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Abstract: Artificial intelligence plays an essential role in diagnosing lung cancer. Lung cancer is
notoriously difficult to diagnose until it has progressed to a late stage, making it a leading cause
of cancer-related mortality. Lung cancer is fatal if not treated early, making this a significant issue.
Initial diagnosis of malignant nodules is often made using chest radiography (X-ray) and computed
tomography (CT) scans; nevertheless, the possibility of benign nodules leads to wrong choices. In
their first phases, benign and malignant nodules seem very similar. Additionally, radiologists have
a hard time viewing and categorizing lung abnormalities. Lung cancer screenings performed by
radiologists are often performed with the use of computer-aided diagnostic technologies. Computer
scientists have presented many methods for identifying lung cancer in recent years. Low-quality
images compromise the segmentation process, rendering traditional lung cancer prediction algorithms
inaccurate. This article suggests a highly effective strategy for identifying and categorizing lung
cancer. Noise in the pictures was reduced using a weighted filter, and the improved Gray Wolf
Optimization method was performed before segmentation with watershed modification and dilation
operations. We used InceptionNet-V3 to classify lung cancer into three groups, and it performed well
compared to prior studies: 98.96% accuracy, 94.74% specificity, as well as 100% sensitivity.

Keywords: deep learning; medical image diagnosis; lung cancer; computed tomography (CT);
computer-aided diagnostic system (CAD); gray wolf optimization (GWO); genetic algorithm (GA);
transfer learning; classification; segmentation

1. Introduction

Numerous environmental factors, including chemical exposure, poisonous gases,
smoking, as well as high alcohol intake, have been linked to the emergence of uncommon
mutations in human DNA [1]. These mutations cause transcriptional changes that result
in abnormal proteins, disrupting cell growth and, ultimately, the body [2]. Lesions may
develop in any part of the human body, including the lungs, skin, breasts, as well as the
brain. The defective cell changes that cause these lesions are called DNA mutations. Cancer
is the second biggest cause of mortality worldwide, behind heart disease, as reported
by the World Health Organization (WHO). Preventing and controlling cancer has risen
to the forefront of medical research and practice because of its enormous financial toll
on individuals, families, and communities [3]. The battle with cancer relies on three
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primary pillars: (1) the creation and implementation of cancer preventive measures; (2) the
creation and implementation of new techniques for early detection; and (3) the creation
and implementation of novel medications and treatments for the treatment of cancer. Lung
cancer represents the most lethal form of the disease, accounting for about one in every
three fatalities caused by cancer [4]. Common symptoms include loss of weight, sore throat,
coughing, tiredness, chest inflammation, chest discomfort, and hemoptysis. The probability
of experiencing various physiological symptoms in each phase is summarized in Table 1.

Table 1. Symptoms manifest at various stages of lung cancer [5].

Physiological Symptoms Stage 1 (%) Stage 2 (%) Stage 3 (%) Stage 4 (%)

Blood Pressure 26–43 64–87 88–91 92–94
Body temperature 54–65 33–79 92–98 94–99

Pain 26–43 30–63 34–76 43–82
Breathlessness 5–55 42–86 88–94 95–100

Anxiety 34–47 47–65 65–76 77–95
Fatigue 16–39 27–48 66–78 78–89

Irregular heart rate 13–63 18–74 75–96 97–98
Body weight loss 35–64 45–60 90–93 93–98

Constipation 11–20 19–25 27–73 43–60
Insomnia 35–47 48–62 63–87 88–92

Depression 18–31 21–46 36–78 48–83
Anorexia - 0 36–68 66–78

Scientists have been developing automated solutions to help physicians reduce their
burden, improve diagnostic accuracy by limiting subjectivity, speed up analysis, and reduce
medical expenditures in light of the expected increase in the number of preventative/early
detection methods. Lung cancer cells can only be identified if specific characteristics are rec-
ognized and evaluated. A person’s chance of developing cancer may be estimated based on
their physical appearance and other characteristics that have been noted. Nodule presence
and a positive cancer diagnosis are not readily related, making this task difficult even for an
experienced medical specialist. Common computer-assisted diagnostic (CAD) procedures
use volume, form, subtlety, stiffness, conjecture, spherical, and other previously established
features. Machine learning approaches are very effective in identifying and classifying lung
cancer [6–10]. Conversely, they have necessitated a time-consuming manual step of feature
creation, a task best left to professional radiologists with relevant domain expertise [11].
Features may be automatically extracted from the input dataset using deep learning (DL)
algorithms throughout the learning process [12–15]. Convolution Neural Networks, Recur-
rent Neural Networks, Deep Belief Networks, and Stacked Autoencoders are only a few
designs used in DL [16]. One DL technique that has shown promise for classifying lung
tumors from CT scan image datasets is convolutional neural network modeling. Using
pre-trained models, researchers are currently concentrating on fine-tuning DL strategies by
exploiting transfer learning (TL) [17]. Many research and imaging modalities have used
methods of this kind before [18].

1.1. Contributions

The primary goal of this research is to propose a hybrid technique that uses convo-
lutional neural network (CNN) models, the TL approach, gray wolf optimization (GWO),
and genetic algorithms to identify, classify, and recognize lung cancer (GA). What follows
is a brief overview of the paper’s most important findings:

• This research proposes a unique mix of improved gray wolf optimization and Inception-
V3 for classifying lung cancer. It is simple to construct, has a significant impact, is
accurate to within a tiny margin, and performs well on issues involving optimization
of search spaces for small and large sets of characteristics.

• The IGWO uses GA to find the best possible starting places for the GWO.
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• IGWO has been used to select the ideal feature subset from the original dataset,
reducing the redundant and unimportant characteristics, and putting the relevance of
features first.

• To the best of our knowledge, the IGWO-IV3 methodology has not been evaluated or
developed yet for the detection and categorization of diabetic retinopathy. Therefore,
a unique combination approach based on IGWO-IV3 should significantly increase
diagnostic accuracy.

• A key component of this system for classifying lung cancer is the consideration of several
indicators. The evolutionary algorithm GA is used to evaluate the proposed feature
selection approach. Results are verified using standard clinical verification methods.

1.2. Paper Organization

Rest of the article is structured as; related prior research and literature is provided in
Section 2. Sections 3 and 4 lay out and explain the many features of this proposed approach.
The experimental findings and accompanying discussed in Section 5. The research is
summarized and implications for the future are discussed in Section 6.

2. Related Work

Many researchers have used various manual and automatic approaches, techniques,
and methods to extract characteristics for illness classification and prediction. Hybrid
methods have been used by several groups. All of these applications were made to improve
the early diagnosis of the specified disease.

The state-of-the-art performance of many deep-learning-based lung nodule classifica-
tion algorithms has gradually increased over the last several years. The hybrid mammogra-
phy classification method described by Abubacker et al. [19] combines genetic association
rule mining with the associative classifier fuzzy neural networks. Gray-level co-occurrence
matrix for 13 morphological characteristics, as well as second- and third-order wavelet
decomposition for 34 statistical features. The proposed method’s overall classification
accuracy is 95.1%, higher than CNN’s 93.7%. The authors utilized GARM to remove
extra details from the photographs they were analyzing, and then they used ACFNN
to classify the pictures as either normal or abnormal. In order to lessen the number of
incorrect diagnoses of lung cancer, Ding et al. [20] employed 3-dimensional Faster R-CNN
for nodule identification. The improved performance of R-CNN in object detection was
impressive. For nodule feature learning and classification, it was combined with a pro-
found contemporary convolutional neural network architecture and the DPN [21]. The
foundation for finding tumors in digital mammograms was described by Martins et al. [22].
They employed the K-means method for mass segmentation and the GLCM for extracting
texture information from the resulting picture segments. An SVM was then used to classify
data based on the retrieved characteristics. The suggested technique was tested on the
DDSM dataset, which contained digital images of screened mammograms, and achieved an
accuracy above 85%. Group-based pulmonary nodule identification utilizing multi patches
technique with a Frangi-filter was developed by Jiang Hongyang et al. [23] to improve
performance. A four-channel 3-dimensional convolutional neural network was created to
learn the radiologist-marked features using data from both sets of images. The findings of
their CAD system revealed 80.06% sensitivity with a false positive rate of 4.7 for each scan
and a 94.0% sensitivity with a false positive rate of 15.1. When evaluating PSO-SVM, as
well as GA-SVM, for mammography analysis, reference [24] presented a hybrid genetic
swarm optimization approach with SVM (GSOSVM). Extracting features from acquired
mammograms using GLCM. The authors chose the top five optimization characteristics
from each method. The findings demonstrated that GSO convergence outperformed PSO
and GA, and that GSO-SVM achieved a higher classification accuracy (94%) than both
PSO-SVM and GA-SVM.

Using transfer learning, Zhang et al. [25] overcame the issue of sparse sample size
in lung-nodule categorization. The CT scan of the lung was pre-processed and then sent
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to the LeNet-5 model, determining if the scan was benign or malignant and how severe
the malignancy was (serious or mild). The transfer learning (TL) model was validated
using the LIDC-IDRI dataset. Researchers performed transformations on each nodule’s
data to supplement the training data of malignant, as well as mild, classified pictures. With
a 10-fold cross-validation testing technique, they correctly categorized 97% of benign and
malignant nodules and 96.7% of malignancy grades. In [26], authors suggested an Effective
Classification Model for cancer detection using SVM, as well as FCM methods. Gaussian
with Gabor filters was used for the preliminary processing of the input CT picture. In order
to partition the lung cancer ROI, the FCM was given feature extractions from the improved
picture based on a Gray-Level Co-occurrence Matrix (GLCM). The SVM classifier was given the
ROI characteristics to determine the cancer stage. Experiments conducted on the LIDC-IDRI
benchmark dataset showed that the suggested model had a 93% success rate.

Moreover, the metaheuristic technique known as evolutionary computing (EC) has
also garnered much interest. In order to pick features, many EC-based techniques have been
proposed. The genetic algorithm (GA) was used for feature selection by the authors of [27].
Binary particle swarm optimization (PSO) was suggested for feature determination by the
authors in [28]. Tabu search was one method that the authors looked at for use in feature
selection [29]. Gray wolf optimization (GWO) is a fresh EC approach compared to the
established methods [30]. Wild gray wolf social hierarchy and hunting techniques served
as the inspiration for GWO. Its better search skills are effectively used for a wide variety of
real-world issues, such as those involving the optimum reactive power dispatching [31],
the approximation of surface acoustic wave parameters [32], and the design of a static VAR
compensator [33]. It is important to stress that the starting population of the first GWO is
randomly generated. This means that wolf packs throughout the whole search region can
be too similar to one another. Extensive research has revealed that the global convergence
rate and the intended output for flock intelligence optimization approaches are highly
influenced by the performance of the starting population. Because of this, optimization
strategies focusing on the starting population have a better chance of success when the
starting population is large and diverse. Given the promise of this fundamental idea, we
set out to use GA to breed a more substantial foundational group. The heterogeneous
population was then used in conjunction with a binary version of GWO for performing
feature selection.

In contrast, it has been suggested that the IGWO strategy be used in tandem with
Inception-V3 to further improve the system’s classification efficiency. In order to maximize
the IV3 classifier’s capacity for accurate classification, the suggested IGWO-IV3 method
would evaluate several feature combinations. The IV3 classifier will be trained by IGWO
using the best possible collection of features.

3. Methods

The experiment used the LIDC-IDRI dataset [34]. The dataset, originally in ‘Dicom’, is
downsized and converted to ‘jpeg’, and a new dataset is created at the intermediate level.
Figure 1 presents the proposed data collection and analysis approach to data collection and
analysis that has been discussed. The first phase of this technique involves retrieving a
lung scan picture from a database and then processing it using adaptive filtering [34]. This
lessens the impact of noise in addition to any extra aberrations that might have occurred
while capturing the picture. Then, depending on the look and motion of pixels, the Feature
Extraction process is carried out using the improved GWO technique. Finally, an enhanced
Inception-V3 classifier categorizes tumors as normal, benign, or malignant. Performance
metrics are produced to aid in a more precise interpretation of the results.
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3.1. GWO

In 2014, the Gray Wolf Optimizer (GWO) was suggested by Mirjalili et al. [30]. It is a
relatively new addition to the metaheuristic algorithms that take natural cues. In this way,
it resembles the hunting and pack-leading styles of gray wolves. Like all other Canidae
family members, the gray wolf has a tight social order. Packs of 5–12 wolves are optimal
for hunting. The traditional GWO makes certain assumptions in order to run an efficient
simulation, such as the fact that there are four tiers (α, β, δ, and ω) in the wolf social
hierarchy. Figure 2 shows the distinct (or hierarchical) social structure of gray wolf packs.
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Figure 2. Hierarchy of the gray wolves (GW) [30].

The alpha wolf is responsible for choosing where the pack will hunt, where the pack will
sleep, and how the pack will behave. The pack follows the leader’s decisions without question.
An exciting aspect of pack leadership is that the alpha need not be the most vital member of
the pack. Second, the betas are the wolves in the pack that aid the alpha in making decisions
and acting. The beta relays the alpha’s instructions to the pack and provides feedback. The
gray wolf has the third-lowest ranking, omega. Omega can complete the pack and maintain
the pack’s primary style. Each pack member is accountable for relaying information accurately
to others. The other wolves are known as delta. Delta wolves are third in the pack hierarchy
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after the alpha and beta, but they are the ones that ultimately have control over the omega.
Delta are responsible for keeping watch to protect the pack’s safety [30]. The gray wolf has a
number of fascinating social behaviors, one of which is group hunting, which is distinct from
the social hierarchy that wolves exhibit. Figure 3 depicts, from left to right, the key stages of a
gray wolf hunt, as described by Muro et al. [35].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 28 
 

 

Figure 2. Hierarchy of the gray wolves (GW) [30]. 

The alpha wolf is responsible for choosing where the pack will hunt, where the pack 
will sleep, and how the pack will behave. The pack follows the leader’s decisions without 
question. An exciting aspect of pack leadership is that the alpha need not be the most vital 
member of the pack. Second, the betas are the wolves in the pack that aid the alpha in 
making decisions and acting. The beta relays the alpha’s instructions to the pack and pro-
vides feedback. The gray wolf has the third-lowest ranking, omega. Omega can complete 
the pack and maintain the pack’s primary style. Each pack member is accountable for re-
laying information accurately to others. The other wolves are known as delta. Delta 
wolves are third in the pack hierarchy after the alpha and beta, but they are the ones that 
ultimately have control over the omega. Delta are responsible for keeping watch to protect 
the pack’s safety [30]. The gray wolf has a number of fascinating social behaviors, one of 
which is group hunting, which is distinct from the social hierarchy that wolves exhibit. 
Figure 3 depicts, from left to right, the key stages of a gray wolf hunt, as described by 
Muro et al. [35]. 

 
Figure 3. Hunting behavior of gray wolves: (A) chasing, approaching, and tracking prey (B–D) pur-
suing, harassing, and encircling (E) stationary situation and attack [35]. 

Mathematical modelling of wolf pack dynamics is the foundation for the GWO algo-
rithm. The best answer is located at the highest level of social hierarchy, or alpha. The 
same holds for beta and delta, which are ranked as the second- and third-best options. 
After the alpha, beta, and delta wolves, omega wolves are believed to be the next possible 
answers [30]. 

3.1.1. Encircling Prey Mechanism 
The positions of α, β, and δ wolves are used to illustrate changes to the positions 

made by the mechanism during optimization. This is quantitatively expressed in Equa-
tions (1) and (2). 𝐷ሬሬ⃗ = |𝐶 · 𝑋⃗௣(𝑡) − 𝑋⃗(𝑡) (1)𝑋⃗(𝑡 + 1) =  𝑋⃗௣(𝑡) − 𝐴𝐷ሬሬ⃗  (2)

where t is the present iteration number, 𝑋⃗௣ is the location of the prey, 𝑋⃗ is the location of 
the wolves, 𝐴 and 𝐶 are the vectors representing the coefficients, and 𝑎⃗ linearly decreases 

Figure 3. Hunting behavior of gray wolves: (A) chasing, approaching, and tracking prey
(B–D) pursuing, harassing, and encircling (E) stationary situation and attack [35].

Mathematical modelling of wolf pack dynamics is the foundation for the GWO al-
gorithm. The best answer is located at the highest level of social hierarchy, or alpha. The
same holds for beta and delta, which are ranked as the second- and third-best options.
After the alpha, beta, and delta wolves, omega wolves are believed to be the next possible
answers [30].

3.1.1. Encircling Prey Mechanism

The positions of α, β, and δ wolves are used to illustrate changes to the positions made by
the mechanism during optimization. This is quantitatively expressed in Equations (1) and (2).

→
D =

∣∣∣∣→C ·→Xp(t)−
→
X(t) (1)

→
X(t + 1) =

→
Xp(t)−

→
A
→
D (2)

where t is the present iteration number,
→
Xp is the location of the prey,

→
X is the location of

the wolves,
→
A and

→
C are the vectors representing the coefficients, and

→
a linearly decreases

from 2 to 0 as the number of iterations decreases. It is a tool for getting closer to the optimal
answer. Below, in Equations (3)–(5),

→
r 1 and

→
r 2 stand for the randomized vectors between

0 and 1. →
A = 2

→
a .
→
r − a (3)

→
C = 2

→
r 2 (4)

→
a = 2

(
1− y

T

)
(5)
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Figure 4a provides an illustration of a 2D position vector, as well as some of the
potential neighbors, so that the impacts of Equations (1) and (2) can be seen. From this
diagram, we may infer that a gray wolf at position (X, Y) can adjust its location to match

that of its prey (X∗, Y∗). Simply changing the magnitude of the
→
A and

→
C vectors allow

the best agent to move to a new location relative to the present one. For instance, if
→
A = (1, 0) and

→
C = (1, 1), then (X∗ − X, Y∗). Figure 4b shows the several probable

current locations of a GW in three-dimensional space. To reiterate, wolves are free to go
to any site within the range depicted in Figure 4 thanks to the random vectors r 1 and r2.
Using Equations (1) and (2), a GW may adjust its position inside the region surrounding
its prey (2). It is possible to apply the same concept to a search space of any dimensionality,
where the gray wolves roam around the current best answer in hyper-cubes.

3.1.2. Hunting the Prey

Gray wolves can readily surround their prey by pinpointing its exact position. The
wolf acts as a hunt master, orchestrating every step of the hunt. The gray wolf pack has a
clear hierarchy of α, β, and δ wolves, all participating in the hunt. Consequently, the α, β,
and δ wolves adjust their positions to where they think they should be. Equations (6)–(8)
provide the mathematical expression.
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Xβ −

→
A2.
→
Dβ,
→
X3 =

→
Xδ −

→
A3.
→
Dδ (7)

Gray wolves’ current location can be determined using Equation (7).

→
X(t + 1) =

→
X1(t + 1) +

→
X2(t + 1) +

→
X3(t + 1)/3 (8)

At this point, the position vectors of the three best solutions at the current iteration are

represented by the letters
→
Xα,

→
Xβ, and

→
Xδ, respectively. Figure 5 illustrates how a search

agent changes its location in a 2D search space based on alpha, beta, and delta values. It is
possible to see that the ultimate location could be anywhere at random inside of a circle, the
shape of which is dictated by the placements of α, β, and δ by where it is located within the
overall search space. In other words, α, β, and δ estimate as to the location of prey, while
the other wolves randomly around the prey update their locations.

3.1.3. Searching and Attacking the Prey

Gray wolves wait until their victim stops moving before attacking. Specifically, the Ea
vector from Equation (3). Using Equation (9), we iteratively reduce a value from 2 to 0 to
generate a random vector whose elements all fall within the interval [−a-a] (9).

→
a = 2− (2× t/Maxiter) (9)
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Therefore, if A 1, the wolf will be compelled to pursue the prey in an assault, and if A
> 1, the wolf will veer away from the prey in pursuit of a more suitable meal. Gray wolves
will look for food based on the pack’s alpha, beta, and delta positions. Exploration and
exploitation are solely determined by the A and EC vector values. With the help of the
random values of A, we can cause the wolf to either go closer to or farther away from its
prey. To prevent becoming stuck at a local maximum, the C vector’s random values should
fall between the range [0, 2]. To further complicate matters for gray wolves, one method
involves randomly adding weight to the prey. If C is more than 1, then the influence
of prey is emphasized, whereas if C is less than 1, then the effect of C is stochastically
downplayed. In this procedure, the A and C vectors are the most important ones to adjust.
When adjusted together, they might prioritize or downplay exploitative or exploratory
efforts. When all conditions are met, the GWO algorithm will conclude, and the optimal
alpha wolf position will be determined. Algorithm 1 is a diagrammatic description of
the influence of parameters A and C on the location updates of the wolves. The GWO
algorithm’s pseudo-code is presented in Algorithm 1.

Algorithm 1. Pseudo-code of the GWO algorithm.

set the maximum number of Iterations I
Initialize the population Xi (I = 1, 2, 3, . . . , n)
Initialize α, β, δ

Calculate the fitness of the wolves (i.e PSNR value)
Xα, Xβ and Xδ = 1st, 2nd and 3rd best search Agent (S.A Filter) respectively
t = 1;
While (t < I)

For each S.A
Position Updation of the current S.A as per fitness equation of PSNR

end for
Update α, β, δ

Fitness calculation of all S.A
Update Xα, Xβ and Xδ

T = t + 1
end while

Return Xα that is Best Filter with PSNR
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3.2. Genetic Algorithm (GA)

Holland [36] first introduced GA, an evolutionary optimization approach for optimal
performance dependent on genetics and an analogy of Darwin’s natural selection process.
In GA, a population consists of chromosomes, which represent potential outcomes. Each
chromosome has a number of genes encoded using the binary data 0 in addition to 1 for
coding purposes. For this inquiry, we used GA to determine the starting placements of the
GWO. It is detailed here how the GA startup positions go through their many stages.

• Chromosomes are generated at random during the initialization process.
• A roulette system chooses which set of parental chromosomes to utilize.
• Using a single-point crossing strategy, the offspring’s chromosomes may be constructed.
• It also consistently mutates, which is a nice feature.

The first step is to “decode” the chromosomes of the population to determine where
the mutations occurred.

3.3. Improved Gray Wolf Optimization

Since the GWO core can ensure convergence speed by ensuring adequate exploration,
as well as exploitation, throughout a search, it has quickly risen in popularity over compet-
ing methods. There is no need for the dominant α-searching agent to utilize weaker β- and
δ-searching agents to update their position. This is where GWO falls short. This is a major
reason why the group as a whole cannot perform to its full potential. Therefore, choosing
the three most important main search agents is vital in each repetition. Here, we will first
apply GA to construct the starting location of GWO. Secondly, we provide a refined GWO
(IGWO) approach that speeds up the leader selection process and safeguards against early
convergence due to local optimum stagnation. Agents ranked 1, 2, and 3 are developed to
signify a range of remedies to locate the optimal one worldwide (to encircle the prey).

Lastly, we devise the fitness-sharing concept to broaden the range of the GWO’s
possible answers. The term “fitness sharing” refers to a process through which the fitness
of one search agent is pooled with the fitnesses of other search agents that are vetting the
same solution (or a peak). The proposed IGWO technique combines the fitness-sharing
method with the GWO core to quickly locate all of the solutions to the global objective
function while preventing convergence to a local solution.

3.4. Transfer Learning-Based Models

Transfer learning-based classification with a small medical dataset and manual training
is never advisable. Transfer learning-based models are often utilized in the medical imaging
classification industry to overcome these restrictions. Models such as Inception V3 [37],
VGGNet [38], GoogLeNet [39], AlexNet [40], and ResNet [41] are built on transfer learning,
which allows them to generalize the information they have learned about one job to another
of the same kind. Regardless of the target-domain dataset, TL intends to increase the
network’s performance.

4. Proposed Methodology
4.1. Proposed IGWO-Inception(V3) Approach

The categorization of lung cancer tumors using our suggested IGWO-IV3 technique
is outlined in this section. The suggested solution has been divided into the following
phases to make it easier to understand: (1) First, we offer the IGWO algorithm, which does
not suffer from detrimental drawbacks, such as primary convergence towards the local
optimum, as shown in the previous image-denoising methods. (2) The ideal collection of
attributes to identify lung cancer tumors is chosen using the IGWO algorithm as a function
filtering tool. (3) The IGWO approach is put out in line with transfer learning to evaluate the
ideal feature combination that would maximize the transfer learning enhanced inception-
V3 classifier’s classification effectiveness. Figure 6 presents the IGWO-IV3 mechanism as it
was intended. The IGWO’s primary function is to dynamically probe the feature space for
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the best possible feature pairings. The optimal feature diversity achieves high classification
accuracy with a small set of characteristics.
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The IGWO uses the following equation for its fitness function, which is then applied
to the specified characteristics to obtain an estimation of those features:

Fitness = αP = β
N − L

N
(10)

where P represents the accuracy of the classification algorithm, N represents the total
number of features present in the dataset, L represents the dimensions of a prioritized
feature set, α and β represent two metrics of the reliability of feature selection. Both the
weight and the selection feature are within the range α ∈ [0, 1] and β = 1 − α. Flag vectors
for selecting features are shown in Figure 7. Real feature vectors are a subset of features
represented by a standardized sequence of binary 0 s and 1 s [42]. For n-dimensional
problems, the vector has n bits. Features are gathered if the bit value is equal to one, and
ignored otherwise. Therefore, the total number of bits within a vector whose values are
cumulatively equal to one are used to determine the size of a feature subset. Algorithm 2
displays the IGWO algorithm’s pseudocode.
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Algorithm 2. The pseudocode of the IGWO.

Begin
Initialize the algorithm parameters, number of iterations t, population size N, position of grey
wolf p, total number of features T and mark vector of features flag.
Create grey wolf’s initial positions by utilizing a genetic algorithm;

Initialize α,
→
A,
→
C ;

for i = 1 : N & j = 1 : T
If

p(i, j)(Greater than) > rand
flag(j) = 1 else 0;

end if
end for

Estimate grey wolf fitness with selected features according to Equation (10);
Estimate the fitness of each grey wolf α, β, and δ.
α, β, δ are the 1st, 2nd, and 3rd maximum fitness of the grey wolf recpectively;
while k < t

for i = 1 : N
Modify the grey wolf’s current position according to Equation (8);

end for
for i = 1 : N& j = 1 : T

If
p(i, j)(Greater than) > rand

flag(j) = 1 else 0;
end if

end for

F′i =
Fi
mi

i = 1, 2, 3 . . . . . . , N (11)

mi = ∑N
j=1 share

(
dij

)
(12)

Share
(

dij

)
=

{
1−

(
dij
σs

)
i f dij < σs,

0 otherwse
(13)

where dij designates the Euclidean distance among the search agents i,. And σs represents the the
radius of similarity.
Compute the fitness of all search agents. Modify each search agent’s fitness using a fitness-sharing
function according to Equations (11)–(13).
Order the search agents according to their newly calculated fitness values in decreasing order.
Estimate the grey wolves fitness with selected features according to Equation (10).
Update α, β, and δ.
k = k + 1
end while
return the best feature subset from the selected alpha features;

end
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4.2. Classification Using Improved Inception-V3(IV3)

It is a DNN that can sort through 1000 distinct types of objects for classification.
The model is first trained on a large dataset of photos, but it may later be retrained
on a smaller dataset while retaining its original training data. One of the benefits of
the IV3 CNN model is that it may enhance classification accuracy without requiring
extensive training, significantly decreasing processing time. Layers, activation functions,
and the extent to which Inception-V3 is a learnable network are all shown in Table 2. The
Inception-V3 network’s principal goal is to eradicate the bottleneck demonstration between
network layers, making the input size of the next layer much less. To reduce the network’s
computational complexity, the factorization approach is used.

Table 2. The Inception-V3 network’s architecture is broken down into its constituent layers: the
convolutional layer (C.V), the pooling layer (P.L), the inception module (I.M), and the predictions
layer (Pr. L).

Layers Type Activations
Learnable

Filter Size Stride Pooling Type

0 Input data (299 × 299 × 3) - - -

1 C.L
(149 × 149 × 32)

(3 × 3)

2 32

2 C.L 1 32

3 C.L (147 × 147 × 64) 1 64

4 P.L (73 × 73 × 64) 2 Max Pool

5 C.L (73 × 73 × 192) (1 × 1) 1 80

6 C.L (71 × 71 × 192)
(3 × 3)

1 192

7 P.L (35 × 35 × 192) 2 Max Pool

8 I.M (3A) (35 × 35 × 256)

- - -

9 I.M (3B)
(35 × 35 × 288)

10 I.M (3C)

11 I.M (4A)

(17 × 17 × 768)

12 I.M (5A)

13 I.M (5B)

14 I.M (5C)

15 I.M (5D)

16 I.M (6A)

(8 × 8 × 2048)17 I.M (7A)

18 I.M (7B)

19 P.L (1 × 1 × 2018) (8 × 8) 8 Avg Pool

20 Pr.L (1 × 1 × 1000) - - -

4.3. Performance Evaluation

Accuracy, sensitivity, and specificity are the performance evaluation indicators used to as-
sess the quality of the suggested model. Here are their corresponding mathematical expressions:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (14)

Sensitivity =
TP

TP + FN
× 100% (15)
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Speci f icity =
TN

TN + FP
× 100% (16)

5. Experimental Results and Discussions

To test the suggested model, we used a personal computer with an E5-2609 processor,
16 GB of RAM, and a K620 Quadro graphics processing unit (GPU). Researchers used
the open-source Python package Tensor flow and the Keras deep learning framework
to implement the model. The suggested model’s training process utilized a Categorical
cross-entropy loss function throughout 100 iterations. The k-fold cross-validation method
was used to achieve classification findings that were free from bias. In this particular
investigation, a 10-fold CV was used to evaluate the effectiveness of the suggested method.
Despite this, conducting the 10-fold CV calculation only once will lead to an erroneous
assessment. Therefore, the CV was multiplied by ten and was run ten times. Furthermore,
the hyperparameters settings included a Cross Validation (K), Number of Iterations (I),
Populations Size (P.S), Search domain (D), Total number of features (F), momentum (M) of
0.9, a batch size (BS) of 64, and a learning rate (LR) of 0.001, with a weight decay (WD) of
0.005. Table 3 depicts the hyperparameter setups.

Table 3. The Details of Hyper Parameters Configurations.

Parameters Configuration Value

K 10

I 100

P.S 8

F N

D [0, 1]

GA Probability
Crossover 0.8

Mutation 0.01

Fitness Function
α 0.99

β 0.01

M 0.90

LF Categorical Cross-Entropy

Dropout 0.5

CW [−1, 1]

5.1. Dataset

Lung cancer categorization may use a wide variety of currently accessible datasets.
Lung Image Database Consortium Image Collection (LIDC-IDRI) [34], Luna16 [43], and
NDSB3 (Neural Data Standardization Board, Version 3), were some of the datasets avail-
able [44]. It is possible to acquire images, analyze them, segment them, extract features
from them, and classify them all with the help of a CAD system. For a CAD system to be
constructed, it is necessary first to pre-process the datasets used in the project. This study
used data from the LIDC-IDRI [34]. There were 910 photos utilized; 250, 320, 320 as normal,
benign, and malignant, respectively. The RGB pictures were 512 pixels by 512 pixels in size.
Lung cancer screening and diagnosing thoracic CT images with identified lesions made up
the LIDC-IDRI. This dataset was compiled by the combined efforts of eight medical imag-
ing firms and seven academic institutions. The data collection was initially stored in the
format for Digital Imaging and Communications in Medicine (DICOM). An intermediate
dataset was created by down sampling the original data and saving it in “jpeg” format.
Denoising the dataset as part of the pre-processing step allowed us to obtain even better
results. Figure 8 shows some images from the dataset.
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5.2. Results and Analysis

The CT image of lung cancer used as the input, as shown in Figure 9a, is taken from
the LIDC-IDRI dataset. The median filter was applied to the input picture as a first step to
eliminate any artifacts that may have been produced during the image-capturing process
for experimenting. It was necessary to divide the Region of Interest (ROI) into many parts in
order to determine the specific area or region of interest that was wanted. In order to obtain
the ROI, we first had to transform the grayscale picture into a binary form. Then, we used
a morphological operation in the form of dilation, which gave us a decent but distorted
image full of holes. After applying the watershed transformation or image dilation, we
obtained a segmented image. This allowed us to fill in the gaps. Finally, we went back over
the photos and traced the edges of the nodules.

We employed classification strategies in the form of Inception-V3 by using segmented
pictures from each of the three classes. Figure 9a–f depicts the results of the Ct image
processing with noise addition, noise reduction, dilation, watershed transformation, image
segmentation, and the corresponding classification output. We began by establishing
certain boundaries when starting CNN’s training process. Epochs were randomly chosen to
determine the number of required iterations to achieve a high categorization accuracy. After
implementing various training strategies, we achieved an accuracy of 98.96% and 0.0279
mini-batch loss value. Figure 10 depicts the training duration and validation accuracy,
whereas Figure 11 depicts the accuracy and validation loss. Both Figures are located on the
same page. The segmentation and preprocessing steps were reliably executed. When we
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first started training, we noticed that the validation accuracy eventually reached 90% once
the training approached the fifth epoch.
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5.3. Classification Results

Results showed the following benefits of the suggested technique. The proportion
of false positives decreased as precision increased. In the past, methods have been used
that relied on a plethora of loud, useless characteristics, which may be seen as a weakness
in the reliability of the final product. In contrast to earlier research, which only included
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two, we included three. The accuracy of the suggested approach was 98.96%. Our three
types of test data were successfully predicted using this trained TL model. The results of
the prediction for varying PSNR levels across the three classes are shown in Table 4, the
outcomes for each class, while our tested data included 910 scans.
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Table 4. Predicted Results with PSNR values.

Number Real Class PSNR Value Running Time (Sec) Predicted Class

1

Benign

36.3867 11.2031

Benign

2 35.6983 9.8159

3 37.5098 9.8871

4 36.4594 10.4942

5 36.1506 10.5559

6 36.6885 10.0581 Normal

7 36.3145 10.3443
Benign

8 33.5808 11.1109

9 37.8088 10.3813 Malignant

10 33.3931 11.844 Benign

11

Malignant

30.9873 11.6739
Malignant12 33.4281 10.74

13 36.2933 9.514

14 33.4307 10.9254 Normal

15 36.1939 9.4905
Malignant16 33.323 11.6049

17 35.8181 10.6805

18 35.113 11.5834 Normal

19 33.3303 10.0966 Malignant

20 34.7994 11.3893 Benign
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Table 4. Cont.

Number Real Class PSNR Value Running Time (Sec) Predicted Class

21

Normal

36.13 10.7034

Normal

22 38.725 9.5804

23 32.588 11.3979

24 35.7119 10.6721

25 34.9542 10.1702

26 35.7102 10.8228

27 35.447 11.6075

28 38.3151 11.0796

29 33.9639 10.85

30 35.7997 10.3842

5.4. Results Discussion

This section summarizes the findings using the IGWO and learning-based technique
developed for lung nodule identification. The proposed model is evaluated on LIDC-IDRI.
The performance evaluation metrics, such as accuracy, sensitivity, and specificity, mea-
sure the proposed model’s efficacy. The proposed model’s performance is presented in
Tables 5–7. It can be seen in Tables 5–7 that the IGWO-IV3 model evaluated by the LIDC-
IDRI dataset achieved an average accuracy of 98.96%, 95.29%, and 94.92%, respectively.
Table 5 specifies the LIDC-IDRI results, where the accuracy of Inception-V3, VGGNet,
GoogLeNet, AlexNet, and ResNet is 98.96%, 97.65%, 96.15%, 95.70%, and 96.90%, respec-
tively. Moreover, Tables 6 and 7 specify the models GWO-IV3 and GA-IV3 evaluated
on the LIDC-IDRI dataset achieved an accuracy of 95.29% and 94.92, 94.88% and 93.20%,
93.75% and 92.05, 93.15% and 91.30%, and 94% and 92.45%, respectively. The graphical
representation of the models is shown in Figures 12–14.

Table 5. Performance of the proposed IGWO-IV3.

Model Accuracy Sensitivity Specificity

Inception-V3 98.96 100 94.97
VGGNet 97.65 97.94 97.8

GoogLeNet 96.15 94.75 96.22
AlexNet 95.70 93.08 94.39
ResNet 96.9 93.81 96.15

Table 6. Performance of the proposed GWO-IV3.

Model Accuracy Sensitivity Specificity

Inception-V3 95.29 95.68 96.20
VGGNet 94.88 95.11 93.55

GoogLeNet 93.75 94.3 92.66
AlexNet 93.15 93.05 92.34
ResNet 94 93.3 93.7

Table 7. Performance of the proposed GA-IV3.

Model Accuracy Sensitivity Specificity

Inception-V3 94.92 93.34 94.22
VGGNet 93.20 92.13 89.9

GoogLeNet 92.05 90.74 92.22
AlexNet 91.3 90.08 91.9
ResNet 92.45 91.38 91.96
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5.5. Comparison with State-of-the-Art Models

In this section, we present the classification performance of the proposed IGWO-IV3
approach on the LIDC-IDRI dataset. Several more recently developed and state-of-the-art
lung cancer prediction models are compared.

From the results, it can be seen that our proposed methodology has the following
advantages:

• Improved accuracy and reduced false positive rate.
• The previously adopted methodologies were based upon many noisy, unusable fea-

tures that may have compromised classification.
• We included three classes, whereas most previous studies have only included two.

The proposed methodology gives the following results (Figure 15) regarding predictions:
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Figure 15. Confusion matrix of IGWO-IV3.

Experiments were run between IGWO-IV3 and two other methods, GWO-IV3 and
GA-IV3, to evaluate the effectiveness of the proposed method in terms of lung nodule
detection. The 10-fold CV was used to determine the classification precisions of each
approach, and the average values from this distribution were used in the final analysis.

Table 8 and Figure 16 compare the planned study to primary research methods,
providing examples from several databases to illustrate their findings. There is a trade-off
between accuracy, specificity, and sensitivity in the measurements used for this comparison,
since some studies emphasize precision while others place more emphasis on sensitivity. It
was a proposed work that enhanced specificity and accuracy. However, very few studies
have been sensitive enough to match the suggested study.
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Table 8. A comparison between the proposed work and state-of-the-art models.

Author Accuracy Sensitivity Specificity

Kasinathan et al. [45] 97.77 95.53 91.1
Li et al. [46] 97.33 97.26 97.38
Shi et al. [47] 87.88 88.21 68.70

Ahmed et al. [48] 94.73 93.97 95.13
Safta et al. [49] 93.10 91.11 95.24

Gupta et al. [50] 81.50 78.11 85.64
Shen et al. [51] 84.20 70.50 88.90
Wei et al. [52] 87.65 89.30 86.00
Ren et al. [53] 90.00 81.00 95.00
Sang et al. [54] 92.00 94.00 90.00

IGWO-IV3 98.96 100 94.97
GWO-IV3 95.29 95.68 96.20

GA-IV3 94.92 93.34 94.22
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6. Conclusions

This work offers a novel IGWO-IV3 approach that uses boundary tracing to decrease
false positives and improve accuracy. This work may aid detection of lung cancer by
medical professionals. Our technique has the potential to be employed in a variety of
settings, including the analysis of chest X-rays, the improvement of the PSNR value of
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fuzzy pictures captured during motion, and the categorization of other medical images.
Hybridization of TL with different algorithms may or may not have produced surprising
results for this dataset. This study paves the way for IGWO-IV3-based automated lung
cancer detection and categorization. Features selection and categorization are the two key
components of the proposed technique. First, the IGWO was used to focus in on the most
critical aspects of the data. The second phase used the IV3 classifier to foresee the first-step
representative feature subset. The proposed method on the LIDC-IDRI dataset was linked
to well-known methodologies like GA and GWO for choosing the features, each of which
employs criteria for evaluating crucial facets of the model. The results of the simulations
revealed that the proposed IGWO approach achieved a quicker convergence, a higher
quality solution, and a smaller feature set while still producing adequate classification
results. The results demonstrated the superiority of the suggested approach at a lower
computational cost.
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