM

FB

dp[2]

SEM

FB

dp[T]
F
T
LnfF

2
Lnf

LNF block

FFF

unfold

ConvConv

Attention blockAttention blockFB blockFB blockDeep NetDeep Net

Up-Fusion-Delievery blockUp-Fusion-Delievery blockConv

Attention blockFB blockDeep Net

Up-Fusion-Delievery block

Input features Output features

Figure 2. The Local and Non-local Feature extraction block.

Figure 2 gives us a brief illustration of our proposed local and non-local feature
extraction block (LNF block). The LNF block is a feedback-based network block, so the
LNF block is T iterations, during each iteration (such as the i-th iteration), the previous
iteration output (Fi−1

Ln f if 1 < i < n− 1 and FFF if i = 1) is considered as the input of i-th

iteration’s, while the output of current iteration is Fi
Ln f . The outputs of all iterations (F1

Ln f ,

F2
Ln f , · · · , FT

Ln f ) are concatenated as the output of the LNF block. The output of the LNF
block is defined as:

FLn f = concat(F1
Ln f , F2

Ln f , · · · , FT
Ln f ) (6)

where the function concat(·) is to concatenate all the inputs on the feature dimension
(second dimension).

We take all the feature maps as outputs during all iterations, due to different iterations
being able to extract different levels of feature maps. We aggregate all the hierarchical
features as [11] during all iterations by concatenating them together, so the following blocks
(the Rb block) can take full use of different hierarchical features to assemble the desired SR
images.

The blocks on each iteration: For each iteration (take the i-th iteration as an example),
there are three basic blocks: the DP[i] block, the FB block, the CSNL block, the outputs of
the three blocks are feed into one fusion layer as the output of current iteration (Fi

Ln f ) and
the next iteration’s input, as shown in Figure 2.

We choose our DP block as the famous VDSR [3], which is a simple but effective SR
algorithm. Due to the feedback-based LNF block, the DP block needs to extract different
feature maps during different iterations. To address this issue, we separate the DP network
into T segments (DP[1], . . . DP[T]), so we only make use of the i-th part (denoted as DP[i])
of DP on the i-th iteration. From another perspective, the T segments of the DP network
focus on different level features and flexible exchange features during different iterations.

We choose our FB block from Li et al.’s work [4], which is a well-designed feedback
block. Li’s FB block can generate powerful high-level representations under the feedback
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scheme, which is G groups stacks, for each group, the convolutional layer and decon-
volutional layer are connected, respectively. All the layers are densely connected. The
deconvolutional following the convolutional connection can (1) enlarge the features by the
deconvolutional layer so useful features can be emphasized, (2) compress the features with
the convolutional layer so useless features are dropped. After G groups, the useless can be
discarded and useful features can be highlighted.

We choose our CSNL block from Mei et al.’s work [5], which proposed a well-designed
cross-scale non-local attention block. Mei’s CSNL block can extract non-local features
by attention scheme under different scales. The CSNL block has two different non-local
attentions: In-scale attention and cross-scale attention, both attention blocks can explore self-
exemplars by summarizing related features from the whole image. The in-scale attention
is a pixel-wise correlation with features, while the cross-scale non-local attention is a
patch-wise correlation with features. We choose the CSNL block as our non-local feature
extraction block due to its remarkable non-local feature extraction ability even if distance
similar features under different scales.

In summary, we separate the SR image residual feature maps into five features and
choose three famous blocks to extract them. The three paths are as follows: (1) Local
feedbackable features: the FB block is taken to extract local repeatable features. (2) Non-
local feedbackable features: the CSNL block is taken to extract the non-local repeatable
features. (3) Local non-feedbackable features: the DP block is taken to extract the local
non-repeatable features.

We did not choose five distinguish blocks to extract them due to reducing the scale of
the LNF block. The analysis is as follows:

(4) Drop the based LR features: We drop the skip connection from input to the end for
the based LR features, due to there being skip connection insider the CSNL block[5],
which plays the same row as the skip connection directly. Experiments show that
adding an additional skip connection will drop the performance, the reason we guess
is the LR features play a critical role for the CSNL block to extract non-local features
and the CSNL block has its own skip connection which serves the same work, so we
drop the outer skip connection.

(5) Drop the Non-local non-feedbackable features: We did not take another distinct
block to extract the non-local non-feedbackable features, due to the reuse strategy. Be-
cause the non-local non-feedbackable features are similar to the local non-feedbackable
features but far away, the non-local non-feedbackable features can be extracted by the
CSNL block and then delivered into the DP block to refine them. With the help of our
proposed up-fusion-delivery layers during each iteration, features can be delivered to
the right block on the next iteration.

3.3. The Up-Fusion-Delivery Layers of Our LNFSR

We proposed the feature up-fusion-delivery strategy to combine three different blocks
together, which serve a critical function in our proposed algorithms. Figure 3 is the detail
of the LNF block under the i-th iteration, from Figure 3 we can see that there are Up layers,
fusion layer and delivery layers on both sides of the DP[i] block, FB block and CSNL block.
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DP-delivery

Up(F
 i
Lnf)

DP[i]
Down(F

 i-1
Lnf)

FB-delivery FB

CSNL-delivery CSNL

Fusion layerDelivery layers

DP-Up

FB-Up

Up layers

Down(F
 i

Lnf)

Figure 3. The detail of the up-fusion-delivery LNF block under the i-th iteration (green block denote
the up-fusion-delivery layers).

Up layers: There are two up-layer blocks followed by DP[i] and FB block, up-sampling
the outputs of DP[i] and FB block to desired up-scale (the CSNL block can generate desired
up-scale output, so need not up layer block). The up layer is simply one convolutional
layer following PReLU [15], the outputs of DP-Up, FB-Up and CSNL are concatenated,
denoted as Up(Fi

Ln f ), which is considered as the output of the LNF block under the i-th
iteration, so the output of LNF block (Equation (6)) can also be denoted as:

FLn f = concat(Up(F1
Ln f ), · · · , Up(FT

Ln f )) (7)

The FLn f is the desired upscale feature map which can be assembled to SR directly.
We generated the up-scale feature maps at the end of the LNF block during each iteration,
because this strategy can balance the computation cost and fully use the middle feature
information.

Fusion layer: The fusion layer is simply two convolutional layers following PReLU, it
serves two functions: (1) It fuses three different kinds of feature maps together, so all the
features can be fused and delivered to where they should go during next iteration. (2) It
downscales the Up(Fi

Ln f ) to the original input LR scale as the input of the next iteration,

denoted as Down(Fi
Ln f ), to reduce the computation cost.

Delivery layers: There are three different delivery layers ahead of the DP[i] block,
FB block and CSNL block. They deliver the desired feature maps to the right block: the
DP-delivery layer delivers the local non-feedbackable features to the DP[i] block, the FB-
delivery layer delivers the local feedbackable features to the FB block, the CSNL-delivery
layer delivers the non-local non-feedbackable features to the CSNL block, and the basic LR
features are also delivered by the inner skip-connection of the CSNL block to the end. Each
of the three delivery layers is only one convolutional layer that follows PReLU.

The up layer follows the fusion layers, the advantages are: (1) The up layer can focus
on generating desired output of the current iteration, which fully uses the middle features
information for SR and reduces the burden of the following Rb block. (2) The fusion layer
reduces the feature maps scale into the LR scale, as the input of the next iteration, which
can reduce the computational cost of the LNF block. (3) The up-fusion strategy can enlarge
the useful features in the up process, then compress features leaving useful features for the
next iteration in the down process.

The fusion layer follows three Delivery layers, the advantages are: (1) The fusion layer
focuses on refining features and preparing the desired feature maps for the next iteration,
while three delivery layers focus on picking the right features for the right blocks. (2) The
fusion-delivery strategy can take full use of the feature maps under different iterations,
one feature can be delivered to different blocks in the current iteration, while many small
features can reassemble as one feature in the next iteration. Figure 4 is one hypothesis
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on how the non-local non-feedback features’ extraction process under the fusion-delivery
layers.

Fi
Ln f = Fusion[ DPup(DP[i](DPdlr(FFF))), FBup(FB(FBdlr(FFF))),

CSNL(CSNLdlr(FFF)) ]
(8)

In summary, the output of the i-th iteration Fi
Ln f is defined as Equation (8). Where

i ∈ [1, · · · , T], and the function DPup, FBup is the up layer of the DP block and the FB block,
the Fusion(· · · ) is the fusion layer, the DPdlr(·), FBdlr(·) and CSNLdlr(·) is the delivery
layers, FB is the feedback block, and CSNL is the CSNL block, both FB and CSNL are
feedback block which is repeated during all iterations, while the DP[i] block is the i-th part
of the VDSR.

Hypothesis and Visualized analysis of the up-fusion-delivery layer: Due to the
difficulty analyzing the data transfer process obviously, we give one hypothesis in Figure 4
about the data transfer process, and a visualized analysis in Figure 5 to confirm our
hypothesis un-rigorously.

Figure 4 gives us a hypothesis on the non-local non-feedbackable features’ extraction
process of the proposed LNF block, we can see that: (1) The non-local similar features A
and B, which are similar to each other under different scales, are far distance in a feature
map at the very beginning, then (during the i− 1 iteration) the feature map is fed into the
CSNL block which can extract the non-local features roughly. (2) The features A and B are
merged into one feature map due to similarity, then the feature map is fed into the DP[i]
block and FB block (during the i iteration). (3) The DP[i] block focus on extracting the local
non-feedback features while the FB block focuses on extracting the local feedback features.
(4) (During the i + 1 iteration), the non-local non-feedback features are disassembled and
delivered to the original positions.

CSNL

FB

dp[i]

CSNL

Local non-feedbackable features

 A and B are merged   

     i-1 iteration      i iteration      i+1 iteration

ABAB

Local feedbackbale features

Refined Non-local simliar 

features A and B 

A

B

Non-local simliar features

A and B 

A

B

Non-local simliar features

A and B 

A

B
CSNL

FB

dp[i]

CSNL

Local non-feedbackable features

 A and B are merged   

     i-1 iteration      i iteration      i+1 iteration
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Local feedbackbale features

Refined Non-local simliar 

features A and B 

A

B

Non-local simliar features

A and B 

A

B

CSNL 

FB

dp[i]

CSNL 

dp[i+1]

FB

Figure 4. the non-local non-repeatable features’ extraction (hypothesis) process.

Figure 5 is a visualized analysis, which shows the outputs of three different blocks
during six iterations under a single channel for our LNFSR. We can see that different block
focus on different kinds of features: (1) Both the CSNL and FB block focus on feedbackable
features, but slightly different styles. The CSNL block focuses on the skeleton-like feature,
which is generated from a far distance, while the FB block focuses on a detail-like feature,
which is generated locally. (2) The DP block generates non-feedbackable features, which
are unique and have huge differences on different iterations, to refine the SR image. For the
DP block’s feature maps, the output feature maps on both ends (iteration 1 and 6) are in
the right place (butterfly-like feature maps), while the output feature maps on the middle
position feature maps (iteration 2 to 5, especially iteration 4 and 5) are a blur and not in
the right place. This confirms our hypothesis in Figure 4. Due to the merge process, the
features are in an unpredictable position (iteration 2 to 5), then fed back to the right place
in the last iteration.
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Figure 5. The outputs of 3 different blocks during all iterations under a single channel for our LNFSR.

3.4. Other Implementation Details

Following are the other implementation details not mentioned above:

(1) We follow the implementation details of the FB block and CSNL block. We use the
ReLU as the activation function for DP blocks and PReLU as the activation function
for other blocks.

(2) We set all the feature channels as 64 for all three blocks (DP block, FB block and CSNL
block). Due to half channels for CSNL inner block, the CSNL input feature channel
is 128 then half to 64 for the inner block of CSNL. We set the number of feedback
iterations for the LNF block as 6 to balance the performance and cost. Our LNFSR
has more parameters than CSNLN, due to adding the DP and FB block, there are 3.06
M (×2) and 6.57 M (×4) parameters for CSNLN, while 11.30 M (×2) and 18.91 M
(×4) parameters for our LNFSR. However, by half the iterations (12 for CSNLN), the
computational cost of our LNFSR is close to that of CSNLN. For one training iteration,
it cost about 16 min (×2) and 140 min (×4) for CSNLN, while 18 min (×2) and 93 min
(×4) for our LNFSR on single NVIDIA 3090 GPU.

(3) We choose L1 loss to optimize our LNFSR, the Adam optimizer to optimize the
parameters of the network with β1 = 0.9, β2 = 0.999 and the initial learning rate
0.0001, we reduce the learning rate by multiplying 0.5 for every 200 epochs for a total
of 1000 epochs. The network is implemented with the PyTorch framework and trained
on a single NVIDIA 3090 GPU.

4. Experimental Results
4.1. Datasets and Evaluation Metrics

For training, we perform all the experiments on the DIV2K database (total of 1000 images,
where 800 images as the training set, 100 images as a valid set and 100 images as the test
set), we take all the train set (800 images) to train our models. All the experiments are
performed in 1000 iterations. The LR images generated by taking the BiCubic method
from HR images, each LR image is random cropped into one small patch (We set the input
patch size = 48× 48 to balance the performance and cost for our LNFSR) as the input LR
images. We also perform image reuse and augmented strategy: During each iteration, all
the train images are performed 10 times and the <ILR,IHR> image pairs are augmented by
random rotating 90◦, 180◦, 270◦ and horizontal flipping. We report the performance on four
famous standard benchmark datasets: Set5 [16], Set14 [17], B100 [18] and Urban100 [19].
We evaluated all the SR results on PSNR and SSIM [20].
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4.2. Ablation Study

In this Section, we will perform an ablation study on our proposed LNFSR. In order
to reduce the training cost, we set the feature channel as 32, feedback iterations as 4 and
iteration times as 500, and the learning rate decay for every 150 epochs, which is denoted
as LNFSR-L. The ablation study focuses on our two contributions: (1) Whether the local
and non-local feature extraction blocks outperform the single blocks? (2) Whether the
up-fusion-Delivery block help to improve the performance?

Ablation study on the three blocks in our LNF block: We perform an ablation study
to determine whether the three blocks in our LNF block will improve the performance. We
keep only one block and drop the other two blocks in the LNF as comparing algorithms.
The Only-DP denotes the algorithm with only the DP block (VDSR block), the Only-FB
denotes the algorithm with only the FB block, and the Only-CSNL denotes the algorithm
with only the CSNL block. All the comparing algorithms with the same training parameters.
The results are listed in Table 1. Our proposed LNFSR-L outperformed all the comparing
algorithms, in Table 1, illustrating that the local and non-local feature extraction blocks
outperform the single block structures.

Table 1. The ablation study on the LNF block at ×2 scale on Set5. (The best performance is shown
in red).

Algorithm Only-DP Only-FB Only-CSNL LNFSR-L

PSNR/SSIM 37.37/0.9581 37.57/0.9590 37.84/0.9600 37.90/0.9603

Ablation study on up-fusion-delivery block: We perform an ablation study to deter-
mine whether the up-fusion-Delivery will improve the performance. We designed three
typical fusion methods with different structures to fuse three blocks together, as shown in
Figure 6. Without Up-layer: we drop the up layer, so the output of three blocks, without
the up-scales process, is fed to the fusion layer as the input of the next iteration. Without
Delivery: we drop the delivery layer for three blocks, keeping the up-fusion block, so
the input is fed directly into three blocks. Without up-fusion-delivery: we drop all the
up-fusion-delivery blocks, so the output of three blocks is fed directly into three blocks for
the next iteration. We modify the Rb block, by adding one deconvolutional layer to generate
SR-scaled feature maps, without up-layer and without up-fusion-delivery, due to both
blocks lacking the Up(Fi

Ln f ) outputs. The result is listed in Table 2. Our proposed LNFSR-L
outperformed all the comparing algorithms, in Table 2, illustrating the fusion structure
affects the performance greatly. Although all the comparing algorithms are similar to three
blocks in parallel, our proposed fusion structure (up-fusion-delivery block) can extract and
deliver features to the right block, improving the fusion performance.

DP-delivery DP[i]
Down(F

 i-1
Lnf)

FB-delivery FB

CSNL-delivery CSNL

Down(F
 i

Lnf)

(a) Without Up-layer

DP[i]
Down(F

 i-1
Lnf)

FB

CSNL

Down(F
 i

Lnf)

(b) Without Up-Fusion-Delivery

Up(F
 i

Lnf)

DP[i]
Down(F

 i-1
Lnf)

FB

CSNL

DP-Up

FB-Up

Down(F
 i

Lnf)

(c) Without Delivery

Figure 6. The 3 different structures for the ablation study on the up-fusion-delivery block.
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Table 2. The ablation study on the up-fusion-delivery block at×2 scale on Set5. (The best performance
is shown in red).

Algorithm Without
Up-Layer

Without
Delivery

Without
Up-Fusion-

Delivery
LNFSR-L

PSNR/SSIM 37.80/0.9600 37.68/0.9594 37.66/0.9593 37.90/0.9603

4.3. Quantitative Comparisons with State-of-the-Arts

In this section, we will give a comprehensive comparison of our LNFSR with other fa-
mous state-of-the-art SR algorithms, we choose SRCNN [2], VDSR [3], RCAN [21], EDSR [9],
SRFBN [4] and CSNLN [5] as the state-of-the-art algorithms considered in this experiment,
we also performed BiCubic up-sampling SR method as the baseline. We drop the noise
or Gauss blurring tricks for all the chosen algorithms, due to different training skills will
greatly affect the performance of different algorithms. Due to different algorithms in their
original paper having different repeat times for each iteration, we fix it as 10 times to fairly
compare. We perform the upscale factor range in [×2, ×3, ×4] for all the state-of-the-art SR
algorithms. We also choose SRGAN [6] as the base-line of the GAN-based SR in scale ×4
(SRGAN focus on large scale). The results are listed in Table 3.

Table 3. The performance (PSNR/SSIM) of the considered state-of-the-arts algorithms (the best
performance is shown in red and the second-best performance is shown in blue).

Algorithm Scale
Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BiCubic ×2 33.68 0.9303 32.23 0.8700 29.56 0.8435 26.87 0.8405

SRCNN [2] ×2 36.32 0.9519 32.24 0.9031 30.98 0.8824 28.96 0.8857

VDSR [3] ×2 37.46 0.9583 33.14 0.9131 31.91 0.8960 33.09 0.9170

RCAN [21] ×2 38.20 0.9612 33.93 0.9198 32.33 0.9015 32.83 0.9344

EDSR [9] ×2 38.11 0.9608 33.70 0.9182 32.23 0.9002 32.42 0.9308

SRFBN [4] ×2 38.03 0.9606 33.64 0.9177 33.22 0.9000 32.32 0.9304

CSNLN [5] ×2 38.17 0.9613 34.05 0.9213 32.32 0.9015 33.11 0.9371

LNFSR (our) ×2 38.22 0.9613 34.10 0.9229 32.35 0.9018 33.21 0.9377

BiCubic ×3 30.42 0.8688 27.58 0.7763 27.22 0.7395 24.46 0.7356

SRCNN[2] ×3 32.48 0.9046 29.07 0.8149 28.07 0.7768 25.79 0.7841

VDSR [3] ×3 33.73 0.9223 29.94 0.8343 28.84 0.7982 27.34 0.8326

RCAN [21] ×3 34.77 0.9298 30.58 0.8470 29.28 0.8095 28.95 0.8677

EDSR [9] ×3 34.69 0.9292 30.47 0.8455 29.22 0.8088 28.69 0.8644

SRFBN [4] ×3 34.57 0.9283 30.44 0.8442 29.17 0.8068 28.50 0.8594

CSNLN [5] ×3 34.63 0.9292 30.57 0.8470 29.26 0.8098 28.91 0.8682

LNFSR (our) ×3 34.72 0.9298 30.61 0.8468 29.26 0.8098 28.97 0.8677

BiCubic ×4 28.45 0.8110 26.04 0.7055 25.99 0.6692 23.15 0.6588

SRCNN [2] ×4 30.15 0.8531 27.20 0.7415 26.55 0.6985 24.05 0.7005

SRGAN [6] ×4 29.40 0.8472 26.02 0.7397 25.16 0.6688 - -

VDSR [3] ×4 31.35 0.8825 28.16 0.7703 27.26 0.7244 25.28 0.7554

RCAN [21] ×4 32.51 0.8987 28.84 0.7876 27.73 0.7417 26.71 0.8058

EDSR [9] ×4 32.49 0.8985 28.81 0.7872 27.71 0.7409 26.58 0.8015

SRFBN [4] ×4 32.27 0.8963 28.69 0.7841 27.64 0.7379 26.35 0.7945

CSNLN [5] ×4 32.72 0.9008 28.97 0.7896 27.82 0.7451 27.34 0.8205

LNFSR (our) ×4 32.75 0.9013 28.97 0.7897 27.83 0.7451 27.33 0.8199



Sensors 2022, 22, 9604 12 of 15

In Table 3, we reported the quantitative comparisons for scale factor ×2, ×3 and
×4. Where the BiCubic algorithm is considered the baseline of the SR algorithms and the
SRCNN is considered the baseline of the deep learning-based SR algorithms. The CSNLN
and our LNFSR both performed best, illustrating that self-attention-based algorithms
outperform other state-of-the-art algorithms. Compared with the CSNLN, our LNFSR
performed best in scale ×2 in all 4 famous standard benchmark datasets. In scale ×3 and
×4, our LNFSR outperformed the CSNLN algorithm in most of the standard benchmark
datasets but underperformed in some special databases, especially in the scale ×4 on the
Urban100 database, the reason is the Urban100 database focus on the constructions with
much more far distance similar features, so CSNLN, which focus on non-local features,
perform best in the scale×4. We half the feedback iteration number of the base block, so we
reduce the performance on non-local feedbackable features on large scale compared to the
CSNLN, but our LNFSR outperforms the CSNLN (and other state-of-the-art algorithms) in
most of the experiments.

4.4. Visualized Comparisons with State-of-the-Arts

In this section, we will give a visualized analysis of our LNFSR with state-of-the-art as
Figure 7. We take the same SR algorithms as Section 4.3. We drop the BiCubic to save space,
and drop the SRGAN to get rid of confusion on its ’looks real’ SR image but lower PSNR.

The first picture in Figure 7 is the “barbara” which comes from the Set14 database
under scale ×2. Our LNFSR generated the largest clean lines on her knee. Due to the
feature being typically a long-distance similar picture, our LNFSR can achieve the best
performance with fewer iterations (6 for our LNFSR, while 12 for CSNLN). The EDSR
achieved the right SR images but a small clear area, while the SR images of the other
algorithms (SRCNN, VDSR, RCAN, SRFBN, CSNLN) achieved the wrong line direction.
Illustrating high-efficiency local feature extraction (EDSR) is critical for SR images to
estimate the line direction, solo non-local feature extraction (RCAN, CSNLN) or local
feature extraction (SRCNN, VDSR, SRFBN) may lead to being worth starting for SR image.

The second picture in Figure 7 is the No.21077 image which comes from the B100
database under scale ×3. Our LNFSR achieves commendable performance on the number
“96”. The SR images of some algorithms (SRCNN, VDSR, EDSR) achieved a blurring
number that is difficult to recognize, while the other SR images (RCAN, SRFBN, CSNLN)
can achieve a plausible SR image but can be recognized, illustrating both local feature-based
algorithm or non-local feature-based, which newly proposed, can achieve acceptable SR
images. The RCAN, which is the classic non-local-based algorithm, achieved remarkable
SR image outperforms other start-of-the-art algorithms, this means the number “96” image
is easy for the non-local based algorithm, due to the long distance non-local feature help
the algorithm to recognize the number “96” then generate the SR image.

The third picture in Figure 7 is the “img082” which comes from the Urban100 database
under scale ×4. Our LNFSR achieves commendable performance, especially on the reflect
lights. There are two lines of reflected light on the original HR image, and our LNFSR can
exactly generate them. The SR images of local feature-based algorithms (SRCNN, VDSR,
EDSR, SRFBN) failed to generate all the reflect lights, while the SR images of non-local
feature-based algorithms (RCAN, CSNLN) can generate all the reflect lights but blurring
reflect lights. This means the generation of the reflected lights needs local features and
non-local features to cooperate with each other: non-local features can recognize the pattern
of the reflected lights while local features refined them to generate a clear SR image.



Sensors 2022, 22, 9604 13 of 15

Figure 7. Visualized comparison on our LNFSR with other state-of-the-art Algorithms.

From the visualized analysis above, we can see that the local and non-local features do
not work alone, they need to cooperate with each other: non-local features help to recognize
styles, while local features help to refine details. The CSNLN makes use of a wider range of
attention than our purposed LNFSR (the DI = 18.11 for CSNLN while the DI = 12.80 for
our LNFSR, Diffusion Index (DI) [22] is the newly proposed evaluation metric, A larger
DI indicates more pixels are involved), but they did not fully make use of them, especially
the local feature for refined SR image. Our LNFSR can extract both local and non-local
features along with both repeatable and non-repeatable features, outperforming other
state-of-the-art algorithms.

5. Conclusions

In this paper, we propose a new local and non-local features-based feedback network
for SR (LNFSR). By separating the residual image into five different parts and choosing
three different blocks to extract them, our proposed LNFSR can extract both local and non-
local features along with both repeatable and non-repeatable features: (1) The traditional
deep convolutional network block is used to extract the local non-feedbackable information
directly and non-local non-feedbackable information (needs to cooperate with other blocks).
(2) The dense skip-based feedback block is use to extract local feedbackable information.
(3) The non-local self-attention block is used to extract non-local feedbackable information
and the based LR feature information. We also introduced the feature up-fusion-delivery
blocks to help the features be delivered to the right block at the end of each iteration. The
experiments show that our proposed LNFSR can extract different kinds of feature maps by
different blocks, and outperform other state-of-the-art algorithms. The limitation of our
proposed LNFSR, which can be discovered in Figure 5, is the low usage of the DP blocks.
So, our future work will focus on introducing the channel pruning [23] to further optimize
our LNFSR.
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Appendix A

For better reading this paper, we provide part of the acronyms and notations used in
this paper in Table A1.

Table A1. The Acronyms and Notations.

Acronyms and Notations Description

SISR Single Image Super-Resolution
SR Super-Resolution
HR High-Resolution
LR Low-Resolution

ISR Super-Resolution image
ILR Low-Resolution image
IHR High-Resolution image

L(Θ) the loss function

FF(·) the FF block
FFF the output features of the FF block

Ln f (·) the LNF block
Fi

Ln f the i-th iteration output of the LNF block
FLn f the output features of the LNF block
Rb(·) the Rb block

LNFSR(·) our proposed LNFSR algorithm
DP[i] block the i-th block of Deep Net (VDSR [3] in our paper)

FB block the FeedBack block (SRFBN [4] in our paper)
CSNL block the Cross-Scale Non-Local attention block

concat(·) concat all the inputs
on the feature dimension (second dimension)

Up(·) Up layer block in the Up-Fusion-Delivery layer
Down(·) down-scale the input to the LR scale

DPdlr(·), FBdlr(·), CSNLdlr(·) the delivery layer of DP, FB and CSNL block
DPup(·), FBup(·) the Up layer of DP and FB block

Fusion(·) the fusion layer
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