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Abstract: In this paper, a novel nanocrystalline composite material of hydroxyapatite (HA)/
polyvinyltrimethoxysilane (PVTMS)/iron(II)chloride tetrahydrate (Cl2FeH8-O4) with hexagonal
structure is proposed for the fabrication of a gas/temperature sensor. Taking into account the sensi-
tivity of HA to high temperatures, to prevent the collapse and breakdown of bonds and the leakage
of volatiles without damaging the composite structure, a freeze-drying machine is designed and
fabricated. X-ray diffraction, FTIR, SEM, EDAX, TEM, absorption and photoluminescence analyses of
composite are studied. XRD is used to confirm the material structure and the crystallite size of the
composite is calculated by the Monshi–Scherrer method, and a value of 81.60 ± 0.06 nm is obtained.
The influence of the oxygen environment on the absorption and photoluminescence measurements
of the composite and the influence of vaporized ethanol, N2 and CO on the SiO2/composite/Ag
sensor device are investigated. The sensor with a 30 nm-thick layer of composite shows the highest
response to vaporized ethanol, N2 and ambient CO. Overall, the composite and sensor exhibit a good
selectivity to oxygen, vaporized ethanol, N2 and CO environments.

Keywords: nanocomposite; HA/PVTMS/Cl2FeH8O4; sol–gel; freeze-dryer; sensor

1. Introduction

Researchers have constantly strived to improve the quality of sensors in terms of sen-
sitivity, durability and accuracy for their chosen applications. With the rapid improvement
in the economy, the number of sensor composites developed by industry has also increased.
Sensors are generally the interface of an electrical control system to the environment. The
sensor converts information from the environment such as pressure, temperature, force,
light, etc., into an electrical signal [1]. A sensor is always a part of a data acquisition system.
Often, such a system is part of a larger control system that includes various framework
mechanisms [2]. Semiconductor metal oxide gas sensors usually operate at high temper-
atures and have low sensitivity [3]. For this reason, intensive advanced techniques have
been reported to improve gas sensor performance, such as aliovalent doping [4], UV light
illumination [5] and noble metal loading [6]. Increasing concern for the protection of the
environment has led to the continued development of gas sensors. The importance of these
sensors is well known, and much research is being done to develop suitable, gas-sensitive
materials [7]. Among the existing gas sensors, resistive gas sensors have become very
important for the detection of combustible and toxic gases in recent decades [8–10]. In par-
ticular, conductive polymers are widely used as gas sensors due to their unique properties,
such as high sensitivity, low cost and easy fabrication [11]. Calcium phosphates come in
various forms that have different crystal structures and Ca/P ratios, such as hydroxyapatite
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(HA), octacalcium phosphate, tricalcium phosphate, dicalcium phosphate dihydrate and
dicalcium phosphate [12]. One of the most well-known calcium phosphate groups is HA.
HA is a versatile biomaterial with the chemical composition Ca10(PO4)6(OH)2, and has
important applications in biomedical engineering, such as in bone scaffolds, drug delivery
systems, dental implants, bone fillers, implant coatings and chromatography (protein pro-
cessing) [13]. Biological HA differs from mineral HA; it consists of many deviations, such
as non-stoichiometric parts, substitutions, voids and other defects [14]. It is also widely
used as a sensor in doped and compound forms for analytes [15]. Several methods have
been described so far for the synthesis of HA nanoparticles, including wet chemical sol–gel,
hydrothermal, heat treatment and microwave methods [16–18]. Furthermore, doping HA
with iron (Fe) has resulted in a strong ferromagnetic material that has found applications
in magnetic resonance imaging, drug delivery, cell separation, and as a heat mediator for
hyperthermia treatment of cancers and tumor masses [19,20]. Polymer-based composites
are mainly used in the form of reinforcing elements [21]. One of the best polymers in
terms of stability is polyvinyltrimethoxysilane (PVTMS), which it can be synthesized by
polymerization of VTMS [22]. The features of the vinyl group (–CH–CH2) in the struc-
ture of PVTMS can be used to carry out radical polymerization. In addition, PVTMS can
improve the thermal stability [23]. Due to the existing voids in HA structures, there are
no extreme studies on doping components into HA for sensor applications. Wilson et al.
synthesized HA powder and used it for electrochemical sensing of uric acid, and the result
was positive when the process had better efficiency [24]. Furthermore, HA is used as a
gas detector (alcohol, CO, CO2) [25–27], as an electrolyte for solid oxide fuel cells [28], as a
conditioning matrix for radioactive waste stabilization [29] and for purification of water
or soil contaminated with heavy metals [30,31]. Ikoma et al. used HA nanocrystal sensors
for protein adsorption and investigated the reusability of the HA sensors and the repro-
ducibility of their measurements for the adsorption of fibrinogen [32]. Laghrouche et al.
investigated a highly sensitive humidity sensor based on natural HA [27]. Korostynska et al.
manufactured a pressure sensor based on a HA thick film for medical applications [33].
In addition, Fe is the most abundant transition metal in humans and its homeostasis is
carefully maintained [34]. Disruption of Fe concentrations can lead to potentially life-
threatening conditions [35], so determining the biological availability of Fe is extremely
important. In addition, there are several studies on Fe derivatives that have been used
based on sensor applications. Goncalves et al. investigated photostable, nontoxic Fe(II) as a
sensing device [35]. In other studies, Bucinskas et al. investigated synthetic force sensors
based on Fe-(III)oxide and iron oxide powder particles coated with steel and dyes to obtain
a tactile sensor system [36]. The surface absorption of oxygen in porous sensing composites
was increased due to high porosity. In addition, the strength of these composites decreased
when gases such as vaporized ethanol are applied [37]. Due to the continental environment,
volatile gases should be reduced, and of the different techniques to determine these toxic
gases, gas sensors are desirable. The common phase between the matrix and the reinforce-
ment has a good influence on the performance of the sensor composites. One of the main
challenges that can limit the use of sensor composites is the breaking of the bond in the joint
between the matrix and the reinforcement [38]; therefore, to prevent this problem, a special
freeze-drying machine is fabricated and used in this study. Furthermore, semiconductor
metal oxide-based sensors have the disadvantage of high power consumption, short life-
time and instability, so in this study, a new gas/temperature sensor composite consisting
of 70% wt. HA, 10% wt. PVTMS and 20% wt. iron(II)chloride tetrahydrate (Cl2FeH8O4)
is fabricated. The HA serves as the matrix and PVTMS/Cl2FeH8O4 as the reinforcement.
The chemical structures of HA, PVTMS and Cl2FeH8O4 are shown in Figure 1. In addition,
X-ray analysis, FTIR, SEM, EDAX, TEM, absorption and photoluminescence measurements,
and the response of the sensor to gas and temperature variations are investigated.
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Figure 1. The chemical structures of the composite components (a) HA, (b) PVTMS and (c)‘Cl2FeH8O4.

2. Experimental Methods
2.1. Materials and Instruments

In this study, calcium nitrate tetrahydrate (Ca(NO3)2.4H2O), phosphorus pentox-
ide (P2O5), iron(II)chloride tetrahydrate (Cl2FeH8O4), and vinyltrimethoxysilane (VTMS)
(Merck) were used as the precursors. A mechanical vacuum pump (Hi-Cube) was used
in the design of the freeze-dryer. In this study, a new freeze-dryer model was fabricated,
which consists of a brass container, thermoelectric cooling (TEC) Eleman, heat sink, fan,
Plexi glass, tube (1/4), reservoir, diode bridge, and power supply. The phase series of
the powders were confirmed by X-ray diffraction (XRD) and performed on a Philips XRD
diffractometer using Cukα radiation at 40 KV, 30 mA, a step size of 0.05◦ (2θ) and scan rate
of 1◦/min. In addition, X’Pert software was used for qualitative analysis and reporting of
the width of diffraction peaks (rad, β) at full width half maximum (FWHM) in different
2θ values according to the location of the peaks (version 4.9.0). Fourier transform infrared
(FTIR) spectroscopy of the composite was performed in potassium bromide (KBr) powder
and the instrument was attached with a Perkin-Elmer Spectrum BX FT-IR spectrometer.
For the chemical element analyses of the components, an energy dispersive X-ray spec-
trometer (EDX) Phillips/FEI 149 Quanta 200 was used. In addition, the morphology of the
composite was studied using a scanning electron microscope (SEM) Phillips/FEI Quanta
200. Furthermore, transmission electron microscopy (TEM) Tecnai G2 F20 X-TWIN with
accelerating voltage from 50 to 80 kV was used. A glove box (vacuum 1 × 10−6 Torr) was
used and the composite was coated for device fabrication by physical vapor deposition
(DS1-170, PVD). A resistance meter ME540 and a heating element made of stainless-steel
resistant to acids and corrosives were used to measure the resistance and create the heat
generation. Moreover, UV spectroscopy was performed using an AvaSpec-ULS2048XL-
EVO and AvaSoft 8. Photoluminescence spectra were recorded using a Hitachi F-4600 FL
luminescence spectrophotometer in the wavelength range 400–800 nm; in addition, the
wavelength range of the xenon discharge lamp light source used was 250 to 1300 nm.

2.2. Fabrication of Freeze Dryer

Most industrial freeze-drying equipment is used for the production of food and
agricultural products, so the use of chemical components, especially those consisting of
heavy solvents, in industrial freeze-drying equipment is not common due to the toxicity
and the vapor temperature of special components at very low temperatures. In addition,
the vapor of chemical volatiles such as carbon, hydrogen and cyclopentyl rings may be
damaged during heat treatment, and material collapse may occur during heat treatment.
The aim of the design of this freeze-dryer is to vaporize cyclopentyl, water and volatiles in
the produced gels and to prevent the collapse and breaking of the bonds, because drying at
high temperatures damages the components, especially the polymer. When the target is to
prepare a composite as a sensor, it is important to use other methods other than heating to
remove the solvents and volatiles. The schematic of the proposed freeze-dryer is shown
in Figure 2a. According to the figure, the equipment consists of: (1) a brass container,
(2) TEC Eleman, (3) a heat sink, (4) a fan cooler, (5) Plexi glass, (6) tube (1/4), (7) a reservoir,
(8) a diode bridge, (9) current, (10) wires and (11) a vacuum pump. Clear images of the
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freeze-dryer fabricated in this study are shown in Figure 3. Moreover, brass was chosen as
the material for temperature transfer, which has a diameter of 5.4 cm. In addition, each TEC
is a semiconductor device that can generate a temperature of about −8 ◦C, and to prevent it
from being destroyed, the use of liquid nitrogen is essential. This is because the mechanism
of performance has two functions: one side is attributed to cooling and the opposite side is
related to heating; therefore, the heating side should be cooled to avoid damage to the TEC.
Figure 2b shows the schematic of the TEC and its installation in the system. The heat sink
is made of aluminum and its job is related to temperature transfer. Moreover, a fan cooler
is responsible for preventing high external temperatures of the TEC. Plexi glass is very
transparent and the material is polycarbonate, and its role is to cover the brass fragment
and it was also used for the connection to the vacuum pump (insulation). A tube was used
to connect the Plexi glass valve to the vacuum pump. The reservoir, diode bridge, current
and wires were also connected to the electrical phase. The vacuum pump was used to
extract moisture, air and gasses in the non-distilling system. The operating voltage of the
device was 15 volts, and the maximum and minimum operating temperatures were 40 ◦C
and −20 ◦C, respectively.
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2.3. Preparation of the HA/PVTMS/Cl2FeH8O4 Composite

The purpose of the sol–gel method is to perform chemical processes at low tempera-
tures to produce composites with suitable shapes and surfaces. The sol–gel process can
be used to obtain a product size in the range of 1 to 100 nm, which have a structure in
the molecular order [39]. In this case, the schematic pathway to synthesis of artificial HA
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is shown in Figure 3a. Calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) and phosphorus
pentoxide (P2O5) were used as the precursors in a molar ratio of 10:3. The synthesis was as
follows: (1) Ca(NO3)2.4H2O and P2O5 were dissolved in 10 mL ethyl alcohol (C2H5OH)
and distilled water. (2) The product was stirred at 350 rpm for 2 h. (3) The gel was prepared
at the bottom of the dish. (4) The gel was then air dried at 120 ◦C for 20 h. (5) Heat treatment
at 850 ◦C for 15 h was performed for sintering. The sol–gel approaches studied so far have
some shortcomings, in particular the use of either expensive alkoxide-based precursors or
the need for several complicated steps to ensure complete dissolution of the precursors
to produce a pure HA phase after heat treatment. In order to control this problem, more
suitable and cheaper precursors were considered in this study as is described in refs. [40,41].
Taking into account the sensor generation, adsorption properties and ion substitutions due
to the position of calcium, as well as the fact that both phosphate and hydroxyl can be
exchanged by carbonate ions and hydroxyl can also be exchanged by metal ions [27,42,43],
HA was considered as the basis of the composite composition. All these features can be
associated with the mobility of the charges in the apatite network, which often produces
interesting physico-chemical properties. As shown in Figure 3b, vinyltrimethoxysilane
(VTMS) was polymerized with a chain length equal to twenty monomers. PVTMS was
prepared using tertiary butyl peroxide as an initiator and was refluxed for 2 h at 150 ◦C
under a nitrogen atmosphere [44,45]. Taking into account the depolymerization by an oxy-
gen atmosphere, polymerization was carried out in a nitrogen environment [46]. PVTMS
generates a hydroxyl radical (–OH) and the hydrogen radicals (–OOH) are then generated
by the reaction of polymerization; these radical species have also been used by SiO2/Si.
Furthermore, the free radical-mediated oxidation leads to hydroxylation, conversion to
carbonyl derivatives and cleavage of the chains, so that deformation and collapse of the
composite can be prevented due to the strength of the C chains and free radicals [47–49].
In addition, PVTMS contains the functional group silanol (Si-O-H) that can help with
bonding; therefore, it is useful for preventing the decomposition of composites [23]. Taking
into account the practical applications of α-Fe2O3 [50], the chloride moieties’ potential as
the adsorption–desorption isotherms in sensors, its good sensing, the obvious reaction
under evaporated ethanol and the large surface area [50,51], Cl2FeH8O4 was considered
as one of the constituents for reinforcement of composite. The products consisting of
HA and PVTMS were mixed, and iron(II)chloride tetrahydrate (Cl2FeH8O4) was added
simultaneously with cyclopentanol and distilled water and stirred at 140 ◦C and 450 rpm
until gelation was achieved. The sol was converted to a gel, and the gel piece was dried
in the fabricated freeze-dryer. After the volatiles, water and solvent were removed, the
HA/PVTMS/Cl2FeH8O4 powder composite was prepared.

3. Results and Discussion
3.1. Study of X-ray Diffraction

Figure 4a shows the X-ray diffraction data of the composite, up to 2θ values from
25◦ to 80◦. Phase identification was performed using X-Pert software, and the pattern
was consistent with the standard XRD pattern of HA. The black and red peaks represent
HA and Fe, respectively. Furthermore, the characteristic peaks at approximately 2θ~31◦

and 32◦ are attributed to the (211) and (112) reflections of HA in tandem. The lattice
parameter of the composite was recorded to be 9.8931 Å, the value of which was higher
than that of non-doped pure HA (~9.4000 Å), this is due to the addition of PVTMS and
Cl2FeH8O4, since the radius of Cl is larger than that of O and H. All XRD peaks can be
attributed to HA and insignificant amounts of Fe, indicating the absence of other impure
phases, while the small peak widths reflect a small size of the crystalline domains. The
insignificant Fe peaks are related to the content of the components (20 wt.%), since the
Ca/P ratio of 1.6 in the HA phase was taken into account. In addition, the amorphous
phase was not observed and the crystal size was calculated using the Monshi–Scherrer
method. Scherrer’s base formula (Equation (1)) is presented here, where β is the full width
at half maximum of the peak in radians, K is the shape factor, usually assumed to be 0.89 for
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ceramic materials, λ is the wavelength of the radiation in nanometers (λCuKα
= 0.15405 nm),

θ is the diffraction angle of the peak and L is the nanocrystal size [16]. After setting the
curve of Figure 4b to Ln ( 1

Cos T ) (Degree) versus Ln β (Radian), the intercept value was
determined as −6.38964 and as e(−6.38964) = 0.00168, finally K λ

L = 0.00168, and the crystal
size was gained as L = 81.60 ± 0.06 nm.

Ln β = Ln
(

Kλ

L

)
+Ln

(
1

Cos T

)
(1)
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The cif file and the (211) plane as a sharp peak of the composite are shown in Figure 4c.
The structure of the composite corresponds to a hexagonal system with space group P63/m,
which is symmetric and perpendicular to the structure of HA due to the higher content of
HA than PVTMS and Cl2FeH8O4. The three equivalent axes a, a2 and a3 form an angle of
120◦ with each other. In situ, four Ca atoms are surrounded by nine O atoms of phosphate
groups belonging to the tetrahedron PO3−

4 . It is noteworthy that the OH ions and four
Ca2+ ions are located at the Ca sites along columns parallel to the c-axis (Figure 4c), and
that some OH ions can be substituted by Cl- and Ca2+ ions (second type) and by Fe2+ ions
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located along the c-axis, of which direction of the O–H bond is parallel. It is a valuable point
that ions with a higher electronegativity than calcium would be replaced with Ca2+ ions
(second type) [52]; therefore, Fe2+ was substituted with Ca2+ ions (second type) due to their
high electronegativity (1.83) than Ca (1). These substitutions are described in refs. [53–56].
In addition, both the phosphate and hydroxyl ions can be replaced by carbonate ions [27].

3.2. Investigation of FTIR

According to the formula of HA, the peaks related to PO3−
4 , CO2−

3 and OH− are
characterized in Figure 5a. The intense bands of PO3−

4 groups are located at ~633, 856 and
1113 cm−1. The small band at 1728 cm−1 can be associated with water single stretching;
moreover, the relatively broad band from 2700 to 4000 cm−1 can be attributed to adsorbed
water. The intense IR peaks at 1462 and 2509 cm−1 correspond to the C–O band [57,58]. In
addition to the HA constituents, the presence of –OH groups have implied the existence
of PVTMS, and the small peaks at a wavenumber value of 956 cm−1 are caused by iron
oxide and PVTMS [59,60]. As a result, according to the FTIR of pure non-doped HA, with
addition of the PVTMS and Cl2FeH8O4, the percentages of PO3−

4 and C–O increase, and the
content of hydroxyl groups decreases [61–63]. According to FTIR spectra and Figure 5b, the
addition of Cl2FeH8O4 into the structure of HA leads to the removal of hydroxyl groups
and the development of strain along the c-axis. This strain leads to a higher solubility of
HA containing Cl2FeH8O4, as was found in ref. [64].
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3.3. Study of SEM and TEM Analysis

The scanning electron microscope (SEM) micrograph of the composite is shown in
Figure 6a. The nucleation and growth of PVTMS and Cl2FeH8O4 can be clearly seen on
the surface of HA. The microstructure exhibits an irregular morphology but the shells of
nucleation initiation at the edges are clearly visible. Moreover, no micro cracks, clusters or
agglomerates were observed, while the aggregation of PVTMS and Cl2FeH8O4 particles
can be observed on the HA. The chemical constituents in weight percent are listed in
Table 1. Table 1 shows that the main elements of the composite are Fe, Cl, P, Ca, O, Si
and C with percentages of 12.31, 7.29, 22.21, 33.63, 14.14, 2.38 and 7.00 wt.%, respectively.
The presence of copper (Cu) is attributed to the source of the instrument and as a result
of extracted elements and contents of EDAX. EDAX was performed to confirm the X-ray
diffraction results of the composite when the impurities were not registered. It should be
mentioned that the ratio of Ca

P = 33.63
22.21 , calculated to be 1.51, is not far from the base value

of natural HA (1.67) [41,65,66]. The EDAX analysis of the studied composite confirmed
the presence of HA as a matrix. The transmission electron microscopy (TEM) image of
the composite is presented in Figure 6b. The morphology identifications indicated that
nanoparticles were present with a good crystal structure. According to the TEM image, it
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seems that the crystals are not agglomerated in nanosize particles; the morphology seems
to be irregular spheres. Van der Waals attraction [67] was not observed. The grain size
determination was carried out from the TEM image, (DTEM) is ~100 nm, and this value
corresponds to the calculated nano-crystal size extracted by the Monshi–Scherrer method
(L = 81.60 ± 0.06 nm). The small difference between (DTEM) and L is related to the fact that
the images of TEM show the particle size and there are crystals between all particles [16].
This is because the size in TEM is often the same as the particle size [68] and in this study,
it is evident that some of the powder particles are nano-sized and the size values are less
than 100 nm (diameter).
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Table 1. The weight % of composite ingredients based on EDAX analysis.

Number Element Weight %

1 Fe 12.31 ± 0.01
2 Cl 7.29 ± 0.01
3 P 22.21 ± 0.01
4 Ca 33.63 ± 0.01
5 O 14.14 ± 0.01
6 Si 2.38 ± 0.01
7 C 7.00 ± 0.01
8 Cu 1.04 ± 0.01

3.4. Investigation of the Behavior of Composite in an Oxygen Environment

The UV–Vis spectra and absorption (ABS) behavior of the vapor-coated composite
on quartz film are illustrated in Figure 7. The ABS spectra in the range of 240 to 300 nm
is almost similar to the natural HA ABS spectra and the maximum ABS wavelength of
the composite is ~242 nm [69,70]. In addition, the ABS spectrum in the range from 300 to
425 nm is associated with Cl2FeH8O4 (Figure 7a) [71]. With increasing oxygen concentration,
especially at 800 ppm, a slight red shift in the ABS spectra occurs, which is due to the
binding of iron(II)chloride to HA [72]. When oxygen is introduced it can be placed in
void spaces between hexagons, in the tetrahedral arrangement per unit cell and replaced
by OH− ions forming internal channels along the c-axis [73]. As shown in Figure 7a, the
intensity of ABS increased with increasing oxygen content, which can be attributed to the
charge transfer phenomena between Fe2+/Cl− ions and HA based on π→π* transitions
similar to ligand to metal charge transfer. This is attributed to the remarkable scattering and
absorption of radiation as a result of an increase in surface roughness [74,75]. Moreover, the
high absorption of the composite is essentially due to the magnetization of HA due to the
existence of Fe ions. As is known, the composite has a higher absorption in the ultraviolet
range, and over time the absorption at higher wavelengths (visible region) decreases, which
is due to the oxygen gaps in the material [76,77]. In addition, as the oxygen concentration
increases (Figure 7b), the electrostatic attraction between the absorbing surface of the
composite and the negatively charged ions, such as oxygen and Cl, increases and the
intensity increases significantly [78,79]. This occurrence shows that the composite has
high efficiency in removing oxygen in the atmosphere due to the existence of magnetic
nanoparticles; therefore, the initial properties of the prepared composite show it to be a
sensor. The optical band gap (Eg) values were calculated for each ABS spectrum collected
at different oxygen concentrations using the photon energy equation [80], and the range of
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values were from 3.02 to 3.42 eV. In this case, the increase in Eg is due to the minimal filling
of the oxygen vacancies in the structure of the composite and the difference between these
values can be attributed to quantum size effects associated with the nanocrystallites of the
composite [81,82]. Furthermore, the reduction in Eg at an oxygen concentration of 800 ppm
is due to the fact that the oxygen holes can accept one or two electrons, so the occupied
oxygen holes act as donors [83,84].
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band gap of the vapor-coated composite on film.

The PL spectrum of the vapor-coated composite on a quartz film and the behavior of
the composite with the change in oxygen concentration versus PL intensity at a wavelength
of 660 nm are shown in Figure 8a,b. The wavelength range from 450 to 520 nm can be
assigned almost entirely to the PL of HA and PVTMS [85], whereas the PL range from 630 to
700 nm corresponds to the Fe moiety [86]. It is noteworthy that as the oxygen concentration
was increased, the PL intensity decreased specifically at 660 nm. This is attributed to the
structural model of Fe derivatives proposed by Pauling and Hendricks, which suggests a
change in the oxygen atomic coordinates in nanoscale α-Fe2O3 and an increase in the Fe–O
bond distance, leading to an enhancement in the coupling of the neighboring atoms, which
is also responsible for the photoluminescence [87–89]. In another insight, in the composite,
Fe derivatives show stronger emission at 660 nm, which is due to the confinement by ionic
atoms such as Cl, C and P, which prevent the energy exchange of nanoparticles with the
environment and stop the broadening of the electron wavefunction, as well as the surface
defects that can be caused by the deep trap created by the vacancy. Therefore, the intensity
of PL decreased with increasing oxygen concentration [86,90]. Additionally, a slight shift
in the PL spectra is ascribed to the difference in particle and e size and the change in
homogeneity and crystallinity with increasing oxygen concentration [91,92].
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3.5. Fabrication and Investigation Gas/Temperature Sensor Based on Composite

Taking into account that the HA is not completely soluble in solvents, the fabrication
of the sensor device was not possible by spin-coating or doctor blade coating methods;
hence, the physical vapor deposition (PVD) method was chosen. The area size of the sensor
was 3 × 1.5 cm, the active layer thickness was 30 and/or 60 nm and, after stabilizing the
connection by silver glue, the device was heated at 80 ◦C for 10 min. SiO2 is one of the best
materials due to its suitable features for optical device development, such as high electrical
conductivity, wide bandgap energy, transparency in the visible range and suitable thermal
and chemical durability; therefore, it was chosen for device fabrication. Furthermore,
silver glue was used for metal connections in various quantities. Taking into account the
resistance changes measurements changes, a sensor device was developed based on a
heating element to raise the temperature of the sensor to the desired working temperature.
Then, the Arrhenius curve was used to measure the resistance of the sample as a function
of temperature and to determine the resistance of the sensors. The voltage division method
was applied so that, according to Figure 9, a fixed resistor in a series circuit was carried out.
Knowing the decreasing voltage at constant resistance, the resistance of the sensor can be
determined using Equation (2),

Rs =

(
Vin

V0
− 1

)
R0 (2)

where in this equation, Rs is the resistance of the sensor at each temperature, Vin is the
internal voltage, V0 is the voltage across the resistance and R0 is the constant resistance
in a series circuit with a sensor. With the reading, the constant resistance reduces, and
the resistance of the sensor can be determined by Equation (2). In this investigation,
ethanol vapor with 1000–5000 ppm concentration was used as the tested gas and changes
of resistance with temperature, determination of working temperature and changes in
sensitivity according to gas concentration have been evaluated.
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According to Equation (3), the exponential pre-factor, which is a reflection of the
concentration of charge carriers, is almost constant, in other words, the activation energy,
which is a reflection of the kinetic energy, increases with the thickness of the sensor. In this
equation, σ is conductivity, σ0 is constant conductivity, T is temperature, Ea is activation
energy and K is Boltzmann constant [93,94].

σ =
σ0

T exp
(
−Ea
KT

) . (3)

Figure 10 shows the logarithmic of electrical conductivity versus temperature and
the dependency of the sensor at the temperature was investigated. Taking into account
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Equation (3), the activation energy with conductivity has an inverse relationship, and when
the activation energy is decreased (slope of curves) the conductivity will be increased [93].
The conductivity of the sensor with 30 nm size is higher than that of 60 nm size due to
the lower activation energy. It is worth noting that oxygen molecules are attracted to the
surface of the sensor, causing capture of electrons from the conduction band. This creates an
oxygen-free surface, causing the barrier to increase the potential and increase the resistance
of the sensor [95,96]. In Figure 10b, the response is introduced as response = Rg−Ra

Ra
, where

Ra is the sensor resistance in the presence of atmospheric air, Rg is the sensor resistance
under the gas (evaporated solvent) ambient conditions, and the response is sensitivity in a
percentage [97].
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According to Figure 10a, with increasing temperature, the conductivity is increased.
That it is related to the features of semiconductor, because the surface oxygen will be
picked up via O2−, O− and O−2 and this process is continued with transfer of electrons
and it causes an increase in concentration and decrease in the resistance. In fact, with
increasing the temperature, the content of holes and electrons is increased and that causes
a decrease in the resistance of the layer [98]. Furthermore, with increasing the thickness of
the composite layer, the activation energy is increased because the slope of curve at 60 nm
is increased; therefore, the diffusion is decreased. In addition, the band gap is decreased
when the thickness of the composite layer is decreased to 30 nm; therefore, the Fermi
level is getting closer to the highest level of the valence band, so the acceptor atoms have
changed to more superficial states and their energy of ionization is reduced and needs the
less activation energy. Moreover, with increasing gas concentration, the reaction between
gas molecules and oxygen atoms increases due to surface absorption. Therefore, with
increasing the concentration of ethanol gas, the sensitivity will be increased. When the
maximum sensitivity occurs (saturated phase), all oxygen ions will be used in the reaction,
and with increasing the concentration above the optimum value (saturated phase), the
sensitivity is decreased. According to Figure 11, the device with a 30 nm-thick composite
has the maximum response of the sensor due to more absorption of gas and the interaction
between gas molecules and the surface being stronger [99]. The slow recovery is due to
the strong attraction between the surface and the target molecules via hydrogen bonds,
which requires several minutes to return the substrate to its initial state under atmospheric
conditions. In addition, there is a higher presence of oxygen holes in the device with a
30 nm-thick composite, which leads to a decreased band gap and an increase in electron
transfer, so the resistance is higher than in devices with a thickness of 60 nm, as was found
in ref [84]. Furthermore, it is clear that the sensitivity of the sensors decreases with time,
especially in the N2 environment. The reason is related to the decrease in oxygen on the
surface, as the composite is very sensitive to the absorption of oxygen (Figures 7 and 8), so
there is not enough oxygen to react with the gas molecules [74,100]. As the thickness of the
active layer increases, the direct interaction between the gas molecule and the composite
surface is limited so that the physical adsorption of gas molecules on the surface is limited.
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4. Conclusions

A sensor composite consisting of HA/PVTMS/Cl2FeH8O4 was designed because the
initial HA and iron components were sensitive to temperature and gas, and PVTMS led to
strong binding due to the presence of Si moieties in the structure. Therefore, HA was used
as matrix and PVTMS and Cl2FeH8O4 were used as reinforcements in the composite. The
composite was successfully synthesized by the sol–gel method. The leakage of volatiles
and water from the composite was challenging due to the collapse and breaking of bonds
during heat treatment due to the sensitivity of HA to high temperature; therefore, a piece
of special freeze-drying equipment was designed and fabricated to produce the composite.
The crystal structure of the composite was studied by X-ray diffraction. The system was
hexagonal and the addition of PVTMS and Cl2FeH8O4 did not change the crystal system
when the weight percentage of HA was 70 wt.%. The crystal size of the composite was
calculated by the Monshi–Scherrer method to be 81.60 ± 0.06 nm, which was consistent
with the values extracted from TEM analysis (less than 100 nm). Moreover, the FTIR
analysis mainly showed the PO3−

4 and C–O components of HA and proved that there
were no impurities in the composite structure. The SEM of the composite was investigated
and micro-cracks, clusters and agglomerates were not observed when the Ca

P ratio was
calculated to be 1.51, proving the existence of HA. The maximum ABS wavelength of the
vapor-coated composite on quartz film in an oxygen environment was measured at ~242 nm.
Additionally, the optical band gap (Eg) values were determined to be in the range of 3.02 to
3.42 eV. Furthermore, the PL spectrum of the vapor composite deposited on quartz film in
an oxygen atmosphere showed peaks in the wavelength range from 450 to 520 nm and the
range from 630 to 700 nm, which corresponded to PL of HA/PVTMS and the Fe moiety,
respectively. The sensor device SiO2/composite/Ag was fabricated by the PVD method
and with silver glue. In addition, the gas/temperature sensing performances of devices
with a 30 nm- and 60 nm-thick layer of composite were evaluated and compared, and
the conductivity and sensitivity increased with increasing temperature. Based on ethanol
concentrations, the sensitivity of the sensor with a 60 nm-thick layer of composite was lower
than that of the 30 nm-thick composite device. In addition, the resistance of the sensor was
investigated in CO and N2 environments, and the resistance response of the device with a
30 nm-thick composite layer was higher than that of the 60 nm-thick layer composite device.
Overall, the HA/PVTMS/Cl2FeH8O4 composite was characterized and investigated, and
the results showed that this type of composite, as well as the sensor device fabricated based
on the composite, were sensitive to changes in gas and temperature parameters.
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