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Abstract: In addition to depth measurements, airborne LiDAR bathymetry (ALB) has shown use-
fulness in suspended sediment concentration (SSC) inversion. However, SSC retrieval using ALB
based on waveform decomposition or near-water-surface penetration by green lasers requires access
to full-waveform data or infrared laser data, which are not always available for users. Thus, in this
study we propose a new SSC inversion method based on the depth bias of ALB. Artificial neural
networks were used to build an empirical inversion model by connecting the depth bias and SSC. The
proposed method was verified using an ALB dataset collected through Optech coastal zone mapping
and imaging LiDAR systems. The results showed that the mean square error of the predicted SSC
based on the empirical model of ALB depth bias was less than 2.564 mg/L in the experimental area.
The proposed method was compared with the waveform decomposition and regression methods.
The advantages and limits of the proposed method were analyzed and summarized. The proposed
method can effectively retrieve SSC and only requires ALB-derived and sonar-derived water bottom
points, eliminating the dependence on the use of green full-waveforms and infrared lasers. This
study provides an alternative means of conducting SSC inversion using ALB.

Keywords: airborne LiDAR bathymetry; green laser; suspended sediment concentration; depth bias;
near-water-surface penetration

1. Introduction

The suspended sediment concentration (SSC), the mass of the sediment entrained
within a unit of water volume (mg/L), is a common measure of sediment transport. Ac-
quiring reliable and spatially distributed observations of SSC, which plays a major role in
erosion/deposition processes; biomass primary production; and the transport of nutrients,
micropollutants, and heavy metals, is important in order to advance our understanding of
the biogeomorphic dynamics of estuarine and lagoon systems [1]. However, the acquisition
of SSC values with high accuracy, high temporal and spatial resolution, a large area, and
cost effectiveness is not an easy goal to achieve. At present, SSC acquisition or water quality
monitoring methods mainly include the in situ sampling method, the satellite remote
sensing method [2–8], and the airborne LiDAR bathymetry (ALB) inversion method [9–12].
In the in situ sampling method, a water sample is most commonly collected in the field
and filtered to extract suspended matter. The filtered material is then dried, weighed, and
divided by the sample volume to obtain the SSC. The in situ sampling method has the
advantage of high accuracy, but its temporal and spatial resolution and efficiency are low.
Satellite remote sensing can achieve large-area SSC inversion, but its temporal and spatial
resolution and accuracy are low [2].

ALB technology uses an airborne laser sensor to emit green laser pulses (λ = 532 nm)
and receive pulse returns to detect the water surface, water body, and water bottom. The
primary goal of ALB system design is high-accuracy and high-resolution depth measure-
ments for shallow waters [13]. Some ALB systems emit an additional infrared laser to
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detect the water surface and overcome the water surface uncertainty problem which occurs
with the use of green lasers [13,14]. ALB systems using only green lasers and integrated
infrared and green lasers are called single-wavelength and dual-wavelength ALB systems,
respectively. In addition to basic depth measurements, ALB technology has been applied
to SSC retrieval [9–11]. SSC has a significant impact on the ALB waveform shape and
measurement accuracy. Conversely, SSC inversion can be achieved by analyzing ALB
waveform shape features or measurement bias.

At present, there are two main methods used to retrieve SSC using ALB information:
the waveform decomposition method and the measurement bias method. The waveform
decomposition method [10] uses waveform features of volume backscatter return (VBR)
which are related to SSC to retrieve the SSC. The measurement bias method [11] uses
point cloud bias information to retrieve the SSC. Laser waveform data are the raw ALB
measurement data which reflect return pulse intensity, and the three-dimensional point
cloud data are the products obtained by merging the waveform and corresponding position
and orientation data [15].

The typical green laser bathymetric waveform consists of three parts: the air-water
interface return (AIR), the VBR, and the bottom return (BR). The surface return is a linear
superposition of the AIR and VBR [13]. The VBR is significantly affected by SSC; thus,
its waveform parameters can be used to retrieve SSC [10]. Waveform decomposition
should be conducted first to extract the VBR from the superposed bathymetric wave-
form [8]. At present, waveform decomposition methods for the green waveforms of ALB
can be classified into two types: Gaussian decomposition [16–19] and AIR, VBR, and BR
(AVB) decomposition [20–23]. Gaussian decomposition is oriented towards topographic
LiDAR waveforms and transplanted to bathymetric waveforms [16,17]. The sum of several
Gaussian functions can ensure good fitness based on the fitting principle but cannot well
represent VBR, which is a continuous return that is backscattered from suspended sedi-
ments [23]. AVB decomposition methods have been proposed based on fitting the three
returns using three different functions. AVB decomposition methods have shown their
ability to process green waveforms and extract VBRs from superposed green waveforms.
The amplitude and slope of the VBR, extracted using waveform decomposition, have been
used to retrieve SSC values [10]. The waveform decomposition method has been verified
as an effective method for SSC retrieval using VBR, but full-waveform data are not always
available for users; thus, this method is limited in practical applications.

Because of the water surface uncertainty problem, green lasers can hardly detect
the water surface accurately but can penetrate to a certain depth under the water sur-
face [24]. This height bias of the green surface point is called near-water-surface penetration
(NWSP) [25]. The NWSP of a green laser is significantly affected by the SSC of the surface
layer. Conversely, if the NWSP of the green laser is known, the SSC of the surface layer
can be estimated using NWSP as an indicator. Based on this idea, Zhao et al. proposed a
method for SSC inversion of the water surface layer using the NWSP of green lasers for
dual-wavelength ALB systems [11]. This method uses the water surface point, accurately
detected by an infrared laser, as a reference to calculate the NWSP of a green laser and
effectively realizes SSC inversion by constructing an empirical SSC model of the NWSP.
However, this method requires the help of an infrared laser and is only applicable to
dual-wavelength ALB systems. Similar to the height bias of the water surface point (NWSP)
derived by the green laser, the height bias of the water bottom points (depth bias) derived
by the green laser is also significantly affected by SSC [26]. If the ALB depth bias can
be calculated, SSC can be retrieved by establishing an empirical model of the depth bias.
Moreover, the calculation of the height bias of the water bottom point does not require the
help of an infrared laser, and it can be used to realize SSC inversion in a manner which
is generally suitable for single- and dual-wavelength ALB systems. Therefore, this paper
presents a general SSC inversion method, i.e., SSC inversion based on the depth bias of
ALB, that can be applied to single- and dual-wavelength ALB systems without the aid of
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infrared lasers, and which provides theoretical and methodological support for solving the
problem of SSC observation in coastal shallow waters.

2. Methods

Figure 1a shows an illustration of airborne green laser propagation, and Figure 1b
shows the corresponding laser waveform, representing the return waveform amplitude
of the laser’s interaction with the water surface, the water body, and the water bottom.
SSC retrieval using ALB focuses on the laser’s measurement bias and the laser waveform,
which represent the interaction of laser pulses and ocean environments.

Figure 1. Illustration of SSC retrieval using ALB: (a) green laser propagation, (b) SSC retrieval using
ALB [10,11].

2.1. Waveform Decomposition Method

Zhao et al. deduced that water turbidity is related to the amplitude and slope of the
VBR of the laser’s bathymetric waveform by means of the bathymetric LiDAR equation [10].
Thus, the amplitude or slope of the VBR can be used to indicate water turbidity or SSC.
However, the raw bathymetric laser waveform is the superposition of the AIR, VBR, and
BR. Waveform decomposition should be conducted to extract the VBR from the superposed
waveform. Traditional decomposition methods do not handle bound constraints and are
easily trapped in local optima; thus, the decomposed components may be inconsistent with
the measurement principles of ALB. Zhao et al. proposed a constrained waveform decom-
position method by setting reasonable lower and upper bounds on waveform parameters
to guarantee the fidelity of the decomposed components [23].

AIR is repressed as a Gaussian function:

AIR(t; As, ts, σs) = As exp

[
−(t − ts)

2

2σ2
s

]
(1)
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where t is the time and As, ts, and σs are the amplitude, peak position, and standard
deviation of the AIR, respectively. Typically, the VBR is expressed as a triangular function:

VBR(t; Ac, a, b, c) = Ac ×


0 t ≤ a

t−a
b−a a ≤ t ≤ b
c−t
c−b b ≤ t ≤ c
0 c ≤ t

(2)

where Ac, a, b, and c are the amplitude, start, peak, and end position of the VBR, respectively.
BR is expressed as a Gaussian function if it exists in the raw waveform.

BR(t; Ab, tb, σb) = Ab exp

[
−(t − tb)

2

2σ2
b

]
(3)

where Ab, tb, and σb are the amplitude, peak position, and standard deviation of the
BR, respectively. The constrained nonlinear optimization can be transformed into the
following form:

β̂ = argminβ

{
m

∑
i=1

(yi − f (ti; β))2 such that l ≤ β ≤ u

}
(4)

where l and u are vectors of the lower and upper bounds of the waveform parameters,
respectively. The amplitude AC and slope K = AC/(c − b) of the VBR can be obtained using
constrained waveform decomposition and these can be used as indicators to retrieve the
SSC. The waveform decomposition method has been verified as an effective method for
SSC retrieval using airborne bathymetric LiDAR data [10]. However, full-waveform data
are not always available for users; thus, this method is limited in its practical applications.

2.2. Measurement Bias Method

The measurement biases of the green laser reflect the features of the green laser’s
waveform, i.e., time bias features. The height bias of the surface point (NWSP) of the green
laser reflects the time bias of the surface peak, and the height bias of the bottom point
(depth bias) of the green laser reflects the time bias of the bottom peak. The time bias of the
surface peak is mainly reduced due to the water surface uncertainty problem of the green
laser [24]. The time bias of the bottom peak is mainly reduced due to the pulse stretching
effect [27], which causes the peak position of the bottom peak to deviate from the correct
bottom position. The calculation of the NWSP requires the use of an infrared laser and is
not applicable for single-wavelength ALB systems.

Taking the height of the water bottom point h0 obtained by single-beam or multibeam
echo sounders as a reference, the depth bias ∆h of the water bottom point derived by the
green laser can be expressed as [26]:

∆h = hALB − h0 (5)

where hALB represents the height of the water bottom point derived by the green laser.
Previous studies have shown that the depth bias of ALB varies with water depth [28,29].
The rate of change in ∆h with water depth is mainly affected by the SSC, beam scanning
angle, and sensor height. Zhao et al. used the stepwise regression method to build a depth
bias model considering SSC, which improved the ALB sounding accuracy [26] as follows:

∆h = µD + b
µ = β1 + β2θ + β3θ2 + β4H2 + β5C

(6)

where b is a constant term, β1–β5 are the model coefficients, C is the SSC, θ is the beam
scanning angle, and H is the sensor height. Conversely, the SSC can be estimated if ∆h is
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known. Compared with SSC inversion using the NWSP derived by means of a green laser,
this method does not require the water surface point to be derived using an infrared laser
and can realize SSC inversion in a manner that is suitable for single- and dual-wavelength
ALB systems.

The ALB laser spot and the single-beam sounding point with approximately the
same position are called a point pair. The ∆h of each point pair can be calculated using
Equation (5). D can be calculated by subtracting the height of the water bottom point,
derived via sonar measurements, from the height of the water surface point, derived via
ALB. The beam scanning angle θ and the sensor height H can be extracted from the raw ALB
data. Affected by the complex environment and measurement parameters, the accurate
response mechanism of the depth bias to the SSC is difficult to express. Therefore, the
relationship between the measured SSC at each sampling station and the corresponding
depth bias of the green laser needs to be deeply explored, and an empirical SSC model of
the ALB depth bias needs to be constructed. Artificial neural networks (ANNs) were used
to build the SSC model in this study. The structure of the ANN-based SSC model of ALB
depth bias includes the input layer, hidden layer, and output layer. Among these, the input
layer includes the factors influencing SSC, including the depth bias of ALB, water depth,
beam scanning angle, and sensor height. The hidden layer consists of multiple neurons,
and the output layer is the predicted SSC. After obtaining the reliable empirical SSC model,
the SSC of each laser spot can be calculated using the constructed SSC model and the ALB
depth bias. The mean square error (MSE) and correlation coefficient R are used to evaluate
the performance of the SSC empirical model.

MSE =
1
m

m

∑
i=1

( f (xi)− yi)
2 (7)

R =

m
∑

i=1

(
f (xi)− f

)
(yi − y)√

m
∑

i=1

(
f (xi)− f

)2
√

m
∑

i=1
(yi − y)2

(8)

where m is the total number of point pairs, i is the ith point pair ranging from 1 to m, f is
the SSC predicted by the ANN-based model, and y is the measured SSC.

3. Experiment and Results
3.1. Research Area and Data Acquisition

An ALB measurement was carried out using the Optech coastal zone mapping
and imaging LiDAR (CZMIL) system in the coastal waters of Lianyungang city, Jiangsu
Province, China, to verify the effectiveness of the SSC retrieval method. Figure 2 shows
the manned Y-12 aircraft and Optech CZMIL used in the experiment. CZMIL is a dual-
wavelength ALB system that adopts collinear and synchronous means to emit IR (1064 nm)
and green (532 nm) lasers [30,31]. Sounding measurements were carried out using an HY-
1600 single-beam sounding sonar simultaneously with the ALB measurements to provide
reference bottom points for ALB depth bias calculations. The locations of the ALB and sonar
measurements are shown in Figure 3. The yellow and green colors in Figure 3a represent
the land and the Yellow Sea, respectively. The black triangles represent the locations of the
three SSC sampling stations. The SSCs of the S1, S2, and S3 sampling stations were 315,
122, and 134 mg/L, respectively. Figure 3b presents an enlarged drawing of the red boxed
area in Figure 3a. The blue, magenta, red, green, yellow, and cyan colors represent six
strips of ALB measurements. The black curve represents Qinshan Island. The blue dotted
lines represent the tracklines of single-beam echo sounding. Detailed descriptions of the
experimental area and the Optech CZMIL system can be found in [26].
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Figure 2. ALB system used in the experiment: (a) Y-12 aircraft, (b) Optech CZMIL.

Figure 3. Locations of the ALB and sonar measurements. (a) Locations and (b) local enlarged view of
the research area.

3.2. Data Preparation

First, data preprocessing was performed on the ALB raw data and the single-beam
sounding data. Then, the ALB and the single-beam point pair at the common position
were searched according to the position information. In the experimental area, there
were 362 pairs of ALB and sonar sounding points with approximate common positions.
According to Equation (5), the ALB depth bias can be calculated at a common position with
the elevation of the single-beam bottom point as the reference. The SSC of each point pair
can be estimated using the measured SSC from the sample stations based on the inverse
distance weight algorithm. The 362 point pairs were randomly divided into training (60%),
validation (20%), and testing (20%) data. The training data were presented to the network
during training, and the network was adjusted according to its error. The validation data
were used to measure network generalization and to halt training when the generalization
process stopped improving. The testing data had no effect on training and thus provided an
independent measure of network performance during and after training. The probability
density distributions of the raw depth bias of ALB, water depth, sensor height of the ALB
system, laser beam scanning angle, and SSC of the point pairs are shown in Figure 4a–e,
respectively. The statistical parameters of these raw data are listed in Table 1. As shown in
Figure 5, the relationship between the raw ALB depth bias and measured SSC presented
an approximate positive correlation, i.e., the higher the SSC, the larger the ALB depth
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bias, indicating that the ALB depth bias was greatly influenced by the SSC. Furthermore,
the distribution shown in Figure 5 presented divergent characteristics because ALB depth
bias was influenced not only by SSC but also by other environmental and measurement
parameters, such as the water depth, sensor height, and beam scanning angle.

Figure 4. Probability density distribution of the model input and output data. (a) Depth bias,
(b) depth, (c) sensor height, (d) beam scanning angle, and (e) SSC.

Table 1. Statistical parameters of raw data used for model construction.

Parameter Min Max Mean Std

Depth bias (m) −0.305 1.221 0.161 0.28
Depth (m) 3.022 4.559 3.366 0.314

Scanning angle (degree) 15.553 20.938 19.052 1.021
Sensor height (m) 394.007 441.333 420.381 10.701

SSC (mg/L) 164.087 193.044 176.591 5.587
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Figure 5. Relationship of ALB depth bias and SSC and the fitted exponential model.

3.3. SSC Modeling and Verification

As shown in Figure 6, the structure of the constructed ANN model consists of three
layers of neurons: an input layer, a hidden layer, and an output layer. The input layer
contains five parameters, namely, ∆h, Dcosθ, Dcos2θ, DH, and DH2. The hidden layer
contains 20 neurons, and the output layer outputs the predicted value of the SSC. Neurons
are connected in a feed-forward fashion with input neurons that are fully connected to
neurons in the hidden layer and hidden neurons that are fully connected to neurons in
the output layer [32]. The activation function, also called the transfer function, is used to
transform the activation level of neuron x into an output signal [33]. The objective of the
nonlinear activation function was to introduce non-linearity into the network. Without non-
linearity, a neural net is unable to handle complex modeling problems [32]. The sigmoid
symmetric function tansig is a commonly used activation function, and this was applied in
our network as follows:

tansig(x) =
2

1 + e−2x − 1 (9)

Figure 6. Structure of the ANN-based SSC model.
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The Bayesian regularization algorithm was used to train the network because it has
been found to result in good generalizations for difficult, small, or noisy datasets [34].

If the mean square error (MSE) increased six consecutive times (validation checks = 6),
the number of iterations reached 1000, or the MSE reached zero, the network stopped
training. In our experiment, the training stopped at 45 iterations because there were six
validation checks. The training state of the ANN-based SSC model and the regression of
the model results are shown in the Appendix A. The best validation performance (mean
squared error) was 1.2482 at epoch 39. The gradient, Mu, and validation checks varying
with epoch are shown in Figure A1b of Appendix A. The regression of the measured SSC
and the SSC predicted based on the training data, the validation data, the testing data,
and all data are shown in Figure A2a–d of Appendix A, respectively. As shown in Table 2,
the MSEs of the training, validation, and testing data were 0.421, 1.248, and 2.564 mg/L,
respectively; the R values of the training, validation, and testing data were 0.993, 0.985,
and 0.960, respectively. The low MSE and high R values indicate that the ANN-based SSC
model constructed using ALB depth bias as its input had high SSC inversion accuracy.
Accuracy evaluations using MSE and R enabled us to ensure the reliability of the SSC
empirical model.

Table 2. Datasets and performance of the ANN-based SSC model.

Datasets Samples MSE (mg/L) R

Training 218 0.421 0.993
Validation 72 1.248 0.985

Testing 72 2.564 0.960

3.4. SSC Inversion

When the ANN-based SSC empirical model was obtained, the SSC of the research area
could be estimated by inputting the input parameters into the constructed SSC model. The
spatial distributions of the depth bias of the point pairs from the research area are shown in
Figure 7a. The colors of discrete points represent depth bias values. In the research area, the
spatial distributions of the SSC retrieved by inputting ALB depth bias into the constructed
SSC model are shown in Figure 7b. The colors of the discrete points represent the retrieved
SSC values.

Figure 7. Spatial distributions of depth bias and the retrieved SSC. (a) Depth bias of ALB, and
(b) retrieved SSC.
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4. Discussion
4.1. Comparison Methods
4.1.1. Exponential SSC Regression Model of Depth Bias

As discussed in Section 3.2, the relationship between raw ALB depth bias and SSC
presented an approximate positive correlation. This relationship can be modeled by fitting
an exponential function ψ to the raw data. The parameters η of the exponential function
can be estimated based on the least squares method as follows:

η̂ = argminη

{
n

∑
k=1

(ψk(η)− SSCk)
2

}
(10)

where k represents ALB depth bias values and n is the total number of depth biases. The
red dotted curve shown in Figure 5 represents the fitted exponential SSC model as follows:

SSC = 174.3 exp(0.0796k) (11)

The MSE and R2 of the fitted exponential SSC model of ALB depth bias were 15.28 mg/L
and 0.5116, respectively.

4.1.2. Waveform Decomposition Method

The waveform parameters of the VBR in ALB waveforms were theoretically analyzed
and verified as effective indicators of SSC. An empirical model was built by connecting
the waveform parameters of the VBR and the measured SSC to invert the SSC [10]. The
procedure involved in the waveform decomposition method can be summarized as follows:

(1) Waveform extraction

The raw laser waveforms collected by ALB systems are usually stored in binary files
to save storage space. The raw data files must be decoded according to the data file format
to extract all useful parameters and raw waveform data.

(2) Ocean-land waveform classification

ALB systems can realize integrated ocean and land measurements based on the
received laser pulse returns reflected from the ocean and land. Ocean-land waveform
classification should be conducted to identify the ocean waveforms from the raw collected
waveforms. Ocean-land waveform classification methods have been summarized and the
dual-clustering method has been proposed as an effective method, with high accuracy for
dual-wavelength ALB systems [35]. The dual-clustering method was used for ocean-land
waveform classification in this study. The amplitudes of the IR waveforms were calculated
and these are shown in Figure 8a. The yellow and blue colors in Figure 8b represent the
spatial distributions of the obtained land and ocean waveforms, respectively.

Figure 8. Spatial distributions of ocean and land waveforms. (a) Amplitudes of IR waveforms, and
(b) laser spot positions of corresponding separated ocean (blue) and land (yellow) waveforms.
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(3) Ocean waveform decomposition

Waveform decomposition, which is achieved by fitting the mathematical waveform
model to raw green waveforms using a nonlinear fitting approach, is a powerful tool to
extract the VBR from raw bathymetric waveforms. An improved AVB decomposition
method—setting reasonable lower and upper bounds of waveform parameters—has been
proposed to guarantee the fidelity of the decomposed components [23]. The AVB decompo-
sition method was performed on the ocean waveforms classified in step 2 to extract the VBR
of each pulse waveform. Figure 9a shows the waveform decomposition results for a typical
bathymetric waveform in the research area. The black discrete points represent the pulse
return intensity with a sampling period of 1 ns. The magenta and blue curves represent
the AIR and VBR, respectively. The green dotted line represents the sum of the AIR and
VBR. The bottom return is missing in the raw waveform because of the high turbidity. The
distribution of the amplitudes of the extracted VBRs for the entire research area is shown
in Figure 9b. Although the AVB decomposition method has shown its effectiveness for
VBR extraction [10], the decomposition accuracy of some waveforms was low and should
be improved further, e.g., the amplitudes of VBRs at the edge of some strips shown in
Figure 9b were significantly larger than those of the adjacent areas.

Figure 9. Waveform decomposition of a typical waveform and the distribution of VBR amplitudes.
(a) Waveform decomposition, and (b) VBR amplitude.

(4) Empirical model construction and SSC retrieval

The SSCs at the positions of the previously described point pairs and corresponding
amplitudes of VBRs are shown in Figure 10a. The results showed that the SSCs and VBR
amplitudes presented a positive correlation. A power function was used to build an SSC
model of the VBR amplitude, similarly to Equation (10), based on the least-squares method.
As indicated by the blue dotted line in Figure 10a, the fitted-power empirical SSC model of
the VBR amplitude is expressed as follows:

SSC =− 3564µ–0.7687 + 241.2 (12)

where µ is the amplitude of VBR. The MSE and R2 of the SSC retrieval model of VBR
amplitude were 2.28 mg/L and 0.906, respectively. The distribution of the SSC of the entire
research area could be retrieved by inputting the VBR amplitudes extracted via waveform



Sensors 2022, 22, 10005 12 of 16

decomposition (Figure 9b) into the SSC retrieval model (Equation (12)). Compared with
exponential regression and ANN-based SSC models of ALB depth bias, the waveform
decomposition method showed a higher SSC retrieval accuracy. The shortcomings of the
waveform decomposition method are that it comprises complex waveform processing
procedures and the laser waveforms are not always available for users.

Figure 10. Distribution of VBR amplitude and retrieved SSC. (a) Relationship between SSC and VBR
amplitude, and (b) retrieved SSC using the empirical model.

In summary, the MSEs of the exponential SSC regression model of depth bias, the power
SSC regression model of VBR amplitude, and the proposed ANN-based SSC model of depth
bias were 15.28, 2.28, and 2.564 mg/L, respectively. The waveform decomposition method
presented the highest SSC retrieval accuracy among the three SSC models. The accuracy of the
ANN-based SSC model of depth bias was higher than that of the exponential regression SSC
model of depth bias because the neural network was able to build more precise connections
between ALB depth bias and SSC than the traditional regression method.

4.2. Advantages and Limitations

The advantages of the proposed method are as follows: (1) Compared with the
waveform decomposition method, the proposed SSC retrieval method using ALB depth
bias does not require a complex waveform processing procedure and is easy to conduct.
(2) Compared with the exponential SSC regression model of depth bias, the proposed
ANN-based SSC model of depth bias has a higher SSC retrieval accuracy. (3) Compared
with the measurement bias method using NWSP, the proposed SSC retrieval method using
depth bias does not require the help of infrared lasers and can be generally suitable for
single- and dual-wavelength ALB systems.

The limits of the proposed method are summarized as follows: (1) Since the ALB
capacity is significantly affected by turbidity, the question of whether the ALB bottom
point height hALB can be obtained is essential for the calculation of depth bias ∆h. With
the exception of extremely turbid water, ALB can realize water bottom detection and
provide hALB. (2) Single-beam echo sounding cannot realize full-coverage measurements
but can only provide information on discrete points. ALB depth bias values calculated by
taking single-beam echo sounding data as a reference can be obtained at those discrete
points. Therefore, SSC inversion using depth bias cannot realize planar inversion but only
discrete-point inversion, as shown in Figure 7b. This limitation can be overcome by taking
multibeam sonar data as a reference in the future.
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4.3. Generalization Ability

ANN-based modeling has a certain randomness, such as the random division of
the training, validation, and testing data. One trained model may not reflect the real
performance because of randomness. To evaluate the generalization ability of the SSC
model, multiple models should be trained. The MSE and R of each model can be calculated,
and the mean values of MSE and R can be used to assess the generalization ability of the
ANN-based SSC model. We obtained five models using the same datasets and parameter
settings, and the MSE and R of each model of the testing data are shown in Table 3. The
mean values of MSE and R were 2.194 mg/L and 0.966, respectively. The results show that
the ANN-based SSC model had a good generalization ability.

Table 3. Generalization ability of the SSC model.

Model Number MSE (mg/L) R

1 2.564 0.960
2 2.026 0.976
3 2.548 0.954
4 1.750 0.971
5 2.080 0.969

5. Conclusions and Suggestions

In this study, we proposed a novel method for SSC retrieval using the depth bias of
airborne bathymetric LiDAR data. The depth bias of ALB was used as an indicator of SSC,
and an ANN was used to build an empirical SSC model by connecting the ALB depth bias
and the measured SSC. The proposed method was verified using a dataset collected from
the Optech CZMIL system. The results verified the effectiveness of SSC prediction using
ALB depth bias.

Compared with the waveform decomposition method, this method does not require
waveform data, which are not always available for users. Compared with the exponential
SSC model of depth bias, the proposed ANN-based SSC model of depth bias has a higher
accuracy. Compared with the measurement bias method using the NWSP, this method does
not require the help of an infrared laser. The proposed method provides a new method for
SSC inversion using ALB when waveform data or infrared laser data are not available. The
results also reveal that ALB can provide additional environmental information when used
for shallow water measurements.

SSC inversion using depth bias, calculated by taking single-beam echo sounding data
as a reference, can be performed to obtain SSCs at discrete points. Multibeam sounding
data should be used to calculate ALB depth bias to realize full-coverage SSC inversion. The
ANN architecture used in the present study, containing one hidden layer, is simple and
easy to use. Future studies should be conducted to explore different ANN architectures to
further improve the accuracy of SSC retrieval using ALB depth bias.

Author Contributions: Conceptualization, X.Z.; methodology, X.Z.; software, X.Z.; validation, X.Z.,
H.X. and J.G.; formal analysis, X.Z.; investigation, X.Z.; resources, X.Z. and F.Z.; data curation, X.Z.
and F.Z.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z., H.X., J.G. and
F.Z.; visualization, X.Z. and J.G.; supervision, X.Z.; project administration, X.Z.; funding acquisition,
X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 41906166.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request.



Sensors 2022, 22, 10005 14 of 16

Acknowledgments: The ALB and single-beam echo sounding data used in this study were provided
by the Survey Bureau of Hydrology and Water Resources of the Yangtze Estuary. The authors are
grateful for their support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Training state of the SSC model: (a) MSE, (b) gradient, Mu, and validation checks.

Figure A2. Regression of SSC prediction results: (a) regression of training data, (b) regression of
validation data, (c) regression of test data, (d) regression of all data.
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