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Abstract: Attitude control subjected to pointing constraints is a requirement for most spacecraft
missions carrying sensitive on-board equipment. Pointing constraints can be divided into two
categories: exclusion zones that are defined for sensitive equipment such as telescopes or cameras
that can be damaged from celestial objects, and inclusion zones that are defined for communication
hardware and solar arrays. This work derives common frame dynamics that are fully derived
for Modified Rodrigues Parameters and introduced to an existing novel technique for constrained
spacecraft attitude control, which uses a kinematic steering law and servo sub-system. Lyapunov
methods are used to redevelop the steering law and servo sub-system in the common frame for the
tracking problem for both static and dynamic conic constraints. A numerical example and comparison
between the original frame and the common frame for the static constrained tracking problem are
presented under both unbounded and limited torque capabilities. Monte Carlo simulations are
performed to validate the convergence of the constrained tracking problem for static conic constraints
under small perturbations of the initial conditions. The performance of dynamic conic constraints
in the tracking problem is addressed and a numerical example is presented. The result of using
common frame dynamics in the constrained problem shows decreased control effort required to
rotate the spacecraft.

Keywords: attitude control; lyapunov control; common frame dynamics; constrained control

1. Introduction

Spacecraft missions regularly require reorientation maneuvers subject to various con-
straints such as mechanical limitations and orientation constraints. Mechanical limitations
are defined by maximum available torque for a reaction wheel array, or angular velocity
limits of the spacecraft. Attitude constraint limits are defined for mission hardware which
can be separated into two categories, inclusion zones or exclusion zones [1]. Inclusion zones
are required for equipment that require a certain attitude to be considered for maximum
performance such as solar panel arrays to pointing at the sun or communication antennas
to point towards a ground station. Exclusion zones are required for sensitive equipment
such as a telescope or camera boresight to be pointed away from the sun at a given angle
to prevent severe sensor damage. Attitude pointing constraints are common for various
spacecraft, from small cubesats to very expensive and complex satellites [2]. One notable
example is the James Webb Space Telescope (JWST) which has an exclusion zone of 85◦

from the sun and 45◦ anti-sun [3]. An artist rendition is shown in Figure 1.
The autonomous attitude unconstrained problems, both in the constant reference

regulation problem, and the moving reference tracking problem have been extensively
researched. Some methods that have successfully solved the unconstrained problem are
non-linear control [4,5], optimal control [4,6,7], sliding-mode control [8,9], and adaptive
control [10,11]. The addition of pointing constraints to existing nonlinear kinematics
and dynamics adds a challenge to solving the constrained attitude control problem since
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removing constrained zones from the feasible rotational configuration of the spacecraft
creates nonconvex regions [12].

(a) (b)

Figure 1. (a) The James Webb Space Telescope artist rendition. Source: European Space Agency.
(b) JWST Field of Regard with two exclusion zones [3].

Hablani used geometric relations in order to determine trajectories that avoid con-
straint volume by defining an intermediate waypoint located outside the constraint [13].
From here, the spacecraft would maneuver to the final orientation. Although simple to
implement, the algorithm does not scale with an increasing number of constraints [14].
Frakes et al. uses a different method that was implemented on the SAMPEX mission shown
in Figure 2a that would avoid an orientation that would maximize the flux of orbital debris
and micrometeoroids by monitoring the angle between the Heavy Ion Large Telescope
(HILT) boresight and that condition [15]. If the boresight enters the conic constraint, a target
attitude is redefined outside the constraint. This method is not guaranteed to converge.

Constraint Monitor Algorithms (CMT) are real-time algorithms that actively monitor
constraints of all types and creates a trajectory avoiding them using a predictor-corrector
approach [16]. In CMT, the current attitude motion is propagated forward for a short
duration of time, and when the predicted motion violates the constraints corrective actions
are taken. These algorithms have been originally designed for the Cassini mission [17]
shown in Figure 2b and has also flown on the Deep-Space 1 mission. Although it is a
sub-optimal solution, it guarantees the desired path and can be extended to a moving
reference. However, CMT’s convergence is only guaranteed in some cases and not the
general case [14].

(a) (b)

Figure 2. (a) SAMPEX Satellite, artist rendition (b) Cassini Satellite, artist rendition .

Randomized motion planning has been used to solve the constrained problem [18], uti-
lizing graph and random search to achieve the spacecrafts final orientation while avoiding
constraints. The procedure is as follows [14]:

1. Initialize a graph G0 with a distinct vertex at v0. This represents the initial states
(attitude and angular velocity)

2. At the k + 1 iteration, perform a random graph search starting at the kth vertex vk to
determine a set of feasible vertices in the graph Gk.
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3. Chose a feasible vertex found in the second step that minimizes the cost function. This
is the next vertex vk+1.

4. From this vertex, repeat the second and third step from vk+1. Update k to be k + 1
until the final attitude is obtained.

5. Apply the optimal control torque for each attitude trajectory.

The technique solves the constrained problem in the regulation problem; however,
convergence is guaranteed only in probabilistic manner, and computational time increases
dramatically as the graph size increases.

Optimal control methods can be used to solve the constrained problem, given a
cost function that minimized control effort subjected to its initial state and terminal state
bounded by spacecraft limitations. Although being a Non-Linear Optimization problem,
Kim and Mesbahi developed a method to simplify the Non-Linear optimization Prob-
lem (NLP) to a Quadratically constrained quadratic programming problem (QCQP) and
then solving the maneuver as a Semi-Definite Programming optimization problem by
convexifying the constraint [16]. This method has been used to solve the constrained
regulation problem and not the tracking problem. However, the method used by Walsh
and Forbes solves both problems by transforming the constraint into the Direction Cosine
Matrix (DCM) [1] representation and formulates the control problem using Semi-Definite
Programming (SDP). This method is singularity free, as a characteristic of using the DCM,
but is computationally expensive.

Lyapunov methods incorporate potential functions to create mathematically traceable
control laws that converge to the target attitude while evading constraints and work with
any number of conic constraints. Using these methods allows the use of backstepping
control methods [19], allowing separate development of kinematics and angular rates.
Ramos solved the constrained problem under bounded angular velocity by developing a
kinematic steering law subject to a smoothing function and torque limitations by extending
the constraint angle as a function of the spacecraft characteristics [20]. The technique
conducted in reference [20] solves the regulation and tracking problem under an arbitrary
number of constraints, but in the tracking problem the angular velocity is not guaranteed
to be bounded; however, Ramos’s results present boundedness in angular velocity.

Adaptive optimal control methods have also been used. Kulumani and Lee [21] de-
veloped a geometric adaptive control system designed to asymptotically converge to the
desired attitude while avoiding pointing constraints in presence of unknown disturbances
using Special Orthogonal Group 3 (SO(3)) and various attitude representations. The con-
straints are also modeled using logarithmic barrier functions, modeled as attractive surfaces
for inclusion zones and repulsive surfaces for exclusion zones and can be superimposed.
The control system minimizes the negative gradient of the attitude error function. This
method is singularity free and has been shown to solve both the tracking and regulation
problem under an arbitrary number of constraints.

The key contributions of this paper are summarized below

1. The paper solves the constrained attitude control problem using common frame
dynamics. Hence, a complete elegant constrained attitude control formulation in
the common frame dynamics, where the angular velocity is defined in the estimated
attitude axes frame. Conventionally, such as in the existing solution by Ramos [20],
the problem does not consider the difference of frames between the body frame and
the reference frame. It is required to use a different definition of the state error since a
spacecraft’s Attitude Determination and Control System (ADCS) does not measure
the attitude directly, but by using a set of angles to objects using sensors such as star
cameras or sun sensors, while gyroscopes are used to measure angular rates [22].
More accurate sensors were developed during the space age and introduced new
technology in Inertial Navigation Systems (INS) called the Inertial Measurement Units
(IMUs), consisting of three gyroscopes and three accelerometers [23]. Despite the rise
of improved INS sensors, IMUs are well known to drift. One example of this is the
Apollo mission’s gyroscopes which drifted at a rate of one milliradian per hour [23].
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In addition, since position measurements are only given, the calibration parameters
of attitude and gyroscopes are weak since it is dependent on the spacecraft’s motion.
In addition, the reference frame, which could be a solution from another spacecraft’s
guidance algorithm, also contains the same type of errors as the body frame.

2. The paper develops the common frame dynamics in the constrained attitude control
problem. Common frame dynamics is introduced in previous work conducted by [20],
which uses Modified Rodrigues Parameters (MRP’s) as minimal attitude descriptors.
The backstepping control law is adopted to develop the kinematic steering laws and
servo subsystem blocks, which simplify the design of the control laws by permitting
the division of attitude and angular rates into separate control loops.

3. The paper adopts the Lyapunov methods to develop mathematically traceable, closed-
form control laws for both subsystems.

4. In addition to implementing common frame dynamics, this paper also extends the
constrained tracking problem in presence of dynamic constraints. These types of
constraints are important in spacecraft formation flying, such as the European Data
Relay System (EDRS) in Figure 3a and the upcoming Starlink satellite constellation
with the purpose of providing low-latency satellite internet access globally (Further
information can be seen at starlink.com (accessed on 1 March 2020).) in Figure 3b.
Each satellite is equipped with a laser communication device and receiver with strict
pointing inclusion constraints to transmit data across the constellation.

5. The paper presents validation of the algorithm by performing a Monte Carlo analysis
on two boresight trajectories under both exclusion constraints and explicitly under
exclusion constraints. The constrained tracking problem is also examined in presence
of dynamic constraints and exclusion constraints.

(a) (b)

Figure 3. (a) European Data Relay System Satellite Constellation. Source: European Space Agency
(b) One of many Starlink satellites, artist rendition. Source: SpaceX.

2. Common Frame Dynamics

Consider Figure 4, where N represents the Inertial Earth Frame with unit axes[
îN , ĵN , k̂N

]
, B represents the moving body frame with axes

[
îB , ĵB , k̂B

]
, andR repre-

sents the reference frame with axes
[
îR, ĵR, k̂R

]
.

The angular velocity of the body frame is represented as Bω, while the reference
angular velocity is represented as Rω. If the attitude is represented as σ in the body frame
relative to the inertial frame (noted as σB/N ), then ω is the angular velocity of the body
frame relative to the inertial frame written in the body frame coordinate system (noted as
BωB/N ). For derivatives, the over dot symbol •̇ represents the inertial derivative, while the
prime symbol •′ represents the body frame or reference frame derivative.

In Figure 5, let BC represent the Direction Cosine Matrix (DCM) in the body frame
attitude with axes [Bx By Bz] and let RC be the DCM in the reference frame attitude with
axes [Rx Ry Rz].

starlink.com
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Figure 4. The relative coordinate system, with the inertially fixed earth axis N , reference trajectory
R, and spacecraft body B.

Figure 5. The body and reference frames and angular velocities shown in [24,25].

Bani Younes and Mortari [24,25] described the attitude error as the rotation error
between the both frames:

δC = BCRCT (1)

If the product between δC and the reference attitude RC is taken, then the result is the
attitude in the body frame:

δCRC = (BCRCT)RC = BC

Therefore, the matrix δC in Equation (1) is the transformation matrix from the reference
frame to the body frame.
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Similarly, let Bω represent the angular velocity vector of the body frame with the same
axes as BC and let Rω represent the angular velocity of the reference plane with the same
axes as RC. The angular velocity error can be defined as:

δω = Bω− Rω (2)

The dynamics for Equation (2) is:

δω̇ = Bω̇− Rω̇ (3)

If the body attitude is known, then Equation (2) represents the angular velocity error
between the body and the reference frame. Equation (2) is used in simulation cases where
the body attitude is known. In real applications, the body attitude is not known and
the reference frame angular velocity must be transformed into the common frame. The
Common Frame angular velocity error can be defined as:

δω = Bω− δCRω (4)

The dynamics for Equation (4) is:

δω̇ = Bω̇− δĊRω− δCRω̇ (5)

where δĊ = −δC[δω̃] and [δω̃] is the skew symmetric matrix. For Equation (4), δC used as
the corrective rotational matrix that maps the reference frame into the body frame.

The Modified Rodrigues Parameters (MRP) are a minimal attitude parameter set of
Special Orthogonal Group 3 SO(3) and is defined in terms of the quaternions or in the
principal rotation set [24–26]:

σ =
qv

1 + q4
= e tan

(
φ

4

)
(6)

where qv is the vector portion of the quaternion and q4 is the scalar part of the quaternion.
Some properties of the MRPs are the geometric singularity and being a non-unique atti-

tude representation. The geometric singularity is located at a principal angle of
φ = ±360◦, correlating to q4 = −1, allowing for large rotations. The non-unique character
of the MRPs is expected, since it is a geometric projection of the quaternions, which are also
non-unique since q = −q and as a result, a corresponding shadow set, σS also represents
the same orientation:

σS = − σ

σTσ
(7)

The MRP inverse transformation to the quaternions are given by:

qv =
2σ

1 + σ2 and q4 =
1− σ2

1 + σ2 (8)

and the DCM mapping of the MRP is:

[C] = [I3×3] +
8[σ̃]2 − 4

(
1− σ2)[σ̃]

(1 + σ2)
2 (9)

where [I3×3] is the identity matrix, and [σ̃] is the skew symmetric matrix of the MRP
defined as:

[σ̃] =

 0 −σ3 σ2
σ3 0 −σ1
−σ2 σ1 0
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To calculate the MRP Kinematic equation in the simulation case in Equation (2), the
time derivative of Equation (6) is taken:

σ̇ =
q̇v

1 + q4
− q̇4qv

(1 + q4)
2 (10)

and the corresponding derivatives for the quaternion components are:

q̇v =
1
2
{−
(
[Bω̃] + 2[Rω̃]

)
qv + q4

Bω} (11)

q̇4 = −1
2
BωTqv

Combining of Equation (10) and the quaternion kinematics in Equation (11) results in
the MRP Kinematic differential equation when the true attitude and angular velocity are
known [24,25]:

σ̇ =
1
4
[
− 2
(
[Bω̃] + 2[Rω̃]

)
σ +

(
1 + σ2

)
Bω
]
+

1
2

(
BωTσ

)
σ (12)

where [ω̃] is the skew symmetric matrix in the form of:

[ω̃] =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


To obtain the MRP Kinematic differential equation in the Common Frame case pre-

sented in Equation (4), the time derivative presented in Equation (10) is used and the
corresponding quaternion kinematics are taken.

q̇v =
1
2
{−[Bω̃]qv + ωq4} (13)

q̇4 = −1
2
BωTqv

Using the inverse mapping of the Common Frame quaternion kinematics presented in
Equation (8), the MRP Kinematic Equation in the Common Frame simplifies to:

σ̇ =
1
4

[(
1− σ2

)
I3×3 + 2[Bω̃] + 2σTσ

]
Bω (14)

Equations (2) and (12) represent the exact analytical solution for the true frame and
Equations (4) and (14) represent the exact common frame analytical solution by [24].
In [27–30], the kinematic differential equation is derived for multiple attitude representa-
tions such as quaternions, Classical Rodrigues Parameters (CRP), and Direction Cosine
Matrix (DCM) in the true and the common frame scenario.

The rotational equations of motion for a rigid spacecraft with NRW perfectly symmetric
and balanced Reaction Wheels (RW) is given by [26]:

[IRW ]ω̇ = −[ω̃]([IRW ]ω + [Gs]hs)− [Gs]us + L (15)

where [IRW ] is the spacecraft total inertia tensor with the RW system:

[IRW ] = [Is] +
NRW

∑
i=1

(
Jti ĝ

T
ti

ĝti + Jgi ĝ
T
gi

ĝgi

)
(16)
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[Gs] is the RW projection matrix with respect to the spin axis:

[Gs] =
[

ĝs1 , ĝsi , . . . , ĝsNRW

]
(17)

hs is the RW angular momentum vector:

hs =
[

Js1(ĝT
s1

ω + Ω1) . . . Jsi (ĝT
si

ω + Ωi) . . . JsNRW
(ĝT

sNRW
ω + ΩNRW )

]T
(18)

[Is] is the inertia tensor of the spacecraft. A principal-axis frameWi : {ĝsi , ĝti , ĝgi} is applied
to each RW. [Iwi ] = diag(Jsi , Jti , Jgi ) is the inertia of each RW relative to the center of mass
within theW . Ωi is the angular velocity of the RW relative to the spacecraft. The vector
us is the control torque vector applied to each RW axis. L is the external torque applied to
the spacecraft.

3. Common Frame Control

The unconstrained tracking problem can be solved using Lyapunov’s direct method
which allows similar methods in developed in backstepping control. This results in pro-
ducing a cascaded control design where the output of one sub-system is the input of
another [19]. Figure 6 describes the control design used in [20]. The kinematics block
represents Equation (14), the MRP kinematic differential equation in the Common Frame.
The dynamics block is represented by Equation (15), the rigid body dynamics of a spacecraft
with a RW array. The outer loop of the control block is the Kinematic Steering Law, re-
sponsible for controlling the attitude of the spacecraft and taking inputs from the reference
σR/N , and the current attitude σB/N . The inner loop is the servo sub-system, responsible
for controlling the angular velocity and takes inputs from the reference ωR/N , the solution
of the kinematic steering block ωB∗/R and the current angular velocity from the dynamics
block ωB/N .

Figure 6. Control block proposed by [20]. The outer loop consists of the Kinematic Steering Law,
while the inner loop consists of the servo sub-system.

3.1. Unconstrained Kinematic Steering Law

Consider the Lyapunov candidate function given by [26]:

V(σB/R) = 2 ln
(

1 + σT
B/RσB/R

)
(19)
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Taking the time derivative:

V̇(σB/R) =
4σT
B/Rσ̇B/R

1 + σT
B/RσB/R

(20)

Using Equation (14) and knowing that σT
B/R[σ̃B/R] = 0, Equation (20) can be rewritten as:

V̇(σB/R) = σT
B/R

BωB/R (21)

In order for the system to be asymptotically stable, Equation (21) must be negative
definite. Let ωB∗/R be the desired angular velocity of the body frame, B∗ relative to the
reference frame,R. The steering law command is represented as:

BωB∗/R = − f (σB/R) (22)

where f (σB/R) is an even function [31] such that:

σT f (σ) > 0 (23)

Substituting Equation (22) into Equation (21):

V̇ = −σT
B/R f (σB/R) < 0 (24)

Equation (24) is represents a general steering law expression in which f (σB/R) can be any
even function and guarantees global asymptotic stability.

Since the MRP shadow set parameters in Equation (7) are being used to avoid the MRP
singularity at ±360◦, then |σB/R| upper bound is limited by 1. f (σB/R) is modified to
control how fast the commanded rates approach ωmax by making f (σB/R) an odd function
with the inclusion of a cubic term [26,31]:

f (σ) = fi(σi) =
2ωmax

π
arctan

([
K1σi + K3σ3

i

] π

2ωmax

)
(25)

3.2. Servo-Sub System

In order to track the desired body angular velocity commands, a servo sub-system is
necessary to produce the required torques. The angular velocity tracking error is defined
as [26,31]:

ωB∗/B = ωB/N −ωB∗/N (26)

where ωB∗/N in the common frame is defined as:

ωB∗/N = ωB∗/R + δCωR/N (27)

where δC = BCRCT and remaps the reference frame coordinates system to the body frame
coordinate system. To create a rate-servo robust to unmodeled torque [26], an integral term
must be added. The integral state z is defined as:

z =
∫ t f

t0

BωB∗/B dτ (28)

Now consider the rate servo Lyapunov candidate function [26,31]:

Vω(ωB∗/B , z) =
1
2

ωT
B∗/B [IRW ]ωB∗/B +

1
2

zT [KI ]z (29)

The required torques for each RW can be found by moving [Gs]us to the left hand side
of the equation:

[Gs]us = Lr (30)
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where Lr represents the right hand side terms:

Lr =[P]ωB∗/B + [KI ]z + L− [ω̃B/N ]([IRW ]ωB/N + [Gs]hs)+

[IRW ][ω̃B/R]δCωR/N − [IRW ]
(
ω′B∗/R + δC(ω̇R/N −ωB/N ×ωR/N )

) (31)

For the general case of a redundant set of RW present, the minimum norm inverse is used
to map the motor torques [26]:

us = [Gs]
T
(
[Gs][Gs]

T
)−1

Lr (32)

A full derivation for the right-hand side terms and numerical derivatives are discussed
in [32].

4. Attitude Constrained Maneuver

Attitude pointing constraints that often appear in spacecraft missions are exclusion
and inclusion constraints, which is further classified into four different categories [14]. Type
I constraints are static hard constraints, defined by relatively stationary celestial objects
with respect to the inertial frame. These are strict exposed or non-exposed constraints
defined by sensitive equipment. Type II constraints are relaxations of Type I constraints that
allow some violations. Type III constraints are dynamic constraints in which the constraint
is time dependent. Type IV constraints are a combination of Type I to Type III constraints.

4.1. Static Conic Exclusion and Inclusion Constraints

Figure 7 is a diagram for the static exclusion and inclusion constraint. For the static
exclusion constraint, the objective is to maneuver the spacecraft with sensitive equipment
in the body frame defined by the unit vector b̂ while avoiding the exclusion cone defined
by a celestial pointing unit vector n̂, with a minimum security angle of θmin.

(a) (b)

Figure 7. Static Pointing Constraints. The satellite in (a) has to keep its sensitive equipment from
entering the exclusion cone defined by the sun while the satellite in (b) has an inclusion constraint
defined by the sun while keeping its solar array pointed towards maximum power absorption.

Since the boresight vector and the celestial pointing vector are in different reference
frames, the inertial vector must be transformed to the body matrix. For an exclusion
constraint, the static constraint is defined as:

CE
[BN] =

N n̂T [BN]TBb̂− cos(θmin) < 0 (33)

In a similar way for the static inclusion constraint, the objective is to maneuver the
spacecraft with equipment in the body frame defined by the unit vector b̂ inside an inclusion
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cone defined by a celestial pointing unit vector n̂ and security angle of θmin. Mathematically,
an inclusion constraint is described as:

CI
[BN] =

N n̂T [BN]TBb̂− cos(θmin) > 0 (34)

Since inclusion and exclusion constraints use the same conic formulation through a
function C[BN]([BN]), the following inequality constraint must be true [20]:

− 2 ≤ C[BN]([BN]) ≤ 2 (35)

Ċ[BN]([BN]) is computed using the transport theorem and the circular shift property
of the triple product [26]. Taking the derivatives in the inertial fame, assuming that n̂ is
inertially constant and b̂ is body-fixed, then:

Ċ[BN]([BN]) =
N dn̂

dt
· b̂ + n̂ ·

N db̂
dt

= n̂ ·
(

ωB/N × b̂
)

Applying the circular shift property of the triple product:

n̂ ·
(

ωB/N × b̂
)
=

(
b̂× n̂

)
·ωB/N

Finally, Ċ[BN]([BN]) becomes

Ċ[BN]([BN]) =
([
Bb̃
]
[BN]N n̂

)TB
ωB/N (36)

Equations (33), (34) and (36), can be written in terms of the MRPs by transforming
œB/N to the DCM. These equations can be rewritten as:

C[BN]([BN](σB/N)) =
N n̂T [BN(σB/N)]

TBb̂− cos(θmin) (37)

Ċ[BN]([BN](σB/N)) =
([
Bb̃
]
[BN(σB/N)]

N n̂
)TB

ωB/N (38)

4.2. Dynamic Conic Exclusion and Inclusion Constraints

In Figure 8, a dynamic conic constraint is shown. For a dynamic exclusion constraint,
the goal is to maneuver the spacecraft while avoiding a body-fixed unit vector b̂ from
entering the exclusion cone defined by a moving unit vector n̂(t), and a security angle θmin:

CE
[BN] =

N n̂(t)T [BN(σB/N)]
TBb̂− cos(θmin) < 0 (39)

In a similar way, the goal for a dynamic inclusion constraint is to keep the bore-
sight vector b̂ inside an inclusion cone defined by a moving unit vector n̂(t) and security
angle θmin:

CI
[BN] =

N n̂(t)T [BN(σB/N)]
TBb̂− cos(θmin) > 0 (40)

The inequality condition presented by Equation (35) also holds true. The derivative
of the dynamic constraint, Ċ[BN]([BN]) is computed in a similar way shown in Section 4.1.
ĊBN([BN]) becomes:

Ċ[BN]([BN](σB/N)) =
N dn̂(t)

dt
· b̂ +

([
Bb̃
]
[BN(σB/N)]

N n̂
)TB

ωB/N (41)

The first term becomes:

N dn̂
dt
· b̂ = N ˙̂n =

dn̂
dt

[BN]T b̂
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Therefore, ĊBN([BN]) for the dynamic constraint becomes:

Ċ[BN]([BN](σB/N)) =
N ˙̂n(t)T [BN(σB/N)]

T b̂ +
([
Bb̃
]
[BN(σB/N)]

N n̂
)TB

ωB/N (42)

(a) (b)

Figure 8. Dynamic Inclusion Constraint Geometry. A laser device is attached to a satellite on the
left and must be pointed at another satellite’s receiver on the right. (a) is the initial position of the
satellites and (b) is an arbitrary position after some specified time.

4.3. Constrained Attitude Control

For the constrained problem, consider NE, the number of exclusion zones defined by
CE

i : SO(3) −→ R and N I
j : SO(3) −→ R, which can be functions described by Equation (37).

Let D be a feasible attitude set such that [20]:

D =
{

x ∈ SO(3) :
[
CE

i (x) < 0 ∧ CI
j (x) > 0

]}
The objective of the controller is to drive the attitude error σB/R and the angular

velocity error ωB/R to zero while moving in D. The first necessary condition is:

[BN] ∈ D ∀ t = [0, t f ]

To design control laws using Lyapunov’s direct method that considers attitude con-
straints, logarithmic barrier functions are used to convexify the constraints, resulting in
smooth and strictly convex control functions [12].

4.4. Constrained Kinematic Steering Law Design

The goal of the tracking problem is to steer the spacecraft such that σB/R −→ 0 and
ωB/R −→ 0. Similar to the unconstrained laws in Section 3.1, a servo sub-system and a
steering law is required to control the angular velocity and attitude, respectively. The servo
sub-system does not change; however, the steering law must be modified to consider the
attitude constraints.

The Lyapunov candidate function becomes, V : D −→ R+ [20]:

V(σB/R) = 2 ln
(

1 + σT
B/RσB/R

)
[
− 1

NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)]
(43)

Compared to the unconstrained counterpart in Equation (43), the Lyapunov function
depends on σB/R and σB/N . Note that the Lyapunov function, Equation (43), is split into
two parts:

• unconstrained, which is given by:

Vuncon = 2 ln
(

1 + σT
B/RσB/R

)



Sensors 2022, 22, 10003 13 of 24

• constrained, which is given by:

Vcon =

[
− 1

NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)]

The parameters αi > 0 and β j > 0 are chosen such that:[
−CE

i (σB/N ) < αi, CI
j (σB/N ) < βi

]
∀σB/N ∈ D (44)

One possibility arises from the inequality constraint imposed by Equation (35). As
a result, one choice is for αi = β j = 2e. Then the logarithmic constraints to be bounded
between 1 and +∞. Equation (43) has the following characteristics [20]:

1. V is continuously differential in D
2. V(0) = 0
3. V(σB/R) > 0 ∀ σB/R ∈ {D − {0}}

If the parameters are chosen such that αi > 0 and β j > 0.The conditions in Equation (44)
are satisfied. Since Equation (44) and − ln(x) are strictly decreasing functions:− 1

NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

) > − ln(1)− ln(1) = 0

Given that ln
(

1 + σT
B/RσB/R

)
> 0 ∀σB/R ∈ {D − {0}}. It can be concluded that

V(σB/R) > 0 ∀ σB/R ∈ {D − {0}}.

4. For αi = β j = 2e:− 1
NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

) > − ln
(

1
e

)
− ln

(
1
e

)
= 2

5. V(σB/R) −→ +∞ when either CE
i −→ 0 or CI

j −→ 0

Proof. As CE
i −→ 0 or CI

j −→ 0: − ln(x) −→ +∞ and since ln(1 + σT
B/RσB/R) −→ +∞, then

it follows that V(σB/R) −→ +∞

By conditions (1), (2), and (3), Equation (43) is a proper Lyapunov Function, bounded
by domain D by condition (5). The time derivative of Equation (43) is given by:

V̇(σB/R) =
4σT
B/Rσ̇B/R

1 + σT
B/RσB/R

− 1
NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)
+ 2 ln

(
1 + σT

B/RσB/R
)− 1

NE

NE

∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1
NI

NI

∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

 (45)

Using Equation (14) and knowing that σT
B/R[σ̃B/R] = 0, Equation (45) can be rewritten as:

V̇(σB/R) = σT
B/R

BωB/R

[
− 1

NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)]

+ 2 ln
(

1 + σT
B/RσB/R

)[
− 1

NE

NE

∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1
NI

NI

∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

] (46)

Substituting Equation (38) into Equation (46):
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V̇(σB/R) = σT
B/R

BωB/R

− 1
NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)
+ 2 ln

(
1 + σT

B/RσB/R
)− 1

NE

NE

∑
i=1

([B b̃][BN]N n̂)T

CE
i (σB/N )

− 1
NI

NI

∑
j=1

([B b̃][BN]N n̂)T

CI
j (σB/N )

 BωB/N

(47)

The angular velocity error in the common frame is BωB/R = BωB/N − δCRωR/N
and can be rewritten as BωB/N = BωB/R + δCRωR/N :

V̇(σB/R) =

(
σT
B/R

− 1
NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)
+ 2 ln

(
1 + σT

B/RσB/R
)− 1

NE

NE

∑
i=1

([B b̃][BN]N n̂)T

CE
i (σB/N )

− 1
NI

NI

∑
j=1

([B b̃][BN]N n̂)T

CI
j (σB/N )

) BωB/R

+ 2 ln
(

1 + σT
B/RσB/R

)− 1
NE

NE

∑
i=1

([B b̃][BN]N n̂)T

CE
i (σB/N )

− 1
NI

NI

∑
j=1

([ B b̃][BN]N n̂)T

CI
j (σB/N )

δCRωR/N

(48)

Define vT and uT to be:

uT = 2 ln
(

1 + σT
B/RσB/R

)− 1
NE

NE

∑
i=1

([B b̃][BN]N n̂)T

CE
i (σB/N )

− 1
NI

NI

∑
j=1

([B b̃][BN]N n̂)T

CI
j (σB/N )

 (49)

vT = σB/R

− 1
NE

NE

∑
i=1

ln

(
−

CE
i (σB/N )

αi

)
− 1

NI

NI

∑
j=1

ln

(
CI

j (σB/N )

β j

)+ uT (50)

Then, Equation (46) is rewritten as:

V̇(σB/R) = vTB
T ωB/R + uT

TδCRωR/N (51)

The commanded angular velocity for this steering law is:

BωB∗/R = − f (vT)−
vTuT

T
vT

T vT
δCRωR/N (52)

such that f satisfies the condition:

V̇(σB/R) = −vT
T f (vT) ≤ 0 (53)

A detailed derivation is conducted in Reference [32].

5. Results

The tracking performance is tested on a reference hill orbit frame with the following
orbital parameters shown in Table 1. The reference frame R is built as: r̂1 is in the nadir
direction, r̂2 is in the direction of the angular momentum, and r̂3 = r̂1 × r̂2. The spacecraft
parameters and attitude pointing constraints are listed in Table 2. The spin projection
matrix [Gs] represents a four wheel RW array in a pyramid configuration with an interior
angle of 55◦.

A camera is placed in the x-axis of the body frame b̂1 = Bx that must not enter the
four exclusion zones. An antenna is placed in the y-axis of the body frame b̂2 = By that
must maintain pointing in the inclusion zone. MATLAB’s ode45 was used to propagate
the states with a integration tolerance of 10−8. The initial conditions are an attitude of
σ0 =

[
−0.67 0 0

]T , correlating to a −135◦ rotation about the x-axis, and angular

velocity of ω =
[

0 0 ωmax
]T .
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Table 1. Orbital Parameters for Reference Frame, Values obtained from [20].

Orbital Parameter Value

Earth Radius 6378.0 km

Earth Gravitational Parameter 398,600.00 km3/s2

Right Ascension of ascending node 0◦

Inclination −90◦

Orbital Altitude 400 km

Initial argument of Latitude 180◦

The common frame results are shown in Figure 9. The exclusion zones are shown as
solid red circles, while the inclusion zones are shown as a dark green dotted circles. The
simulation presents convergence to the target reference frame between 100 to 150 s without
violating any pointing constraints. The MRPs switch to the shadow set at around 30 s into
the maneuver. It is important to mention that the purpose of the presented work is to
present the constrained attitude control formulation and simulation in the common frame
dynamics. No attempt is made to tune the control parameters for better performance to
arrive at a specific settling time for the problem.
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Figure 9. Unbounded Tracking Results in the Common Frame: (a) is the Spacecraft Attitude, (b) is
the Angular velocity of the spacecraft, (c) is the Angular Velocity Error in the Common frame, (d) is
the Attitude Error. (e,f) is are the boresight trajectories with respect to the constraints.

The constraints represented by Equations (33) and (34), representing how close the
boresight approaches the security angle of the constraint are plotted in the transient time in
Figures 10 and 11. It is shown that the first two exclusion constraints, C1 and C2 are more
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negative while the last two exclusion constraints C3 and C4 are less negative as an effect of
Common Frame terms. In terms of the inclusion constraint C5 are relatively more positive
in the common frame.

Table 2. Spacecraft and Pointing Constraint Parameters, Values obtained from [20] .

Description Variable Value

Spacecraft Inertia Tensor [IS] diag
([

4.415 4.415 3.83
])

km ·m2

Max Angular Velocity ωmax 2 ◦/s

RW Parameters

[IW ] diag
([

0.03 0.001 0.001
])

km ·m2

[Gs]
[ 0.819 0 −0.819 0

0 0.819 0 −0.819
0.5736 0.5736 0.5736 0.5736

]

usmax 15 mN ·m

Ω 500
[

1 −1 1 −1
]T rpm

Control Gains
[P] 10[I3×3]

[KI ] 0.01[I3×3]

Smoothing Constants [K1], [K3] 0.1

Exclusion Constraints

N n̂1,θmin1

[
0 −0.34 −0.96

]T , 10◦

N n̂2,θmin2

[
0 −1 −0.96

]T , 30◦

N n̂3,θmin3

[
1 1 0

]T , 20◦

N n̂4,θmin4

[
−1 1 0

]T , 20◦

Inclusion Constraints N n̂5,θmin5

[
1 0 0

]T , 70◦

Moving Average Window fouter 0.5 s
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Figure 10. Comparison of Equation (33) in the Common Frame and the Original representation.
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0 20 40 60 80 100
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Common Frame

Original

Figure 11. Comparison of Equation (34) in the Common Frame and the Original representation.

5.1. Analysis of Standard and Common Frame Steering Law and Control Effort

The absolute error was taken from the original definition of the steering law and the
new definition defined by Equation (52) for the entire maneuver. The transient time of
the maneuver is shown in Figure 12, From Figure 12a, the Common Frame steering law
requires relatively less angular rate compared to the original formulation as a result of the
additional terms needed to remap the reference to the body frame and Figure 12b shows a
relatively decreasing trend of the steering law effort. The Mean Absolute Error of the entire
maneuver is about 1%.
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0.5

1
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2
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3

3.5

Common Frame

Original

(a)

0 20 40 60 80 100

-0.12
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-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Total Error: 0.01

(b)

Figure 12. Transient time of the maneuver for the steering law where (a) is the overall commanded
rates of the steering law, and (b) is the error plot of (a).

The norm of the control effort was taken and the results are shown for the transient
time of the maneuver in Figure 13. In Figure 13a, it is shown that the overall control effort is
significantly reduced at about 7 seconds and that the common frame formulation converges
faster than the original formulation as a result of additional terms presented in the servo
subsystem as well as the steering law presented in Section 3. The average error throughout
the entire maneuver is about 16%.
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Figure 13. (a) is the Control Effort Norm in the Standard and the common frame in the transient time.
while (b) is the error plot between the common frame and the original formulation.

5.2. Monte Carlo Analysis

Figure 14 show the boresight trajectories given 100 runs with variance of given by
the Table 3. The initial position of the boresights are marked as black circles and the end
position is marked as a cyan x. The variance is multiplied by a random normal distribution
given by the MATLAB function randn. Figure 15 shows the angle progression of boresight
1 with respect to the four exclusion constraints as well as the angle progression of boresight
2 with respect to the inclusion constraint, the dashed line is the minimum angle for each
constraint from Table 2. In Figure 16, the histogram of the calculated constraints throughout
the entire maneuver are shown for each constraint.

Table 3. Variance Parameters for the Initial Attitude (σB/N0 ) and Initial Angular Velocity (ωB/N0 ) .

Description Value

Attitude Variance 0.1

Angular Velocity Variance 0.1
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Figure 14. Monte Carlo results for sensitive equipment placed in the x-body axis with respect to the
exclusion constraints (Boresight 1) and for equipment placed in the y-body axis with respect to the
inclusion constraints (Boresight 2).

Another 100 Run Monte Carlo Simulation was conducted with the inclusion constraint
removed. Comparing the trajectories of boresight 1 in Figure 17, the trajectories do not
approach exclusion constraint 2 with the inclusion constrained removed.
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Figure 15. Angle progression of equipment with respect to the constraints. θ1 to θ4 represent the angle
between Boresight 1 and the respective exclusion constraint, and θ5 is the angle between Boresight 2
with respect to the inclusion constraint.

Figure 16. Histogram for the Constraint calculated in Equation (33) and Equation (34) under exclusion
and inclusion constraints.
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In Figure 18, the angle progression between boresight 1 and the each exclusion con-
straint is shown and in Figure 19, it is shown that the minimum value for exclusion
constraint 2 is more negative and exclusion constraint 4 is slightly less negative than in
Figure 16.
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-60

-40

-20

0

20

40

60

80

1

2 3 4

Figure 17. Monte Carlo results for sensitive equipment placed in the x-body axis (Boresight 1). The
Inclusion Constraint is removed from the simulation.

Figure 18. Boresight 1 trajectories with respect to the four exclusion constraints with the inclusion
constraint condition removed.
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Figure 19. Histogram for the constraints calculated in Equation (33) purely under exclusion constraints.

5.3. Dynamic Constraint Performance
The proposed control design in Chapter 2 is tested on a combination of Type I (static

constraints discussed previously) and Type III Constraints, or simply called dynamic conic
constraints, where the position of the conic constraint varies with time. In this section, the
same four static exclusion constraints are present along with a dynamic inclusion constraint.
The reference frame is the same as previous sections from Table 1 and the same spacecraft
parameters with exception to the inclusion constraint from Table 2 Consider the dynamic
attitude inclusion pointing constraint:

N n̂Dynamic, θmin =

[
0.93, sin

(
ωB/Nz

γ
t +

π

4

)
, 0
]T

45◦ (54)

where ωB/N z is the z-component of the spacecraft current angular velocity, and γ is a
scaling term for the angular velocity. In order to track the inclusion constraint, γ must be
implemented such that the dynamic constraint does not move faster that the spacecraft in
order to converge. The derivative of the dynamic inclusion constraint in Equation (54) is:

N ˙̂nDynamic =

[
0,

ωB/Nz

γ
cos
(

ωB/Nz

γ
t +

π

4

)
, 0
]T

(55)

Figure 20 shows the simulation results of the constrained tracking maneuver under a
dynamic inclusion constraint and four exclusion constraints under no torque bounds. The
dynamic inclusion constraint seen in Figure 20f. In Figure 21, the inclusion constraint at
different time steps are shown. For the dynamic constraints, the spacecraft reorients to the
reference trajectory without violating any exclusion constraints as the dynamic constraint
moves with time.
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Figure 20. Tracking Performance with Dynamic Inclusion Constraint described by Equation (54). A
γ = 1.5 was used for the dynamic constraint, or half of ωz current angular velocity. The spacecraft is
unbounded in torque. (a) is the spacecraft attitude history, (b) is the angular velocity history, (c) is the
attitude error, (d) is the angular velocity error, (e) is the trajectory of boresight 1, and (f) is the angle
history of boresight 2.
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Figure 21. Boresight 2 trajectory at different times of the simulation, γ = 1.5 is used.
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6. Conclusions

Constrained attitude control is a relatively new technology and is an active research
topic with many proposed solutions. There are numerous advantages and disadvantages to
using each solution. Geometric methods determine an intermediate waypoint outside the
constraint in order to avoid the constraint. While geometric methods are relatively simple,
these algorithms do not scale well when adding many constraints to the control problem.
Methods using Constraint Monitor Algorithms is a real-time algorithm that actively moni-
tors pointing constraints and creates a trajectory using a predictor-corrector approach, but
convergence in the general case is not guaranteed. Optimal control methods can handle
different types of constraints; however, these methods are usually complex in algorithm
development. Lyapunov control methods have low complexity in implementation, but
cannot solve the tracking problem alone and are not rate-bounded or torque bounded
without modification. The main advantage of Lyapunov control is that the control laws are
simple and ideal for real-time attitude control. In conjunction with using a backstepping
control block that contains a steering law and a servo subsystem, the angular velocity rate
can be bounded. Extending the conic constraints as a function of the maximum torque
available for the reaction wheels array, a maximum moment of inertia, and maximum
angular velocity bounds the control method in torque. This paper extends the benefits of
this method by accommodating a common frame of reference for a scenario in which the
true attitude is unknown as well as introducing dynamic constraints, where the constraint
location is not an inertially fixed point and works well with static constraints. The main
benefit of using common frame dynamics is that the result is more accurate to the maneuver
than in the original constrained tracking problem.
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