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Abstract: An efficient road damage detection system can reduce the risk of road defects to motorists 

and road maintenance costs to traffic management authorities, for which a lightweight end-to-end 

road damage detection network is proposed in this paper, aiming at fast and automatic accurate 

identification and classification of multiple types of road damage. The proposed technique consists 

of a backbone network based on a combination of lightweight feature detection modules constituted 

with a multi-scale feature fusion network, which is more beneficial for target identification and clas-

sification at different distances and angles than other studies. An embedded lightweight attention 

module was also developed that can enhance feature information by assigning weights to multi-

scale convolutional kernels to improve detection accuracy with fewer parameters. The proposed 

model generally has higher performance and fewer parameters than other representative models. 

According to our practice tests, it can identify many types of road damage based on the images 

captured by vehicle cameras and meet the real-time detection required when piggybacking on mo-

bile systems. 

Keywords: object detection; lightweight network; attention mechanism; road damage;  

computer vision 

 

1. Introduction 

Pavement damage due to road aging, traffic volume, construction materials, and 

weather [1,2] is an important cause of driving safety [3–5]. Therefore, pavement damage 

detection is beneficial for drivers’ lives’ safety. In addition, road infrastructure is a vital 

national asset, and understanding its damage level is crucial for its subsequent mainte-

nance [6]. Moreover, road damage detection technology plays a crucial role in the con-

struction of intelligent transportation systems (ITS) and automated assisted driving sys-

tems (ADAS) [7,8]. 

Early road damage inspection relied on manual progress along the road by walking 

or slow-moving vehicles and visually inspecting the road surface. Inspection results were 

highly subjective and time-consuming. In addition, this inspection task needed to be per-

formed at slow speeds in the lane, and there was also the potential for traffic hazards for 

the staff [9]. 

Subsequently, some organizations use sensor-equipped inspection vehicles to collect 

pavement condition data, where expensive equipment such as laser scanning cameras, 

road profilers, and 3D capture cameras are required, which undoubtedly increases the 

cost of such systems significantly [10–13]. The collected pavement data need to be subse-

quently processed in the workstation, which is still very time-consuming [14,15]. 

With the development of deep learning techniques, many researchers have started 

using neural network-based models for road damage detection. Most of these works use 

convolutional neural networks (CNNs) for pixel-level segmentation of road images. For 

example, Fan et al. [16] first used a CNN-based classification network to filter images 
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containing cracks, after which the damages were extracted by traditional image pro-

cessing methods of filtering with adaptive thresholding. On the other hand, Feng et al. 

[17] pre-processed the images to filter image noise, input them into two different crack 

segmentation models, and finally used the predicted results to synthesize the geometric 

parameters of the cracks calculated using the prediction results. Subsequently, Nguyen et 

al. [18] proposed a two-stage CNN network for low-resolution image detection and seg-

mentation, which shortens the processing steps while increasing the efficiency of auto-

mated detection. Cheng et al. [19] proposed a computerized road crack detection method 

based on the structure of U-Net and introduced a function of distance transformation to 

assign pixel weights according to the actual segmentation minimum distance to assign 

pixel weights. Rill-García et al. [20], on the other hand, used VGG19 to replace the original 

backbone feature extraction network (VGG16) based on U-Net for improving the accuracy 

of road crack segmentation in the presence of incorrect annotations. 

However, the above methods have certain limitations, which exist in three main ar-

eas. 

 Most pavement damage detection efforts obtain crack results by semantic segmenta-

tion of pixel-level images, which requires input images that must be high-quality im-

ages that closely match the pavement, undoubtedly increasing the cost and reducing 

the efficiency during initial image acquisition and making it difficult to meet the real-

time warning required by ADAS. 

 Although the state-of-the-artwork allows pixel-level segmentation of pavement 

cracks or potholes, no other pavement damage classification was considered. We be-

lieve that identifying specific pavement damage types, such as longitudinal or trans-

verse cracks, alligator cracks, and potholes, is essential when performing road dam-

age detection. 

 Most related work cannot be automated end-to-end or lightweight model network 

construction due to the need for multi-stage operations, such as image pre-processing 

or post-processing. 

Therefore, applying these research works to practical scenarios is very difficult con-

sidering these limitations. To address these issues, in this paper, we propose a lightweight 

end-to-end road damage detection network with the following main contributions: 

1. We designed a backbone feature extraction network using a combination of light-

weight feature detection modules to ensure efficient automatic feature extraction 

while making the model parameters smaller. 

2. Our proposed multi-scale fusion network enriches the diversity of road damage fea-

tures, improves the detection robustness of the algorithm at different scales, and fa-

cilitates detection efficiency when the distance and viewpoint change. 

3. We propose a lightweight multi-branch channel attention network (LMCA-Net) for 

the road damage detection task. This embedded attention module can enhance fea-

ture information by assigning weights to multi-scale convolutional kernels depend-

ing on the object size, aiming to improve detection accuracy with smaller parameters. 

Compared to other representative models, our proposed model generally performs 

better and has fewer parameters. Based on the images captured by vehicle cameras, it can 

also identify many types of road damage and meet the real-time detection requirements 

of mobile systems. 

2. Related Work 

2.1. Road Damage Detection Methods Based on Traditional Image Processing 

Koch and Brilakis [21] proposed a method to automatically detect pavement potholes 

using histogram thresholding to segment the pavement damage region and elliptical re-

gression of geometric features to determine the ROI region. Schiopu et al. [22] proposed a 

pothole detection that can eliminate false detection due to shadows of roadside objects, 



Sensors 2022, 22, 9599 3 of 23 
 

 

specifically in the ROI region, by setting a threshold value for the geometric features of 

potholes and presuming the potholes through a decision tree labelling. 

Besides geometric morphology, some studies perform road damage detection from 

the perspective of image colour. For example, Jakštys et al. [23] outlined the edge contours 

of road potholes by analysing the B-component in the RGB colour space of road potholes 

in the ROI region. Akagic et al. [24], on the other hand, analysed the B-component in the 

RGB colour space by component to perform image segmentation of the asphalt pavement 

and then detected the pothole areas by processing methods such as cropping, Otsu thresh-

olding, and boundary elimination. 

Classical image processing to detect objects tends to segment the object from the 

background using thresholding, and most prior studies on road damage detection do the 

same. For example, Akagic et al. [25] proposed a pavement crack detection method based 

on a combination of the grayscale histogram and Otsu thresholding to search for pave-

ment cracks by dividing the input image into sub-images after the ratio of the maximum 

histogram to the threshold value obtained. Sari et al. [26] brought results with reasonable 

accuracy by using the Otsu thresholding algorithm and Gray Level Co-occurrence Matri-

ces (GLCM) for road crack feature detection and extraction, followed by the support vec-

tor machine (SVM) algorithm for experimental classification statistics. 

Quan et al. [27] proposed an improved Otsu thresholding-based crack detection 

method that avoids the problem of peak prominence by modifying the weight factor and 

improves the accuracy compared to the original Otsu thresholding. Chung et al. [28] pro-

posed a method to find the optimal threshold of the image using inverse binary and Otsu 

thresholding algorithm to meet the real-time pavement pothole detection. They applied 

the distance transformation of the image using the Watershed algorithm for calculating 

marker potholes. 

In addition, many studies used the boundary decision capability of SVM to classify 

road damage. For example, Hoang [29] used the least squares version of SVM (LS-SVM) 

for supervised learning to establish an automatic classification method for pavement pot-

holes compared to single pavement pothole detection. Gao et al. [30] used a machine 

learning model based on the library of support vector machines (LIBSVM) to propose a 

fast detection method that distinguishes potholes, longitudinal cracks, transverse cracks, 

and complex cracks. 

These classical image processing methods have performed very well in the past, as 

shown in Table 1, with the advantage of not requiring large datasets for manual annota-

tion. However, there are some unavoidable problems, as most of the above methods em-

ploy techniques such as colour segmentation, threshold feature detection, SVM, etc., 

which are limited by illumination variations, occlusions, colour variations, and complex 

backgrounds. Moreover, the need to design feature algorithms leads to a single type of 

detected road damage. 

Table 1. Summary of road damage detection papers in traditional image processing. 

Objective Key Algorithm(s) Reference 

Pothole Detection 

Histogram thresholds + Elliptical regression Koch and Brilakis [21] 

Geometric features + Decision tree labelling Schiopu et al. [22] 

RGB colour space Jakštys et al. [23] 

Otsu + Boundary elimination Akagic et al. [24] 

Inverse Binary + Otsu + Watershed Chung et al. [28] 

LS-SVM Hoang [29] 

Crack Detection 

Grayscale histograms + Otsu Akagic et al. [25] 

Otsu + GLCM + SVM Sari et al. [26] 

Modified Otsu Quan et al. [27] 

LIBSVM Gao et al. [30] 
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2.2. Deep Learning-Based Road Damage Detection Methods 

With the rapid development of deep learning and artificial intelligence, the CNN has 

become the mainstream technology for road damage detection. The detection methods are 

mainly divided into image classification, semantic segmentation, and object detection. 

Image classification: The most typical CNN approaches to perform road damage de-

tection and classification tasks are usually trained by designing a neural network consist-

ing of convolutional and fully connected (FC) layers. For example, An et al. [31] classified 

images into two types with or without potholes by replacing the backbone feature extrac-

tion network in CNN and comparing the accuracy of different backbone networks in col-

our and colour grayscale frames in a cross-sectional manner. Bhatia et al. [32] developed 

a method to predict whether an input thermal image is a pothole or a non-pothole, demon-

strating that using the residual network as the backbone network can improve the model 

detection rate applied in night-time and foggy weather environments. Fan et al. [33] ex-

perimentally evaluated 30 CNNs for road crack image classification, where Progressive 

neural architecture search (PNASNet) achieved the best balance between speed and accu-

racy. However, the image classification only presents the object image and does not detect 

the details of road damage in the image. 

Semantic segmentation: To address the shortcomings of the image classification that 

only classifies images with or without road damage and to be able to detect road damage 

at the pixel level more intuitively through the network, Pereira et al. [34] used U-Net for 

a semantic segmentation method of road and pothole images. Their network structure is 

divided into two parts, encoder and decoder, for feature extraction, feature fusion, and 

result in prediction. Based on this, to design a more advanced semantic segmentation 

model to improve the detection rate, Fan et al. [35] proposed a novel semantic segmenta-

tion pothole detection method that used a spatial pyramid pooling module composed of 

tandem hollow convolutions to integrate spatial contextual information after enhancing 

the feature extraction process using a channel attention mechanism, which helped to de-

tect multi-scale road potholes. To address the problem of difficult road crack detection, 

Zhang et al. [36] improved AD-Net’s cracked road detection performance by adding 

atrous convolution between the encoder and decoder and introducing depth supervision 

in the decoder stage. Fang et al. [37], on the other hand, improved the performance of AD-

Net by configuring Transformer Block at the encoder layer, an external attention mecha-

nism in the coding layer to enhance the feature representation capability and mitigate the 

impact of interference factors such as shadows, noise, etc., on the detection of road cracks. 

Object detection: Object recognition mainly includes localization and classification of 

road damage, and the main problem is to improve the accuracy of object localization and 

classification. At the same time, the processing speed of the whole process needs to be 

improved for the real-time detection conditions required by ITS. Many researchers have 

previously tried to contribute to these aspects based on classical networks such as SSD 

[38], Faster-RCNN [39], YOLO Series [40–42], and EfficientDet [43]. Wang et al. [44] used 

Faster-RCNN as a detection framework and ResNet-152 as a feature extraction network, 

a proposed method to detect and classify road damage. However, the significant overall 

parameters of the network lead to slow processing speed and do not have multi-scale de-

tection capability. Yebes et al. [45], also based on Faster-RCNN, utilized Resnet101 with a 

faster processing speed as a feature extraction network. However, even after relaxing the 

IOU index to 0.4 for evaluation, the accuracy reached 75% while only running at 5-6 fps. 

Ukhwah et al. [46] and Dharneeshkar et al. [47] trained based on the YOLOv3 detection 

framework for the dataset and tested on different pothole images achieving good accu-

racy. Gupta et al. [48] was based on SSD and RetinaNet as the detection framework, using 

ResNet34 and ResNet50 as feature extraction networks to propose a method for pothole 

localization from thermal images to solve the detection difficulties caused by unfavoura-

ble weather with low visibility. 

However, most of these methods in Table 2 cannot localize and classify multiple clas-

ses of road damage objects. Most of the road images used for detection need to be taken 



Sensors 2022, 22, 9599 5 of 23 
 

 

vertically and close to the ground. Although they have good processing speed, their ap-

plication to autonomous driving early warning systems is limited. 

Table 2. Summary of road damage detection papers in deep learning. 

Method Objective Key Algorithm(s) Reference 

Image Classification 

Pothole CNN An et al. [31] 

Pothole ResNet Bhatia et al. [32] 

Crack PNASNet Fan et al. [33] 

Semantic Segmentation 

Pothole U-Net Pereira et al. [34] 

Pothole SPP + Channel attention Fan et al. [35] 

Crack AD-Net Zhang et al. [36] 

Crack 
Transformer Block + AD-

Net 
Fang et al. [37] 

Object Detection 

Crack ResNet-152 + Faster-RCNN Wang et al. [44] 

Crack Resnet101 + Faster-RCNN Yebes et al. [45] 

Pothole YOLOv3 Ukhwah et al. [46] 

Pothole YOLOv3 Dharneeshkar et al. [47] 

Pothole SSD + RetinaNet Gupta et al. [48] 

This paper presents a lightweight end-to-end road damage detection network that is 

designed to automatically, quickly, and efficiently detect and classify road damage. 

3. Methodologies 

Figure 1 shows the flowchart of the proposed road damage detection algorithm, 

which firstly obtains a weight model by training a neural network, and, secondly, feeds 

the road images captured by vehicle cameras into the weight model to get prediction re-

sults. 

 

Figure 1. Flowchart of the road damage detection algorithm. 

The proposed network for road damage detection consists of three main steps, as 

shown in Figure 2: Backbone feature extraction network, Multiscale feature fusion net-

work, and LMCA-Net. 
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Figure 2. The network framework of the road damage algorithm is proposed in this paper. 

In step 1, the Ghost Module was used as the basic module of the backbone feature 

extraction network to meet the overall lightweight of the network. In step 2, the diversity 

of features was enriched using the proposed multi-scale feature fusion network to im-

prove the algorithm’s robustness in detecting different scales of damaged objects. In step 

3, the finally obtained feature layers were fed into the lightweight multibranch channel 

attention network proposed in this paper. This embedded self-attentive module synthe-

sizes feature information of different sizes with only a small number of operations. 

3.1. Selection and Design of Backbone Network (Step 1) 

For algorithmic systems designed for road damage detection, due to the limited 

memory and the computational resources of the application device, the efficiency and 

lightweight of the network itself are crucial, and how to make the network computation-

ally less while ensuring accuracy is one of the main focuses of the research. Since the over-

all computation of a neural network depends mainly on the number of parameters of the 

backbone network, it is essential to choose a lightweight backbone network. For example, 

MobileNet [49] and ShuffleNet [50], with their deep convolution or channel-mixing oper-

ations, worked only on convolution and achieved lightness by small convolution kernels. 

As a backbone network, its primary role was to extract feature maps, and images could 

get many feature maps after passing through each convolution block. Still, many of these 

feature maps often had exceptionally high similarity and almost no variation. Such similar 

feature maps not only did not improve the network’s performance but also drove many 

convolutional layer calculations, consuming a lot of computational resources. 

In contrast, GhostNet [51] conducted a different approach and obtained one of the 

similar feature maps by cheaply operating the transformation of another feature map so 

that one of the identical feature maps could be considered a phantom of the other. The 

phantom feature map could be generated by the cheap operations based on Ghost Module 

so that the same number of feature maps could be generated with fewer parameters than 

the ordinary convolutional layer, which required fewer arithmetic resources than the 

standard convolutional layer. In this paper, the Ghost module was chosen as the basis of 

the backbone network because it can improve the execution speed of the model in the 

neural network structure while ensuring efficient feature extraction. 

Each feature block of the backbone network consists of two bottleneck structures, A 

and B, connected in series, as shown in Figure 3. Bottleneck A does not compress the 

height and width of the input feature layers and uses two Ghost modules for feature ex-

traction and the residual to optimize the network. As for bottleneck B, depthwise convo-

lution was added in the middle of the Ghost module and residual to compress the height 
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and width of the input feature layer, respectively. The specific details are shown in Table 

3. 

 

Figure 3. Two bottleneck structures based on ghost modules. (a) Bottleneck A, (b) bottleneck B. 

Table 3. Details of the processes in Step 1. 

Blocks Layer Output Shape Parameters Total Parameters 

Image Input 416 × 416 × 3 0 

2,408,184 

Conv.1 Conv2d + BN + Leaky 208 × 208 × 16 496 

Conv.2 Bottleneck A × 1, 208 × 208 × 16 528 

Conv.3 
Bottleneck A × 1, 

Bottleneck B × 1 
104 × 104 × 24 2,884 

Conv.4 
Bottleneck A × 1, 

Bottleneck B × 1 
52 × 52 × 40 12,496 

Conv.5 
Bottleneck A × 1, 

Bottleneck B × 5 
26 × 26 × 112 448,908 

Conv.6 
Bottleneck A × 1, 

Bottleneck B × 4 
13 × 13 × 160 1,942,872 

The input image was passed into the backbone network based on the feature map 

obtained by one standard convolution. The feature map can be compressed and deepened 

by one Bottleneck B and multiple Bottleneck A according to the characteristics of the two 

bottleneck structures mentioned. We took the last three convolutional layers, namely 

Conv.4, Conv.5, and Conv.6, with shapes (52, 52, 40), (26, 26, 112), and (13, 13, 160), re-

spectively. These three feature layers have multi-scale sensing feature information and 

contain three sizes that can be applied to objects near and far. 

3.2. Multi-Scale Feature Fusion Network (Step 2) 

Fusing features at different scales is an important way of improving detection per-

formance. Shallow parts have higher resolution and contain more location and detail 
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information, but they are less semantic and noisier. Deeper features have more robust 

semantic information but have low resolution and poor perception of details. The sizes of 

road damage detection targets vary, so the proposed multi-scale feature fusion network 

in this paper also integrates the feature layers into three dimensions of 13 × 13, 26 × 26, 

and 52 × 52 when fusing the shallow and deep layers. 

The multi-scale feature fusion process is shown in Table 4, and the new feature layers 

(13, 13, 512) of Conv.7, (26, 26, 256) of Conv.8, and (52, 52, 128) of Conv.9 were finally 

obtained. Among them, Conv7 was directly obtained by expanding the number of chan-

nels of Conv6. Conv9 was generated by stacking Conv4 and upsampling Conv5. Conv8 

was generated by stacking Conv5, downsampling Conv4, and upsampling Conv6. Such a 

feature fusion design can deepen the feature network and further enrich the diversity of 

features. 

Table 4. Details of the processes in Step 2. 

Blocks Layer Output Shape Parameters Total Parameters 

Conv.6 Input 13 × 13 × 160 0 

1,516,928 

Conv.7 

Conv2d + BN + Leaky, 

Depthwise_Conv2d + BN + 

Leaky, 

Conv2d + BN + Leaky, 

Conv2d + BN + Leaky 

13 × 13 × 512, 

13 × 13 × 512, 

13 × 13 × 1024, 

13 × 13 × 512 

1,145,344 

Conv.6_1 
Conv2d + BN + Leaky, 

Up_Sampling2D 
26 × 26 × 256 132,096 

Conv.5 
Input, 

Conv2d + BN + Leaky 

26 × 26 × 112, 

26 × 26 × 256 
29,696 

Conv.4 Input 52 × 52 × 40 0 

Conv.4_1 
Conv2d + BN + Leaky, 

Down_Sampling2D 
26 × 26 × 256 135,424 

Conv.8 
Concatenate 

(Conv.6_1, Conv.5, Conv.4_1) 
26 × 26 × 256 0 

Conv.5_1 
Conv2d + BN + Leaky, 

Up_Sampling2D 
52 × 52 × 128 68,736 

Conv.4 Conv2d + BN + Leaky 52 × 52 × 128 5,632 

Conv.9 
Concatenate 

(Conv.5_1, Conv.4) 
52 × 52 × 128 0 

3.3. Lightweight Multibranch Channel Attention Network (Step 3) 

Different sizes of the perceptual field of view, i.e., convolutional kernels, will have 

other effects on objects of different scales. Usually, attention mechanisms are often added 

to add weights to convolutional kernels to improve their ability to distinguish information 

during CNN design. Multi-scale convolutional kernels are critical to obtaining more fea-

ture information because of the different object sizes when performing road damage de-

tection. In this paper, we propose a LMCA-Net, which aims to embed fewer attention 

modules in the network to improve detection efficiency. The overall structure is shown in 

Figure 4. 
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Figure 4. The overall structure of the LMCA-Net proposed in this paper. 

Firstly, the input feature map F was convolved with convolution kernels of size 3 × 

3, 5 × 5, and 7 × 7 to obtain three feature maps, F1, F2, and F3, and then summed to obtain 

F’ of shape C × H × W as in Equation (1). 

�� = ������� × �(�), �� = ������� × �(�), �� = ������� × �(�), 

�� = �� + �� + ��, 
(1)

where DConv is the dilated convolution and n is the convolution kernel size. 

Next, the average pooling was performed along the H and W dimensions. Finally, a 

1D vector of information about the feature dimension was obtained, with the shape of C 

× 1 × 1 as in Equation (2). 

�������(��) =
�

�×�
∑ ∑ �′(�, �)�

���
�
��� , (2)

where H, W is the height and width of the input feature map, and (i, j) denotes the location 

of the feature points. 

Such a vector can express the importance of the information of each channel. Next, a 

1D convolution was used to map the original C dimension into Z dimension information. 

Following that, three 1D convolutions were used to change from the Z dimension to the 

original C. This completes the information extraction of the channel dimension. Compared 

with the fully connected layer in linear transform, 1D convolution can effectively capture 

the information of cross-channel interactions while significantly reducing the number of 

parameters [52]. Softmax was used for normalization. At this time, each channel 
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corresponds to a score, representing the importance of its channel, which is equivalent to 

a mask, as shown in Figure 5. 

 

Figure 5. Information capture for cross-channel interactions in LMCA-Net with 1D convolution. 

Finally, the three separately obtained masks are multiplied by the corresponding F1, 

F2, and F3 to obtain F’1, F’2, and F’3. These three feature modules are summed and com-

bined with the residuals of the original feature F for information fusion to obtain the final 

feature module F’’ as in Equation (3), which has been refined compared with the original 

F and fused with information from multiple sensory fields. 

��� = ��  ×  �� + �� ×  �� + �� ×  �� + �, 

�� + �� + �� = 1, 
(3)

where ac, bc, and cc are the weights obtained after the Softmax function’s normalization, 

whose sum is 1. 

4. Experiments and Discussion 

4.1. Dataset and Experimental Environment 

The road damage detection network proposed in this paper was evaluated using the 

Global Road Damage Detection Challenge (GRDDC’2020) dataset [53]. The dataset con-

sists of 21040 annotated images containing damage information collected from three coun-

tries, Japan, India, and the Czech Republic, with road damage information composed of 

the coordinates of bounding boxes and labels describing the type of damage associated 

with the boxes. We randomly divided the training and validation sets into 18936 and 2104 

images in a 9:1 ratio. In our experiments, a total of eight types of damage were selected as 

the detection objects to explore the detection efficiency of the proposed method for mul-

tiple types of road damage. Table 5 shows the specific road damage types and their defi-

nitions. Figure 6 shows the percentage of ground truth for each object in the dataset. 
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Table 5. Eight categories of road damage and their definitions in the GRDDC’2020 dataset. 

Class Name Damage Detail Damage Type 

D00 Tire indentation 
Longitudinal linear crack 

Linear crack 
D01 Construction joint 

D10 Equal interval 
Transverse linear crack 

D11 Construction joint 

D20 Partial or overall pavement Alligator crack 

D40 Rutting, bump, pothole, separation 

Other corruption D43 Crosswalk blur 

D44 lane line blur 

 

Figure 6. The number of each road damage categories in the GRDDC’2020 dataset as a percentage 

of the ground truth. 

This paper’s experimental setup is summarized in Table 6. The experiment was built 

using the TensorFlow2 framework, and the results were computed using CUDA kernels. 

The hardware mainly consisted of a high-performance workstation host. The workstation 

was equipped with an Intel(R) Core (TM) i5-11400F processor and an RTX 3050 graphics 

card. 

Table 6. Workstation mainframe hardware and software. 

Items Description 

H/W 

CPU Intel(R) Core (TM) i5-11400F 

RAM 16 GB 

SSD Samsung SSD 500GB 

Graphics Card NVIDIA GeForce RTX 3050 

S/W 

Operating System Windows 11 Pro, 64bit 

Programming Language Python 3.7 

Learning Framework TensorFlow 2.2.0 

4.2. Evaluation Metrics and Experimental Details 

To test the model’s performance, we used the following metrics to evaluate the 

model. The model was evaluated by introducing the average precision (AP) as in Equation 

(7), the mean average precision (mAP) as in Equation (8), and the F1 score as in Equation 

(6). The larger the value of these metrics, the higher the agreement of the prediction results 

with the ground truth. 
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The AP is calculated using the difference–average precision metric, the area under 

the precision–recall curve. The equations for precision and recall are shown in Equations 

(4) and (5). 

Precision =
��

�����
, (4)

Recall =
��

�����
, (5)

F1 = 2 ×
���������×������

����������������
, (6)

where T/F denotes true/false, which indicates whether the prediction is correct, and P/N 

denotes positive/negative, which indicates a positive or negative prediction result. 

AP =
�

�
∑ ��������(�)

(� ∈ 
�

�
,   

�

�
 … 

���

�
,   �)

, (7)

mAP =
�

�
∑ AP, (8)

where n denotes the number of detection points, and Pinterop (r) represents the value of the 

accuracy at a recall of r. 

The hyperparameters set in the training process are shown in Table 7, where the in-

put image size is 416 × 416, the image batch size is 16, the overall training is 500 epochs, 

the maximum learning rate of the model is 0.01, and the minimum learning rate is 0.0001. 

Cosine annealing [54] was used as the learning rate descent method, CIoU [55] was used 

as the loss function, and mosaic and mix-up methods were used for data augmentation. 

Using anchor-based for prediction, a total of nine prior boxes were set for the three output 

feature layers, i.e., each feature layer had three different sizes of prior boxes for adjustment 

in prediction. The size of the anchor box was calculated by analysing the results of the 

dataset by the K-means clustering as in Figure 7, where the anchor mask is shown in Table 

8. 

Table 7. The hyperparameters set during the training of the proposed method. 

Input Settings Loss Calculation Data Enhancement 

Input shape Batch size Total Epoch Loss function Anchor-based Max_lr Min_lr Decay type Mosaic Mixup 

416 × 416 16 500 CIoU True 0.01 0.0001 
Cosine 

Annealing 
True True 

 

Figure 7. The clusters of height and width of the anchor boxes are derived by the K-means cluster-

ing. 
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Table 8. The anchor mask setting parameters derived from Figure 7. 

Anchor Layer Anchor Size (Width, Height) 

Anchor. 1 (29, 11); (23, 43); (42,27) 

Anchor. 2 (72, 16); (55, 61); (128, 31) 

Anchor. 3 (106, 88); (155, 156); (322, 121) 

4.3. Ablation Experiments 

To validate the rationality and effectiveness of our proposed network, the effect of 

different backbone networks and module combinations on the results was further dis-

cussed in the ablation experiments. As a fair comparison, the required dataset for training, 

input image size, relevant hyperparameters, training strategy, and experimental environ-

ment were the same in the ablation experiments, except for the added module parameters. 

First, we compared the backbone network in our model with several other classical 

backbone networks after replacement to evaluate the proposed approach. We selected six 

types of widely used representative deep neural networks and defined them as baseline 

models. Among them, Mobilenetv1 [49], Mobilenetv2 [56], and Mobilenetv3 [57] were 

lightweight backbone networks with faster processing speeds. VGG16 [58] featured a sim-

ple structure and was widely used as a feature extraction network for various CNN clas-

sical models. Resnet50 [59] had a deeper network that could achieve higher accuracy 

Densenet121 [60], on the other hand, achieved feature reuse and improved efficiency 

through the connection on the channel. However, VGG16, Resnet50, and Densenet121 all 

had many parameters, which were very computationally expensive. These baseline mod-

els were developed based on specific usage purposes, and all had good performance in 

prior studies, so we compared them with the approach proposed in this paper. 

Figure 8 shows the trend of the loss function and mAP for each model when trained 

after 500 epochs. In Figure 8a, it can be seen that the proposed method’s loss function 

decreases to reach convergence when configuring different backbone networks, which 

proves the reasonableness of the network. It was also found that the proposed method 

converges faster than other backbone networks. On the other hand, in Figure 8b, except 

for VGG16, the mAP of all networks steadily increases with the iterative training of the 

network. It is worth noting that the mAP in Figure 8b is obtained from the validation set 

and the parameters set to speed up the evaluation are conservative, only to visualize the 

change in mAP during training, and the actual mAP for each model is shown in Table 9. 

 

Figure 8. The upward trend of (a) loss function convergence status and (b) mAP for each model at 

500 training epochs. 
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Table 9. Comparison of quantitative experimental results on the same test set, where bold numbers 

indicate the best value for each column, where the Precision and Recall calculated in this paper 

represent when the threshold value is 0.5. 

  MobileNetv1 MobileNetv2 MobileNetv3 VGG16 ResNet50 DenseNet121 Our Approach 

Precision 

D00 0.66 0.76 0.70 0.69 0.67 0.64 0.76 

D01 0.98 0.99 0.00 1.00 0.00 0.00 1.00 

D10 0.70 0.83 0.65 1.00 0.63 0.72 0.80 

D11 0.99 0.99 1.00 0.00 1.00 1.00 1.00 

D20 0.75 0.82 0.80 0.82 0.76 0.74 0.79 

D40 0.73 0.79 0.70 0.71 0.74 0.80 0.89 

D43 0.89 0.92 0.93 0.80 0.93 0.96 0.96 

D44 0.73 0.75 0.75 0.82 0.72 0.75 0.75 

Recall 

D00 0.19 0.14 0.17 0.06 0.22 0.22 0.15 

D01 0.04 0.04 0.00 0.04 0.00 0.00 0.04 

D10 0.08 0.05 0.06 0.01 0.20 0.14 0.05 

D11 0.33 0.33 0.33 0.00 0.33 0.33 0.33 

D20 0.51 0.49 0.50 0.34 0.53 0.56 0.47 

D40 0.27 0.20 0.19 0.18 0.31 0.32 0.37 

D43 0.71 0.68 0.69 0.55 0.72 0.69 0.81 

D44 0.51 0.48 0.45 0.25 0.57 0.53 0.49 

F1 

D00 0.30 0.24 0.28 0.12 0.33 0.33 0.25 

D01 0.08 0.08 0.00 0.08 0.00 0.00 0.08 

D10 0.15 0.10 0.12 0.01 0.31 0.24 0.10 

D11 0.50 0.50 0.50 0.00 0.50 0.50 0.50 

D20 0.61 0.61 0.61 0.48 0.63 0.64 0.59 

D40 0.39 0.32 0.30 0.29 0.44 0.46 0.32 

D43 0.79 0.78 0.80 0.65 0.81 0.80 0.85 

D44 0.60 0.58 0.56 0.39 0.64 0.62 0.59 

AP 

D00 0.34 0.36 0.36 0.27 0.36 0.37 0.35 

D01 0.50 0.32 0.36 0.16 0.45 0.31 0.51 

D10 0.30 0.35 0.30 0.19 0.34 0.37 0.31 

D11 0.83 0.67 0.92 0.00 0.92 0.81 0.63 

D20 0.60 0.64 0.61 0.53 0.62 0.62 0.61 

D40 0.44 0.42 0.39 0.33 0.49 0.50 0.40 

D43 0.81 0.80 0.78 0.69 0.81 0.82 0.91 

D44 0.65 0.65 0.63 0.56 0.66 0.66 0.73 

mAP 0.56 0.52 0.54 0.34 0.58 0.56 0.57 

G-FLOPs (G) 10.129 7.763 7.178 111.845 35.105 26.050 6.633 

Parameters 

(Millions) 
12.304 11.413 13.341 23.550 33.293 18.051 11.041 

A discussion of the comparative results of the models in Table 9 shows that VGG16 

has the lowest detection accuracy with a mAP of only 0.34 and the largest number of pa-

rameters. The remaining model with the highest combined accuracy is Resnet50, but it 

also has several parameters second only to VGG16. Our proposed method is similar to the 

MobileNet series in terms of combined accuracy, but our proposed model is less complex, 

with FLOPs of only 6.633 G, and for crosswalk blur (D43) and rutting, bump, pothole 

(D40), etc., the best detection results are achieved. Figure 9 shows a more intuitive and 

comprehensive comparison of the model performance. The horizontal coordinates repre-

sent the model’s complexity for evaluating the algorithm’s speed, the vertical coordinates 

represent the model’s comprehensive accuracy, and the sphere’s size represents the 
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model’s number of parameters. Our proposed method is closer to the upper left than the 

other methods, and the performance is better than the other networks. 

 

Figure 9. G-FLOPs vs. mAP. Details are in Table 9. 

The effect of different module combinations on the results is additionally discussed. 

As shown in Table 10, when the original base algorithm (baseline) extracted features using 

only the backbone network and output results without adding any modules, the mAP was 

only 31.3%. After adding the multi-scale feature fusion network, the results improved to 

47.8%. In addition, to discuss the performance of our proposed attention mechanism 

LMCA-Net, we selected four types of representative attention mechanisms and config-

ured them each in step 3 of the network. 

Table 10. The results of the ablation experiments using the attention module of the same dataset 

Backbone Feature Extraction Baseline √ √ √ √ √ √ 

Multi-scale feature fusion  √ √ √ √ √ √ 

SE-Net   √     

CBAM    √    

ECA-Net     √   

SK-Net      √  

LMCA-Net (Ours)       √ 

Parameters (Millions) 7.149 10.657 14.290 14.771 10.657 14.258 11.041 

mAP 0.313 0.478 0.491 0.566 0.501 0.561 0.569 

The “√” in each column indicates that the leftmost component is used in the model. 

As a fair comparison, LMCA-Net was evaluated on the same dataset, input image 

size, relevant hyperparameters, training strategy, and experimental setting by comparing 

four widely used methods. The experimental results are shown in Figure 10, where it can 

be seen that almost all methods improve detection accuracy. Still, due to the multi-scale 

perceptual field of our approach, the detection accuracy is higher for road damage objects 

of varying sizes compared to the channel attention SENet [61] and ECA-Net [62], which 

utilize a multilayer perceptron around learning correlations between channels. While the 

same level of accuracy is achieved with CBAM [63], which combines channel and spatial 

attention, and SK-Net [64] and performs engagement on convolutional kernels, our 
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method has a smaller number of parameters and a stronger tendency for performance 

improvement. 

 

Figure 10. Performance on the baseline after adding each attention module. 

As can be seen from the heat map shown in Figure 11, all methods achieve good 

attentional results due to the large size of the Crosswalk and white line blur objects. For 

longitudinal linear crack detection, our proposed LMCA-Net is slightly inferior to CBAM. 

For small object detection like bumps and potholes, LMCA-Net can ultimately achieve the 

same attention effect as CBAM and SK-Net. For the case of multiple objects combined, our 

method accurately generates more highlighted regions for multi-scale objects. It can 

achieve the same attention effect as the larger model with a smaller number of parameters. 

 

Figure 11. The visualized heat maps are generated by adding each attention mechanism. 
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Finally, we compared the road damage detection algorithm proposed in this paper 

with the widely used object detection algorithms SSD [39], Faster-RCNN [40], YOLO se-

ries [41–43], and EfficientDet [44]. The quantitative experimental results using the same 

dataset and model training methods are shown in Table 11. 

Table 11. Comparison of the proposed method with SSD, Faster-RCNN, YOLO series, and  

EfficientDet on the same dataset. 

Method Input Size Backbone 
Parameters 

(Millions) 
FPS 

G-FLOPs 

(G) 

mAP 

(%) 

SSD 
300 × 300 VGG16 24.54 29 61.45 0.361 

300 × 300 Mobilenetv2 4.47 35 1.53 0.328 

YOLOv3 
416 × 416 Darknet-53 61.56 27 65.65 0.422 

416 × 416 Efficient-B0 7.02 21 3.84 0.435 

YOLOv4 
416 × 416 CSPDark-53 63.98 19 60.01 0.517 

416 × 416 Mobilenetv2 39.06 28 29.74 0.461 

YOLOv5 

S 640 × 640 CSPDarknet53 + SPP 7.08 36 16.54 0.352 

M 640 × 640 CSPDarknet53 + SPP 21.09 23 50.69 0.397 

L 640 × 640 CSPDarknet53 + SPP 46.67 15 114.68 0.416 

YOLOX 

Tiny 640 × 640 Modified CSP 5.03 31 15.24 0.390 

S 640 × 640 Modified CSP 8.94 31 26.77 0.404 

M 640 × 640 Modified CSP 25.29 20 73.75 0.492 

L 640 × 640 Modified CSP 54.15 14 155.70 0.539 

Faster-RCNN 
600 × 600 VGG16 136.83 8 369.89 0.475 

600 × 600 ResNet50 28.35 7 941.01 0.499 

EfficientDet 

D0 512 × 512 Efficient-B0 3.83 13 4.78 0.328 

D1 640 × 640 Efficient-B1 6.56 10 11.59 0.404 

D2 768 × 768 Efficient-B2 8.01 9 20.71 0.487 

D3 896 × 896 Efficient-B3 11.91 7 47.23 0.503 

D4 1024 × 1024 Efficient-B4 20.56 4 105.55 0.552 

Our Approach 416 × 416 Ghost module 11.04 31 6.63 0.569 

The models in the experiments were compared by replacing the backbone network, 

as shown in Figure 12. The accuracy of almost all the lightweight models was low com-

pared to our proposed method because the overall network expression capability is insuf-

ficient to cover the detailed features of each detection target after replacing the smaller 

network. With the network structure’s complexity, each model’s accuracy increases, espe-

cially the accuracy of both EfficientDet-D4 and YOLOX-L, which is very high. Still, the 

number of parameters reaches 20.56 M and 54.15 M. While the approach suggested in this 

research is just 11.04 M in size, its model complexity and numerous parameters are sub-

stantially lower than those of previous methods with comparable accuracy, thanks to net-

work design rationality and a light-weight attention mechanism. The lesser the model 

complexity, the less processing power required and the faster the prediction speed. The 

suggested model’s real-time processing speed is 31 frames per second, which is not the 

quickest when compared to other models but is sufficient to meet the demand for real-

time detection. 
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Figure 12. G-FLOPs(G) vs. mAP. Details are in Table 11. Note that our approach obtains higher 

accuracy while having less model complexity. 

To evaluate the visualization results of the models, five representative models of 

YOLOv4-Mobilenetv2, EfficientDet-D0, YOLOX-L, EfficientDet-D4, and Our Approach of 

lightweight or accurate models are provided, as shown in Figure 13. These examples were 

taken from images of the test set covering the significant road damage, including trans-

verse and longitudinal linear cracks, alligator cracks, bumps, potholes and crosswalks, 

and lane line blur. It can be seen that our proposed method outperforms the other models 

in terms of both classification and confidence scores. Among them, for the lightweight 

models YOLOv4-Mobilenetv2 and EfficientDet-D0, which have similar parameters, there 

are more deficiencies in pavement damage detection, such as cracks, potholes, etc. In com-

parison to the representative models YOLO-X and EfficientDet-D4, which have higher ac-

curacy, our proposed method not only has absolute advantages in terms of the number of 

parameters, but it also performs better for the classification of small-sized targets like pot-

holes and transverse linear cracks. 
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Figure 13. Comparison of detection samples of four representative models with the proposed 

method. 

Finally, to evaluate the performance of the proposed model on real roads outside the 

training dataset, it was again used to test the pixel size of 1920 × 1080 images obtained 

from Korean urban and suburban car recorders. Using the same non-maximum suppres-

sion method and setting a threshold fraction of 0.5 or higher to remove the excess bound-

ary box, the video processing speed can reach about 30fps. Due to the high-speed move-

ment of the vehicle and bumps, the images obtained by the camera will appear to be in-

accurately focused, thus making the target detection missing. However, the continuous 

frame detection results, as in Figure 14, are not difficult to find, even if there is a missed 

detection. However, a more comprehensive detection result can be achieved based on 

synthesizing multiple frames. In addition, detection is not only limited to the lane in 

which the video vehicle is traveling; adjacent lanes can also trigger prediction. These vis-

ualization results prove that our proposed model has comprehensive detection capability. 
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Figure 14. Examples of real-time detection of the proposed method cover (a) suburban and (b) urban 

road conditions in Korea. 

5. Conclusions 

In this paper, we designed a lightweight end-to-end road damage detection network 

designed to quickly and automatically identify and classify specific types of road damage 

accurately. Such an efficient road damage detection method can reduce the risk of road 

damage to drivers and reduce the budget for road maintenance work. This study’s pri-

mary contributions are as follows. (1) The designed feature extraction and multi-scale fu-

sion network, which is more advantageous for target recognition and classification at di-

verse distances and angles. (2) The proposed embedded lightweight attention module can 

improve detection accuracy with fewer parameters than previous studies by assigning 

weights to the multi-scale convolution kernel. The results of various ablation experiments 

evaluated for backbone networks, attention mechanisms, and other widely used target 

detection models show that our approach achieves significant performance improve-

ments with few computations. The detection frame rate can be maintained at 30 fps when 

applied to real-world tests of high-definition road images. In contrast, continuous frames 

are capable of real-time detection and classification. However, the algorithm suffers from 

some limitations, such as false detection in shadow coverage, missed detection, and lack 

of exploration of detection at night or in low light. Overall, this work provides new ideas 

for existing road damage detection and models lightweight efforts. In the future, it is nec-

essary to enrich the diversity of detection environments further and to explore the inte-

gration of road damage detection with other monitoring, warning, and tracking tech-

niques. 
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