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Abstract: The rapid change of motion direction during running is beneficial to improving the
movement flexibility of the quadruped robot, which is of great relevance to its research. How to
make the robot change its motion direction during running and achieve good dynamic stability is a
problem to be solved. In this paper, a method to change the running direction of the cheetah-inspired
quadruped robot is proposed. Based on the analysis of the running of the cheetah, a dynamic model
of the quadruped robot is established, and a two-level stability index system, including a minimum
index system and a range index system, is proposed. On this basis, the objective function based on
the stability index system and optimization variables, including leg landing points, trunk movement
trajectory, and posture change rule, are determined. Through these constraints, the direction changes
with good dynamic stability of the cheetah-inspired quadruped robot during running is realized by
controlling the leg parameters. The robot will not roll over during high-speed movement. Finally, the
correctness of the proposed method is proven by simulation. This paper provides a theoretical basis
for the quadruped robot’s rapid change of direction in running.

Keywords: quadruped robot; change of running direction; dynamic model; stability index system;
simulation analysis

1. Introduction

Most quadrupeds have the ability to run fast. For example, the cheetah is the fastest-
running land animal in the world, and its speed can reach 104.4 km/h [1]. Antilocapra
americana can run very fast, up to 100 km/h, and has good endurance [2]. In particular, to
catch a fast-moving target or escape quickly, the running direction of the creature is not
constant, thus its running is no longer a plane motion but a motion in a 3D space. Therefore,
for the quadruped robot, how to achieve a rapid change of motion direction in running is a
problem to be solved [3].

Many researchers have studied the movement mechanism of the quadruped during
running [4]. For example, Kamimura et al. [5] hypothesized that the three characteristics of
the small vertical movement of their center of mass, small whole-body pitching movement,
and large spine bending movement enhance the running ability of the cheetah. The
hypothesis was then verified by a model with a spine joint and a torsional spring. In
addition, the running of bipedal creatures, such as birds [6,7] or humans [8,9], has also
been studied. On this basis, many researchers have studied the running of bio-inspired
quadruped robots. To make the quadruped robot have good dynamic performance in
running, the research mainly focuses on structural design [10,11], a control algorithm based
on the dynamic model [12–14], an energy transfer mechanism [15], and environmental
adaptability [16–18]. In terms of prototype, the most representative quadruped robot with
running ability is the Cheetah robot developed by the Massachusetts Institute of Technology
(MIT). Based on the research on the design principles for highly efficient legged robots and
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hierarchical controllers, the running speed of the Cheetah robot can reach 6 m/s and has
good dynamic performance [19–22]. In addition to quadruped robots, many researchers
have studied the running of biped robots [23,24] and hexapod robots [25,26], and have
achieved good research results.

Creatures often do not run in only one direction, and they have the ability to move
at high speed in 3D space [27,28]. The research on the motion abilities of bio-inspired
robots has also expanded from plane motion to 3D space [29,30]. For examples, Di Carlo
et al. [22] presented the implementation of model predictive control (MPC) to determine
ground reaction forces for a torque-controlled quadruped robot, and the developed MIT
Cheetah 3 can realize a full 3D gallop. Sullivan et al. [31] studied the effects of varying
step width on the 3D running stability of a bipedal amputee-inspired robot. The research
results showed that to obtain narrower step widths, as seen in human locomotion, a roll
and yaw control would be needed. In addition to controlling the motion parameters of
the robot itself, the robot can change motion direction during running by using auxiliary
mechanisms. For example, Kim et al. [32] were inspired by a basilisk lizard’s ability to run
and steer on water surfaces for a hexapedal robot, which can steer on water by rotating
its tail, and the controlled steering locomotion was stable. Kohut et al. [33] presented a
running robot that used aerodynamic forces to turn. The research results showed that the
robot is capable of stably turning in a 1.2 m radius at 1.6 ms, and the aerodynamic steering
is superior for high-speed turns at high forward velocity. In particular, jumping is also a
high-speed movement. Many researchers have studied the structure [34–36] and control
algorithms [37,38] of the robot so that it can achieve fast steering when jumping.

For quadruped robots with running ability, the existing research mainly focuses on
running in a plane. Research on the high-speed motion mechanism of the quadruped
robot in 3D space is relatively rare. The difficulty of research on the 3D running of robots
is mainly reflected in two aspects: the motion of the robot in 3D space involves many
dynamic performance indices and variables to be optimized, and the coupling degree
between them is high [39]; conversely, the change of direction in the high-speed motion
of the robot can easily cause sudden changes in performance indices [40]. Guaranteeing
the stable high-speed movement of the robot is difficult. To make the robot achieve good
dynamic stability in high-speed steering, taking the steering running of the cheetah as a
reference, a method of changing the running direction of a bio-inspired robot is proposed in
this paper. A two-level stability index system, including minimum index system and range
index system, is established based on the dynamic model of the robot, and the optimization
variables, including leg landing points, trunk movement trajectory, and posture change
rule, are determined. Then, the optimal leg input parameters can be obtained based on the
improved bee colony algorithm. The analysis results show that the robot can turn quickly
while running and has good dynamic stability by using the proposed method.

The remainder of the paper is structured as follows. Section 2 establishes the dynamic
model and stability index system, and presents the optimization method of leg parameters.
Section 3 shows examples to illustrate the feasibility of the method. Finally, Section 4
discusses the results. This paper provides a theoretical basis for the realization of rapid
steering in the running of the quadruped robot.

2. Methods
2.1. Research Objectives

Cheetahs often need to change movement direction frequently during hunting. When
the cheetah runs in a plane, the angle of leg adduction/abduction is almost zero. When
the cheetah needs to change the motion direction during high-speed movement, the ad-
duction/abduction angle is large. Figure 1a shows θ1 and θ2 are the angles between the
leg and the vertical direction in the front view, which are 36.6◦ and 64.2◦, respectively, in
the illustrated state. With the cooperation of muscle-driving forces, the cheetah can realize
steering movement during running. In particular, for the movement gait, cheetahs use a
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rotatory gallop with the footfall order of right fore, left fore, left hind, and right hind during
curve running [41].
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Figure 1. (a) Moment when the cheetah changes its movement direction during running. The
legs of the cheetah have larger adduction/abduction angles than the cheetah moving in one plane.
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The 3D model of the cheetah-inspired quadruped robot is shown in Figure 1b. The
hip joints of each leg have 2 degrees of freedoms (DOF) for adduction/abduction and
flexion/extension movements. The axes of the two hinges intersect. The knee joint has
1 DOF for flexion/extension movement. In addition, the leg is in point contact with the
ground, which can be equivalent to a 3-DOF ball pair. At this time, each leg has 6 DOFs
and no constraints on the trunk. By controlling the leg postures and driving forces of
the cheetah-inspired robot, the robot can simulate the cheetah to change motion direction
quickly during high-speed motion.

2.2. Establishment of Dynamic Model

During running, the cheetah’s two forelegs land first and its two hindlegs land
later [41]. For simplicity, the two forelegs are assumed to land simultaneously. When
the trunk moves to the lowest point, both forelegs leave the ground at the same time, and
both hindlegs land. The trajectory of the trunk during the turning of the robot in the leg
landing phase is shown in Figure 2a. When the forelegs of the robot land on the ground, its
trunk moves along the trajectory O1O2 (O1 is the position of the center of mass of the trunk
at the moment when the forelegs land, and O2 is the lowest point of the trunk). When the
center of mass of the trunk reaches O2, the movement direction of the trunk is changed,
and the robot leaves the ground along the trajectory O2O3 (O3 is the position of center of
mass of the trunk at the moment when the hindlegs leave the ground). In the following
text, the “trunk descending phase” and “trunk ascending phase” refer to the above two
processes. Trajectories O1O2 and O2O3 are not coplanar, and the trajectory is not necessarily
a straight line. The mechanism diagram of the cheetah-inspired quadruped robot is shown
in Figure 2b. The coordinate origin of the fixed coordinate system O0–X0Y0Z0 coincides
with the projection point of the lowest point O2 of the trunk motion trajectory on the ground.
The directions of the coordinate axes are shown in Figure 2b. The coordinate origin of the
moving coordinate system Ot–XtYtZt coincides with the geometric center of the trunk, and
the friction between the legs and the ground during the movement is ignored.
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First, the motion law of the trunk must be determined. Trajectories O1O2 and O2O3
can be expressed as

St(x, y, z) = St

(
n

∑
q=0

dqitq,
n

∑
q=0

eqitq,
n

∑
q=0

fqitq

)
, i = 1, 2 (1)

where t is the time, aq, bq, and cq are the polynomial coefficients, and (x1, y1, z1) and
(x2, y2, z2) are the coordinates of points O1 and O2, respectively. Equation (1) can also reflect
the change of velocity and acceleration of the trunk by derivation. In particular, some
boundary conditions are known. For example, at the moment when the forelegs of the
robot land on the ground and the trunk reaches the lowest point O2, the position and the
velocity of the center of mass of the trunk are known. The velocity of the trunk at point O1
is also known according to the motion parameters of the previous cycle (a running cycle
is defined from the moment of robot landing to the next landing moment). Therefore, a
coupling relationship between the polynomial coefficients may exist.

During the movement of the trunk along trajectories O1O2 and O2O3, the posture of
the trunk can be represented by the ZYX Euler angle.

Q =


cαcβ cαsβsγ− sαcγ cαsβcγ + sαsγ x
sαcβ sαsβsγ + cαcγ sαsβcγ− cαsγ y
−sβ cβsγ cβcγ z

0 0 0 1

, (2)

where “s” and “c” refer to “sin” and “cos”, respectively, and α, β, and γ are the Euler
angles of the motion coordinate system Ot–XtYtZt relative to the fixed coordinate system
O0–X0Y0Z0. The change of trunk posture can be expressed as a polynomial function:

Φt(α, β, γ) = Φt

(
n

∑
q=0

aqitq,
n

∑
q=0

bqitq,
n

∑
q=0

cqitq

)
i = 1, 2 (3)

Similarly, boundary conditions can be set according to actual requirements to reduce
the number of polynomial coefficients to be optimized.
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If the position and the posture of the trunk are determined, the leg posture can be
reflected through the contact points between the legs and the ground. Taking the foreleg
landing as an example, the contact points can be determined by four parameters, h1, h2, dk,
and ϕk, as shown in Figure 2b. h1 and h2 are the distances from the two landing points to
the intersection S of A3A4 (A3 and A4 are the two landing points of forelegs) and the Z0
axis, respectively. dk is the distance from the coordinate origin of O0–X0Y0Z0 to S. ϕk is the
angle between A3A4 and the positive direction of the Z0 axis. At this time, the coordinates
of the two landing points A3 and A4 can be expressed as

Ai =
[
(−1)ihi sin ϕk 0 dk + (−1)ihi cos ϕk

]
i = 3, 4 (4)

The calculation method of the landing points is the same for the case of hindleg
landing. The kinematic equation of the i-th leg can be expressed as

0Tt =
0Ti1

i1Ti2
i2Ti3

i3Tti, (5)

where

0Ti1 =


cθi1cθi2 cθi1sθi2sθi3 − sθi1cθi3 cθi1sθi2cθi3 + sθi1sθi3 li1 + li3cθi1cθi2
sθi1cθi2 sθi1sθi2sθi3 + cθi1cθi3 sθi1sθi2cθi3 − cθi1sθi3 li3sθi1cθi2
−sθi2 cθi2sθi3 cθi2cθi3 li2 − li3sθi2

0 0 0 1

,

i1Ti2 =


sθi4 −sθi4 0 li4cθi4

sθi4 cθi4 0 li4sθi4

0 0 1 0

0 0 0 1

, i2Ti3 =


cθi5 0 sθi5 0

sθi5 0 −cθi5 0

0 1 0 0

0 0 0 1

, i3Tti =


cθi6 −sθi6 0 li5cθi6

sθi6 cθi6 0 li5sθi6

0 0 1 li6
0 0 0 1


θi1, θi2, and θi3 are the rotation angles of the ball pair. θi4 is the rotation angle of the knee
joint. θi5 and θi6 are the rotation angles of hinges 2 and 1, respectively, as shown in Figure 1b.
(ai1, bi1) is the position vector of point Ai in the fixed coordinate system O0–X0Y0Z0, li1 is
the length of link AiBi, li2 is the length of link BiCi, and (ai2, bi2) is the position vector of
point Ci in the moving coordinate system Ot–XtYtZt. For Equation (5), when the position
and the posture of the trunk and the position of the landing points are determined, the joint
angle θij (j = 1, 2, . . . , 6) can be obtained by numerical solution. At this time, the position
vector of any point on the link can be expressed as

rip = ripx
→
i + ripy

→
j + ripz

→
k (6)

On the basis of solving the kinematics, the dynamic model of the robot should be
established. By calculating the first and second derivatives of Equation (5), the angular
velocities and angular accelerations of the joints can be expressed as

.
θij = f1(Vt, Wt)|Vt =

(
vtx, vty, vtz

)
, Wt =

( .
α,

.
β,

.
γ
)

..
θij = f1(Vt, Wt, At, Tt)|At =

(
atx, aty, atz

)
, Tt =

( ..
α,

..
β,

..
γ
) , (7)

where V t and Wt are the velocity and the angular velocity of the trunk, respectively; At and
Tt are the acceleration and the angular acceleration of the trunk, respectively.

By calculating the first and second derivatives of Equation (6), the velocity and the
acceleration of the joint points and centers of mass of the links can be obtained as

Vij =
6

∑
j=1

(
aijθij + bij

.
θij

)
=

6

∑
j=1

(
aijF(α, β, γ, x, y, z) + bij

.
F(α, β, γ, x, y, z)

)
(8)
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Aij =
6

∑
j=1

(
cijθij + dij

.
θij + eij

..
θij

)
=

6

∑
j=1

(
cijF(α, β, γ, x, y, z) + dij

.
F(α, β, γ, x, y, z) + eij

..
F(α, β, γ, x, y, z)

)
(9)

On this basis, the angular velocity and the angular acceleration of each link can be
obtained by

Vi,j+1 = Vi,j + ωi × Li (10)
.
Vi,j+1 =

.
Vi,j +

.
ωi × Li + ωi × (ωi × Li) (11)

where Vi,j and
.
Vi,j are the velocity and the acceleration of the j-th joint of the i-th link,

respectively. Vi,j+1 and
.
Vi,j+1 are the velocity and the acceleration of the (j + 1)-th joint of

the i-th link, respectively. ωi and
.

ωi are the angular velocity and the angular acceleration
of the i-th link, respectively. Li is the direction vector of the i-th link.

The driving torques can be obtained by establishing the Lagrange dynamic equation.
The total kinetic energy of the robot can be expressed as

Ek =
2

∑
i=1

2

∑
j=1

(
1
2

0Vij
Tmij

0Vij +
1
2

0ωij
T 0 Iij

0ωij

)
+

(
1
2

0Vt
Tmt

0Vt +
1
2

0ωt
T 0 It

0ωt

)
, (12)

where mij and mt are the masses of the j-th link of the i-th leg and the trunk, respectively.
0Vij and 0ωij are the velocity and the angular velocity of the j-th link of the i-th leg in the
fixed coordinate system, respectively. 0Vt and 0ωt are the velocity and the angular velocity
of the trunk in the fixed coordinate system, respectively. 0Iij and 0It are the moment of
inertia in the fixed coordinate system, which can be expressed as

0 Iij(t) =
0Tij(t)

ij Iij(t)
0Tij(t)

T , (13)

where 0Tij(t) is the transformation matrix of the j-th link of the i-th leg (or the trunk) in the
fixed coordinate system. The total potential energy of the robot can be expressed as

Ep =
2

∑
i=1

2

∑
j=1

(
mijghij

)
+ mtght, (14)

where hij and ht are the distances from the center of mass of the link and the trunk to the
ground, respectively, which can be obtained by kinematic analysis.

The trunk of the robot has 6 DOFs when two legs land at the same time. The drives are
installed at the hip and knee joints of the legs because the ball pair formed by the contact
between the legs and the ground is passive motion. At this time, the Lagrange dynamic
equation can be written as

τij =
d
dt

∂Ek

∂
.
qij
− ∂Ek

∂qij
+

∂Ep

∂qij
, (15)

where qij = (θi1, θi2, θi3, θi4, θi5, θi6), and
.
qij =

( .
θi1,

.
θi2,

.
θi3,

.
θi4,

.
θi5,

.
θi6

)
.

Through the method detailed above, the dynamic model of the cheetah-inspired
quadruped robot moving at a high speed in 3D space can be established.

2.3. Establishment of Stability Index System

On the basis of establishing the dynamic model, the stability index system must be
set up so that the robot has good dynamic performance by optimizing the leg parameters.
A two-level stability index system is proposed, including a minimum index system and
range index system.
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The indices contained in the minimum index system should be as small as possible
during robot movement. It includes the total inertia moment, the angular velocity of
the trunk, the zero moment point (ZMP), and the energy consumption of the robot in a
motion cycle.

(1) Total inertia moment. During the high-speed movement of the robot, it should
maintain good stability without overturning and rolling over. During the descending and
ascending phases of the trunk, the mean and the variance of the total inertia moment and
the total inertia moment of the robot at the moment of leaving the ground should be as
small as possible. The total inertia moment at the k-th time can be expressed as

MIk =
2

∑
i=1

2

∑
j=1

(
rijk × Fijk + Mijk

)
+rtk × Ftk + Mtk, (16)

where Fij and Ft are the inertia forces of the j-th link of the i-th leg and the trunk, respectively.
rij and rt are the vectors of the center of mass of the j-th link of the i-th leg and the trunk in
the fixed coordinate system, respectively. Mij and Mt are the inertia moments. The above
indices can be expressed as

D =
∣∣∣∀D

(
Mij(t)

)
− ∀D

(
Mkp

)∣∣∣
E =

∣∣∣∀E
(

Mij(t)

)∣∣∣
V = End

(
Mij(t)

) , (17)

where D, E, and V represent the mean, the variance, and the end value, respectively.
(2) Angular velocity of the trunk. A small total inertia moment can make the robot have

a small angular acceleration, but further ensuring that the trunk has a small angular velocity
at the moment of leaving the ground is still necessary to prevent the robot from turning
during a long flight time. The angular velocity of the robot can be obtained according to
Equations (10)–(11).

(ωr, αr) = g
(

θij,
.

Φ,
..
Φ
)

(18)

(3) ZMP. ZMP can be expressed as [42]

XZMP =

4
∑

i=1
mij

( ..
yij+g

)
xij+mt(

..
yt+g)xt−

4
∑

i=1
mij

..
xijyij−mt

..
xtyt

4
∑

i=1
mi

( ..
yij+g

)
+mt(

..
yt+g)

YZMP = 0

ZZMP =

4
∑

i=1
mij

( ..
yij+g

)
zij+mt(

..
yt+g)zt−

4
∑

i=1
mij

..
zijyij−mt

..
ztyt

4
∑

i=1
mi

( ..
yij+g

)
+mt(

..
yt+g)

(19)

where (xij, yij, zij) and (xt, yt, zt) are the position coordinates of the center of mass of the j-th
link of the i-th leg and the trunk in the fixed coordinate system, respectively.

(4) Energy consumption. The energy consumption of the robot in high-speed motion
should be as small as possible. The total energy consumption can be expressed as

C =
∫ T

0

2

∑
i=1

3

∑
j=1

∣∣Pij(t)
∣∣dt =

∫ T

0

2

∑
i=1

3

∑
j=1

∣∣τij(t)ωij(t)
∣∣dt, (20)

where Pij is the instantaneous power of the j-th joint of the i-th leg, τij is the joint torque,
and ωij is the joint angular velocity.

The indices contained in the range index system are considered to meet the re-
quirements within given ranges. This includes the driving torques of the legs and the
leg swing angle.
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(1) Driving torques. The mean value of the discrete points of the driving torques for
different joints should be in a small range. In this way, motors with the same model can be
selected, reducing the difficulty of robot prototype development and control. The variances
of the joint torque should also be in a small range to ensure the smoothness of torque
changes, and prevent excessive torque changes from affecting the service life of the motor.
The above indices can be expressed as{

D =
∣∣∣∀D

(
τij
)
− ∀D

(
τkp

)∣∣∣
E =

∣∣∀E
(
τij
)∣∣ , (21)

where D and E represent the mean and the variance, respectively.
(2) Leg swing angle. The leg swing angle refers to the angle between the line between

the hip joint and the landing point and the vertical direction. If the leg swing angle is too
large, the robot easily loses stability due to small friction. Therefore, the leg swing angle
should be smaller than the given values. The leg swing angle can be expressed as

Ψ =

(
arccos

z(Ri6)− z(Ri1)

y(Ri6)− y(Ri1)

)
, (22)

where Rij is the position vector of the j-th joint of the i-th leg.
Through the above analysis, a two-level stability index system including the minimum

index system and the range index system is established. Among them, the constraints for
total inertia moment, angular velocity of the trunk, ZMP, and leg swing angle determine
the feasibility of robot motion, and the constraints for energy consumption and driving
torques determine the performance advantages of robot long-term movement. The stability
index system provides a basis for the subsequent optimization of the motion parameters of
the robot.

2.4. Leg parameter Optimization Method

According to the analysis results of the biological mechanism in Section 2.1, the
leg postures and the driving torques of the robot during high-speed movement must be
determined, which can be obtained through optimization.

The optimization variables include leg posture parameters and trunk motion parame-
ters. The former includes h1i, h2i, dki, and ϕki (I = 1, 2), as shown in Figure 2b. The latter
includes the polynomial coefficients shown in Equations (1) and (3). In particular, the
polynomial coefficients are different in the descending and ascending phases of the trunk.

The optimization objective function can be expressed as

Z = Min
n
∑

i=1
wi fi(x1, . . . , xn)

s.t.Γ
(23)

where

f1 = (D|MIk| −min(D|MIk|))/(max(D|MIk|)−min(D|MIk|))
f2 = (E|MIk| −min(E|MIk|))/(max(E|MIk|)−min(E|MIk|))
f3 = (End(|MIk|)−min(|MIk|))/(max(|MIk|)−min(|MIk|))
f4 = (|D(ZMP, Ai Ai+1)| −min|D(ZMP, Ai Ai+1)|)/max(|D(ZMP, Ai Ai+1)| −min|D(ZMP, Ai Ai+1)|)
f5 = (|E(ZMP, Ai Ai+1)| −min|E(ZMP, Ai Ai+1)|)/max(|E(ZMP, Ai Ai+1)| −min|E(ZMP, Ai Ai+1)|)
f6 = (C−minC)/(maxC−minC)

f 1 and f 2 represent the mean and variance of the discrete points of the total inertia moment
of the robot in the descending and ascending phases, respectively. f 3 represents the total
inertia moment of the robot at the moment when it leaves the ground. f 4 and f 5 represent
the mean and the variance of the distance from the ZMP to the line between the two
landing points, respectively. f 6 represents the energy consumption. In particular, Equation
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(3) is derived, and the zero angular velocity of the trunk at the end of the descending
and ascending phases can be taken as the boundary condition instead of being listed as
the objective function. The relationship between polynomial coefficients and time can be
obtained and used as the constraints for optimization. This can ensure that the angular
velocity of the trunk of the robot is zero when it leaves the ground, and that the robot
has good stability. fi (i = 1, 2, . . . , 6) should be as small as possible, which corresponds to
the minimum index system. wi is the weight coefficient, which is determined by analytic
hierarchy process (AHP). The weight coefficient can be expressed as

wi =
w0

j
n
∑

j=1
w0

j

, (24)

where w0
i are the values obtained by adding rows after the standardization of the judgment

matrix. In particular, the consistency of the judgment matrix must be checked to ensure
that the scoring of experts is logical and does not appear contradictory. Consistency index
can be expressed as

CR =
λmax − n/n− 1

RI
, (25)

where λmax is the maximum eigenvalue of the judgement matrix, and RI is an average
random consistency index, which can be obtained by looking up the table.

For Equation (23), Γ is the constraints, which can be expressed as{ ∣∣∣∀D
(
τij
)
− ∀D

(
τkp

)∣∣∣ ≤ ZDand
∣∣∀E

(
τij
)∣∣ ≤ ZE

Ψ ≤ Ψo
, (26)

where the first formula indicates that the mean and the variance of the driving torques
should meet the range requirements, and ZD and ZE are the given reference values. The
second formula indicates that the angle between the leg and the ground should be less than
the given value Ψ0. Equation (26) is consistent with the range index system.

For the above optimization variables and objective functions, an improved bee colony
algorithm is applied in this paper, and the optimization is shown in Algorithm 1. First,
the initial ranges of optimization variables Q, the kinematic feasible region O (make sure
the trunk is in the workspace), and the maximum value Z(i)max and minimum value
Z(i)min of the objective function are given. A set of optimization variables W(j) is taken
from the initial range Qrange, and each item in the optimization objective function Z(j)
and the motion parameters O(j) are calculated based on bee colony algorithm HG

rule and
range constraints M. By judging the value of the objective function, Qrange, Z(i)min, and
Z(i)max are updated and assigned to Qrange

new ,Z((i))min
new, and Z(i)max

new , respectively, to obtain
the approximate accurate values. While carrying out the accurate dimensionless processing
of the objective function, the design efficiency is improved through the accurate constraints
of the ranges. On this basis, values are taken from Qrange

new , the objective function Z(j) is
calculated, and Qrange

new ,Z(i)min
new, and Z(i)max

new are simultaneously updated to improve the
constraint accuracy continuously. In particular, when the ratio of the total number of cycles
to the current number of cycles is a positive natural number, the result obtained by the
previous generation calculation is used as a reference to reduce the ranges by multiplying
the scale coefficient k (k < 1) to improve the calculation efficiency. Finally, the minimum
value of the objective function is obtained, and the optimization variables are output.
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Algorithm 1 Leg parameters optimization

Nomenclature: Q% Ranges of optimization variables
W% Optimization variables
Z% Optimization objective function
O% Kinematic feasibility constraints
M% Range constraints
HG

rule% Bee colony algorithm

1: Set Qrange, Orange, Z(i)min,Z(i)max, and M
2: For j=1, . . . ., N1
3: Select W(j) from Qrange

4: Calculate Z(j) and (j) by HG
rule andM

5: If O(j) ∈Orange

6: Update Qrange,Z(i)min and Z(i)max by Z(j)
7: Qrange

new = Qrange , Z(i)min
new Z(i)min and Z(i)max

new = Z(i)max

8: End If
9: End For
10: For j = 1, . . . ., N2
11: Select (j) fromQrange

new
12: Calculate Z(j) byHG

rule and M
13: Update Qrange

new , Z(i)min
new and Z(i)max

new by Z(j)
14: If N2/ N*

15: Update Qrange
new

16: End if
17: Calculate Z by Z(i)min

new and Z(i)max
new

18: If Z ≤ Zbest
19: Copy Z into Zbest
20: End if
21: End For

In particular, for the above optimization process, parallel calculation is used in the
process of employed bees, on-looker bees, and scout bees to find honey sources, and the
extreme value of the objective function is dynamically updated after the calculation for each
kind of bee is completed. At the same time, the dynamic parameters for the scout bees are
added, and the working threshold of the scout bees is adjusted dynamically according to
the convergence of the objective function. The above process can improve the convergence
speed and enhances the ability of global optimal search.

3. Results
3.1. Examples

To prove the feasibility of the method proposed in this paper, two examples are given.
The structural parameters of the robot are shown in Table 1. The variable (a2, b2) represents
the coordinates of the hip joint in the moving coordinate system Ot–XtYtZt, as shown in
Figure 2b. The thigh and the calf legs are cylinders, and the section radius r and length h
are given in Table 1. For example 1, the known parameters are shown in Table 2. v1 and v2
are the velocities of the trunk at points O1 and O3, respectively; (x1, y1, z1) and (x2, y2, z2)
are the coordinates of points O1 and O2, respectively. Φ0 is the trunk posture angle at the
moment of landing. Ψ0, ZD, and ZE are the given values shown in Equation (26).

Table 1. Structural parameters of the cheetah-inspired quadruped robot.

Size of
Thigh/[r, h]/m

Size of
Calf/[r, h]/m

Size of
Trunk/m

Mass of
Thigh/Kg

Mass of
Calf/Kg

Mass of
Trunk/Kg (a2, b2)/m

0.02/0.24 0.02/0.28 0.18 × 0.2 × 0.6 0.2 0.3 1.8 (0.12, 0.26)
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Table 2. Known values during optimization for example 1.

v1/(m/s) v2/(m/s) (x1, y1, z1)/m (x2, y2, z2)/m Φ0/◦ Ψ0/◦ ZD/ZE/(Nm)

(0, 0, 0.22) (1.73, 0.87, 3.26) (0.13, 0.35, −0.2) (0, 0.3, 0) (25, 10, 0) 60 5.0/10

To ensure the motion stability of the robot, the trunk movement trajectory and posture
change rule are assumed cubic functions, and the polynomial coefficients need to be
determined. In the descending phase of the trunk, the trajectory equation and the posture
equation of the trunk have 12 undetermined polynomial coefficients. The position and
the velocity of the trunk at O1 and O2 are known, the angle and angular velocity of the
trunk at O1 and O2 are known, and the trunk does not rotate around the Zt axis. By
substituting the boundary conditions into Equations (1) and (3), all polynomial coefficients
can be expressed as functions of time. In the ascending phase of the trunk, the position
and the velocity of the trunk at O2, the velocity direction of the trunk at O3, the trunk
angle and the angular velocity at O2, and the trunk angular velocity at O3 are known. The
relationship between the undetermined coefficients and the movement time can also be
obtained by substituting the boundary conditions into Equations (1) and (3). However, not
all polynomial coefficients can be expressed in time. Two coefficients in Equation (1) and
three coefficients in Equation (3) still need to be determined. To sum up, the optimization
variables involved in the trunk motion to be determined include t1 (movement time of
trunk in the descending phase), t2 (movement time of trunk in the ascending phase), a12,
a22, d12, d22, and d32. The optimization variables also include leg landing point parameters
h1i, h2i, dki, and ϕki. The initial ranges of the optimization variables are listed randomly
in Table 3. The weight coefficients are w1 = 0.0755, w2 = 0.0464, w3 = 0.5984, w4 = 0.1305,
w5 = 0.0623, and w6 = 0.0869. For the hierarchical bee colony algorithm, the number of
honey sources is 100, the number of leading bees is 100, and the maximum number of
iterations is 100. The optimization results obtained by the method proposed in this paper
are shown in Table 3.

Table 3. Initial parameter ranges and optimization results for example 1.

Initial ranges

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

[0, 0.2] [0, 0.3] [−0.1, 0.1] [0, 180] [0, 0.6] [0, 0.6] [−0.1, 0.4]

ϕk2/◦ t1/s t2/s a12 a22 d12/◦ d22/◦ d32/◦

[0, 180] [0.5, 1] [0.1, 0.5] [10, 61] [0, 15] [−15, 0] [10, 45] [−30, 30]

Optimization
results

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

0.17 0.04 0.08 74.12 0.10 0.33 −0.02

ϕk2/◦ t1/s t2/s a12 a22 d12/◦ d22/◦ d32/◦

53.29 0.8 0.3 17 7.55 −13 32.69 20

Figure 3a,b show the motion sequence when the robot changes motion direction during
running. In the descending phase of the trunk, the two forelegs of the robot are in contact
with the ground, and the center of mass of the trunk moves 243.72 mm in 0.8 s. In the
ascending phase of the trunk, the two hindlegs of the robot are in contact with the ground,
and the center of mass of the trunk moves 492.58 mm in 0.3 s. Figure 3c shows the trajectory
of the center of mass of the trunk. When the forelegs of the robot touch the ground, the
motion direction vector of the trunk is (0, 0, 1). At the moment when the hindlegs of the
robot leave the ground, the motion direction vector of the trunk is (1.74, 0.5, 1.84). From
the top view, the included angle of the direction vector is 28.08◦, and the running direction
of the robot changes clearly. Figure 3d shows the change of trunk posture. The proper
change of body posture is conducive to keeping the good dynamic stability of the robot. The
angles of the robot around the three axes at the moment of leaving the ground are −13.01◦,
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32.69◦, and 19.81◦. The changes of angular velocities obtained by the method described
in Section 2.4 are shown in Figure 3e. The angular velocity of the robot at the moment of
leaving the ground is zero, and the trunk of the robot will not rotate significantly in the flight
phase. Figure 3f shows the positions of the landing points of the legs. In the descending
phase of the trunk, the coordinates of the landing point of the two forelegs are (200, 0, and
243.81 mm) and (−62.01, 0, and −107.17 mm). In the ascending phase of the trunk, the
landing point coordinates of the two hindlegs are (−151.93, 0, and 0.04 mm) and (−32.88, 0,
and 99.98 mm). The leg landing points are no longer symmetrical along the Z0 axis, and
the legs have evident adduction/abduction angles. The maximum leg swing angles of the
forelegs are 41.04◦ and 41.09◦, and the maximum leg swing angles of the hindlegs are 45.09◦

and 41.00◦. This outcome is consistent with the analysis results of the movement mechanism
of the cheetah when it turns during running, as shown in Figure 1a.

The dynamic performance of the cheetah-inspired quadruped robot during steering
is shown in Figure 4. The change of the total inertia moment of the robot is shown in
Figure 4a. In the descending phase of the trunk, the amplitude of the total inertia moment
of the robot is small and changes gently. When the trunk reaches the lowest point O2, the
total inertia moments of the robot along the three axes are 0.99, −0.12, and −0.73 N·m.
In the ascending phase of the trunk, the total inertia moment increases substantially but
then decreases rapidly because the robot needs to obtain a large acceleration in a short
time. When the trunk reaches point O3, the total inertia moments of the robot along the
three axes are −4.64, 0.94, and −0.31 N·m. Figure 4b shows the changes of the total inertia
moment before and after optimization. “B” and “A” refer to before and after optimization,
respectively. E(MtI), m(MtI), and V(MtI) represent the end value, the mean, and the variance
of the total inertia moment, respectively. The total inertia moment before optimization
is calculated by substituting the initial parameters. Figure 4b shows that the total inertia
moment decreases considerably after optimization. In the descending phase of the trunk,
the maximum reductions of E(MtI), m(MtI), and V(MtI) after optimization are 54.22%,
47.79%, and 78.96%, respectively. In the ascending phase of the trunk, the maximum
reductions of E(MtI), m(MtI), and V(MtI) after optimization are 99.6%, 97.7%, and 99.9%,
respectively. The dynamic stability of the robot is remarkably improved. Figure 4c shows
the distance from ZMP to the connecting line between the two landing points during the
descending phase of the trunk. The average value of the distance is 9.08 mm. ZMP is near
the connecting line of two points. The deviation is small compared with the size of the
robot, and the robot has good dynamic stability. Figure 4d shows the mean and variance of
driving torques. “J-1,” “J-2,” and “J-3” represent hinges 1, 2, and 3, respectively, as shown
in Figure 1b. The maximum difference between the mean values of driving torques of the
different joints is only 2.8 N/m, and the driving torques change smoothly with a slight
difference in amplitude. Moreover, the energy consumption of the robot during movement
is 27.96 J. The above analysis results reveal that the optimized indices that are contained in
the minimum index system are very small, and the indices contained in the range index
system are within reasonable ranges. The robot has good dynamic stability by using the
parameters of the leg postures and the driving torques obtained by the method proposed
in this paper.

For example 1, the robot turns left during running from the top view, thus the projec-
tion of the motion direction vector on the ground of the robot at the moment of leaving the
ground is counterclockwise relative to that of the robot at the moment of landing. To prove
the feasibility of the method proposed in this paper further, an example of the robot turning
to the right is given. The known values remain unchanged, as shown in Table 2. The initial
range of optimization variables and optimization results are shown in Tables 4 and 5.
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Figure 3. (a) Motion sequence of the robot in the descending phase of the trunk for example 1.
(b) Motion sequence of the robot in the ascending phase of the trunk for example 1. (c) Movement
trajectory of the trunk for example 1. In the descending and ascending phases of the trunk, the
trajectories are cubic functions. (d) Changes of trunk posture for example 1. In the descending
phase of the trunk, the angle changes of the trunk around the three axes are 25◦, 10◦, and 0◦. In
the ascending phase of the trunk, the angle changes of the trunk around the three axes are 38.01◦,
−22.69◦, and −20.00◦. (e) Changes of trunk angular velocity for example 1. The angular velocity
of the robot at the moment of leaving the ground is zero. (f) Landing points of the forelegs and the
hindlegs for example 1.
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respectively, and the decreases are evident. (c) Change of ZMP during the descending phase of the 
trunk for example 1. ZMP changes near the connecting line of the landing points of two legs, show-
ing good stability. (d) Mean and variance of the driving torques for example 1. The maximum dif-
ference of the mean value is 2.8 N·m, and the maximum variance is 7.16 N·m. The driving torques 
are within reasonable ranges. 
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Figure 4. (a) Change of the total inertia moment of the robot in the descending and the ascending
phases after optimization for example 1. (b) Changes of the total inertia moment of the robot before
and after optimization for example 1. The maximum reduction of the end value, the mean, and the
variance of the total inertia moment of the robot after optimization are 99.6%, 97.7%, and 99.9%,
respectively, and the decreases are evident. (c) Change of ZMP during the descending phase of the
trunk for example 1. ZMP changes near the connecting line of the landing points of two legs, showing
good stability. (d) Mean and variance of the driving torques for example 1. The maximum difference
of the mean value is 2.8 N·m, and the maximum variance is 7.16 N·m. The driving torques are within
reasonable ranges.

Table 4. Known values during optimization for example 2.

v1/(m/s) v2/(m/s) (x1, y1, z1)/m (x2, y2, z2)/m Φ0/◦ Ψ0/◦ ZD/ZE/(Nm)

(0, 0, 0.25) (−1.60, 0.80, 3.00) (0.13, 0.35, −0.2) (0, 0.3, 0) (25, −10, 0) 60 5.0/10

Table 5. Initial parameter ranges and optimization results for example 2.

Initial ranges

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

[0, 0.3] [0, 0.2] [−0.1, 0.1] [0, 180] [0, 0.6] [0, 0.6] [−0.1, 0.4]

ϕk2/◦ t1/s t2/s a12 a22 d12/◦ d22/◦ d32/◦

[0, 180] [0, 1] [0, 0.5] [10, 61] [0, 15] [−15, 0] [−45, −10] [−30, 30]

Optimization
results

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

0.02 0.25 −0.13 0.05 0.03 0.15 0.001

ϕk2/◦ t1 t2 a12 a22 d12/◦ d22/◦ d32/◦

44.67 0.8 0.22 26.86 10 −15 −12 12.88
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The optimization results for example 2 are shown in Figure 5. Figure 5a,b show the
motion sequence of the robot for example 2. In the descending phase of the trunk, the center
of mass of the trunk moves 243.72 mm in 0.8 s. In the ascending phase of the trunk, the
center of mass of the trunk moves 337.3 mm in 0.22 s. Figure 5c shows the change of trunk
posture. Similarly, the angular velocity of the trunk at the moment of leaving the ground
is zero. Figure 5d shows the positions of the landing points of the legs. The maximum
leg swing angles of the forelegs and hindlegs are (53.30◦, 48.10◦) and (33.75◦, 27.71◦),
respectively. The dynamic performance of the cheetah-inspired quadruped robot during
steering is shown in Figure 5e,f. Figure 5e shows the changes of the total inertia moment
before and after optimization. Similarly, the total inertia moment before optimization is
calculated by substituting the initial parameters. Compared with those before optimization,
in the descending phase of the trunk, the maximum reductions of E(MtI), m(MtI), and V(MtI)
after optimization are 45.8%, 46.9%, and 68.8%, respectively. In the ascending phase of the
trunk, the maximum reductions of E(MtI), m(MtI), and V(MtI) after optimization are 98.89%,
90.2%, and 97.57%, respectively. Moreover, the total inertia moments of the robot around
the three axes at the moment of leaving the ground are−4.7069, −0.5166, and−3.9464 N·m
within small ranges. This finding shows that the robot has good dynamic stability. Figure 5f
shows the mean and the variance of the driving torques. The maximum difference between
the mean values of driving torques of the different joints is only 5.88 N/m, and the variance
is not too large.

3.2. Simulation

Two examples are simulated with Webots to verify that the robot can turn quickly
while running and has good dynamic stability, and the simulation videos are shown in
Supplementary Materials. Each example contains two continuous running cycles. The
structural parameters of the robot are consistent with theoretical calculation. Since the robot
has a long flight time during running, the stability of the robot is directly reflected by the
rotation angle of its trunk. For simulation example 1, the robot turns left continuously while
running. Taking the joint angles and driving torques obtained by theoretical calculation as
input for the first running cycle, the input parameters of the robot in the second running
cycle can be calculated by the same method. The top view of the motion sequences of the
robot in two cycles is shown in Figure 6a. O1, O2 and O3 refer to the position of the center of
mass of the trunk shown in Figure 2a, and O4 refers to the highest point of the robot in the
flight phase. The robot rotates 28.08◦ around the vertical axis in both cycles, and the motion
direction changes substantially. The trunk rotation angles corresponding to Figure 6a is
shown in Figure 6c. In the descending and ascending phases of the trunk of the robot
in the first running cycle, the trunk rotation angles are exactly the same as those shown
in Figure 3d. From one perspective, it proves the correctness of theoretical calculation;
conversely, it can also show that the robot moves according to the predetermined rules in
the descending and ascending phases of trunk, without movement failure, such as rollover.
In the flight phase, the trunk posture of the robot almost remains unchanged. The maximum
rotation angles of the trunk in two cycles around the three axes are −2.95◦, 3.75◦, and 3.32◦.
This finding shows that the robot has small angular velocity at the moment of leaving the
ground, which can be seen in Figure 6e, and it also proves the correctness of the proposed
two-level stability index system. For simulation example 2, the top views of the motion
sequences of the robot and the trunk rotation angle are shown in Figure 6b,d, respectively.
The robot rotates −28.08◦ around the vertical axis in both cycles. In the descending and
ascending phases of the trunk of the robot in the first cycle, the trunk rotation angles are
exactly the same as those shown in Figure 4c. In the flight phase, the maximum rotation
angles of the trunk in two cycles around the three axes are 1.88◦, 0.92◦, and −3.72◦. The
change of the angular velocity of the trunk corresponding to simulation example 2 is shown
in Figure 6f, and the angular velocity of the robot at the moment of leaving the ground
in two cycles is approximately zero. The rotation angles of the trunk in the flight phases
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and the angular velocity of the trunk at the moment of leaving the ground are within small
ranges, and the robot shows good dynamic stability.
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Figure 5. (a) Motion sequence of the robot in the descending phase of the trunk for example 2.
(b) Motion sequence of the robot in the ascending phase of the trunk for example 2. (c) Changes of
trunk posture for example 2. In the descending phase of the trunk, the angle changes of the trunk
around the three axes are 25◦, −10◦, and 0◦. In the ascending phase of the trunk, the angle changes of
the trunk around the three axes are −40.01◦, −12◦, and 12.88◦. (d) The landing points of the forelegs
and hindlegs for example 2. (e) Changes of the total inertia moment of the robot before and after
optimization for example 2. The maximum reductions of the end value, the mean, and the variance of
the total inertia moment of the robot after optimization are 98.9%, 90.2%, and 97.6%, respectively, and
the decreases are evident. (f) Mean and variance of the driving torques for example 2. The maximum
difference of the mean value is 5.88 N·m, and the maximum variance is 6.12 N·m. The driving torques
are within reasonable ranges.
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ged robot can achieve good dynamic performance [42–44]. The method proposed in this 
paper can make the quadruped robot achieve fast steering in running, and the following 
factors need to be considered. 
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horizontal without a posture change, although the trunk looks more stable, keeping the 
total inertia moment within a small range at the moment of the robot leaving the ground 
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Figure 6. (a) Top view of the motion sequences of the robot for simulation example 1. The robot
rotates 28.08◦ around the vertical axis in both cycles, and the direction of motion changes considerably.
(b) Top view of the motion sequences of the robot for simulation example 2. The robot rotates−28.28◦

around the vertical axis in both cycles. (c) Change of trunk posture for simulation example 1. The
changes of the maximum rotation angles of the trunk in the flight phase are −2.95◦, 3.75◦, and 3.32◦.
(d) The change of trunk posture for simulation example 2. The changes of the maximum rotation
angles of the trunk in the flight phase are 1.88◦, 0.92◦, and −3.72◦. (e) Change of trunk angular
velocity of the trunk for simulation example 1. (f) Change of trunk angular velocity of the trunk for
simulation example 2.

The above simulation results show that the proposed method in this paper can make
the trunk posture of the robot stable and achieve good dynamic stability in high-speed
steering motion by controlling the leg postures and the driving torques. The cheetah-
inspired quadruped robot does not overturn or roll over due to excessive velocity and
change of movement direction, so that the movement fails.

4. Discussion

In this paper, the main research objective is to propose a method to maintain the
dynamic stability of the robot during steering running. Therefore, a two-level stability
index system, including a minimum index system and a range index system, is proposed
based on the dynamic model, and optimization objective functions are established based
on the index system. The optimization variables include not only leg posture parameters,
but also the trunk movement trajectory and posture parameters. Through the coordination
of leg postures and driving torques obtained by the improved bee colony algorithm, the
legged robot can achieve good dynamic performance [42–44]. The method proposed in this
paper can make the quadruped robot achieve fast steering in running, and the following
factors need to be considered.
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(1) Changes in trunk posture. Figures 3 and 5 show that the posture of the trunk
changes during the descending and ascending phases. If the trunk is forced to remain
horizontal without a posture change, although the trunk looks more stable, keeping the
total inertia moment within a small range at the moment of the robot leaving the ground is
difficult. The robot turns over evidently in the flight phase, which leads to motion failure.
Figure 7a shows the change of the total inertia moment of the robot when the trunk is
forced horizontally. The total inertia moments of the robot at the moment of leaving the
ground are −26.43, 5.41, and 7.40 N·m. They are substantially larger than those shown
in Figures 4 and 5. Moreover, the change of the trunk angle should be reasonable. For
example, Figure 7b shows a set of calculated results for trunk angle changes. Although the
total inertia moment of the robot corresponding to Figure 7b is within a reasonable range
and the robot is stable, the pitch angle of the robot at the moment of leaving the ground is
41.28◦, which is not conducive to the stability of the robot in the next cycle. Figures 3d and
5c show that the pitch angle of the trunk is relatively small at the moment of leaving the
ground, and this is conducive to the robot maintaining good dynamic stability.
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Figure 7. (a) Change of the total inertia moment when the trunk is forced horizontally. The maximum
value of the total inertia moment is 27.97 N·m, which is much greater than the value shown in
Figure 4a. (b) A possible trunk posture change rule. Although the corresponding total inertia
moment is within a reasonable range, the maximum pitching angle of the trunk is 41.28◦, which is
not conducive to the stability of the robot.

(2) Coupling of multiple parameters. High-speed motion in 3D space has many
dynamic stability indices, and the coupling degree between indices is high. For example, a
large coupling relationship exists between the steering angle, the velocity, the total inertia
moment of the robot at the moment of leaving the ground, and ZMP. When the velocity
of the robot at the moment of leaving the ground increases—that is, when the forward
distance of the robot in a cycle increases—or the steering angle is too large, always staying
near the connecting line the landing points of the two legs is difficult for the ZMP of the
robot and the total inertia moment increases, thus the robot has difficulty maintaining good
stability. For example, when the velocity of the trunk increases from 3.5 m/s to 5 m/s at
the moment of leaving the ground, the total inertia moment after optimization remarkably
increases from 6.16 N·m to 14.21 N·m. Although it can increase the movement time of the
trunk in the ascending phase to reduce the total inertia moment, the difficulty of obtaining
the optimal solution increases. Therefore, the motion parameters of the robot must be
reasonably determined to achieve continuous, stable motion.

(3) Determination of weight coefficients. For the optimization objective function shown
in Equation (23), the weight coefficients influence the results. For the examples shown in
Section 3.1, the weight coefficients are determined by AHP. f 3 and f 4 have a great influence
on dynamic stability, and their weight coefficients are large; f 1, f 2, f 5, and f 6 have minimal
influence on dynamic stability, and their weight coefficients are relatively small. If the
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weight coefficients are changed to wi=1/i, the optimization results show that the total
inertia moments of the robot after optimization at the moment of leaving the ground are
−21.31, 4.35, and −5.29 N·m. The dynamic stability clearly deteriorates. Therefore, using
experts’ experience to determine the importance of the indices to determine the weight
coefficients is reasonable.

However, due to the complexity of the optimization objective functions and the large
number of optimization variables, the current optimization efficiency cannot meet the
real-time requirements. The robot needs to complete the motion planning in advance under
the known terrain to achieve complex high-speed movement. In the future, on the basis
of the method proposed in this paper, the data set can be established and the method to
maintain the dynamic stability of the robot during steering running based on deep neural
network can be further proposed. The efficiency of the algorithm will be further improved,
making it possible for the robot to complete high-speed steering movement in real time.

5. Conclusions

The steering of the quadruped robot during high-speed running is of great importance
for improving its movement flexibility. However, too many optimization variables, high
coupling of multiple performance indices, and high velocity make the research difficult.
Therefore, taking the cheetah-inspired quadruped robot as the research object, the method
of changing the running direction of the robot was proposed to make the robot turn quickly
in the process of high-speed movement and have good dynamic stability. (1) On the basis
of establishing the dynamic model of the cheetah-inspired quadruped robot running, a two-
level dynamic stability index system was proposed, including a minimum index system and
a range index system, which cover almost all of the indices that affect the dynamic stability
of the robot. (2) The optimization objective function based on the dynamic stability index
system and optimization variables are determined. Then, the optimal values were obtained
based on the improved bee colony algorithm. By controlling the leg posture parameters
and the corresponding driving torques, the robot can change the motion direction during
high-speed movement. (3) According to the method proposed in this paper, two examples
were given: The robot turned 28.08◦ to the left and −28.08◦ to the right during forward
running when viewed from the top view. The calculation results showed that the total
inertia moment of the robot was in a small reasonable range, and the angular velocity of
the robot at the moment of leaving the ground was approximately zero, which proved that
the robot had good dynamic stability. The simulation results show that there is no obvious
change in the posture of the trunk of the robot during the flight phase, and the robot can
land stably, which also proved the correctness of the method. The method proposed in this
paper can provide a theoretical basis for the realization of high-speed movement of the
robot in 3D space and had good applicability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22249601/s1, Video S1: Simulation results of rapid steering in the
running of the quadruped robot.
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